首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purified radiolabeled rabbit Hageman factor, prekallikrein, and high molecular weight kininogen were used to examine Hageman factor system molecular dynamics after the intravenous injection of heparin-like dextran sulfate polymer in the rabbit. Hageman factor system proteins rapidly disappeared from the circulation following dextran sulfate injection, as measured by radial immunodiffusion, by kaolin-releasable kinin formation, and by measuring circulating levels of radiolabeled Hageman factor, prekallikrein, and high molecular weight kininogen. 125I-Hageman factor was distributed mainly to lung, liver, and spleen following dextran sulfate injection. Proteolysis of circulating 125I-Hageman factor occurred at a site within a disulfide loop into fragments of 50,000 and 30,000 molecular weight. Proteolysis of 125I-prekallikrein also occurred with visualization of a 50,000 molecular weight fragment. Although extensive proteolysis of 131I-high molecular weight kininogen was observed, the cleavage fragments were not the same as those generated during contact activation in vitro. The major fragment of high molecular weight kininogen observed in vivo was at 80,000 molecular weight, in contrast to the 65,000 molecular weight fragment generated by kallikrein in vitro. These results indicate that high molecular weight kininogen can undergo proteolysis in vivo into fragments not known to be associated with kinin release.  相似文献   

2.
Effect of surfaces on fluid-phase prekallikrein activation   总被引:2,自引:0,他引:2  
Scott  CF; Kirby  EP; Schick  PK; Colman  RW 《Blood》1981,57(3):553-560
The activation of prekallikrein by factor XII fragments (XIIf), during incubation in plastic tubes was previously noted to be increased by high molecular weight (HMW) kininogen as well as other plasma proteins. In this report, we investigated the mechanism responsible for this increase. Although we confirmed that HMW kininogen, bovine serum albumin, fibrinogen, cold insoluble globulin, and mixed phospholipids apparently increased prekallikrein activation, we found that the product of prekallikrein activation (kallikrein) lost substantial activity in less than 0.5 min after exposure to a variety of fresh surfaces. This loss was partially prevented by the presence of various proteins and phospholipids. Similar protection against inactivation of XIIf, the enzyme in this reaction, was also found. In contrast, no loss of the substrate, prekallikrein, was observed during incubation. The loss of kallikrein activity was found to be proportional to the surface area of the incubation vessel as well as the concentration of kallikrein. Further loss of kallikrein activity could also be prevented by pretreating the vessel with kallikrein. We therefore conclude that various substances apparently affect prekallikrein activation in a purified system by preventing the enzyme and product in the reaction mixture from losing activity due to adsorption to a surface.  相似文献   

3.
Properties of sulfatides in factor-XII-dependent contact activation   总被引:2,自引:0,他引:2  
Tans  G; Griffin  JH 《Blood》1982,59(1):69-75
Incubation of normal human plasma with low amounts of sulfatides resulted in the initiation of intrinsic coagulation and the appearance of kallikrein activity. The optimal initiation of procoagulant and kallikrein amidolytic activity was dependent on the presence of factor XII, high molecular weight kininogen, and prekallikrein. Since the activated partial thromboplastin clotting times in prekallikrein- deficient plasma approach normal values upon prolonged incubation with kaolin, this phenomenon of autocorrection was studied and found to be even more pronounced in the presence of sulfatides. Autocorrection was essentially completed in 5 min in the presence of sulfatides, whereas a preincubation of 15-20 min was required in the presence of kaolin. The limited proteolysis of 125I-factor XII in plasma during incubation with activating material or during clotting was determined. Cleavage of factor XII was more rapid and more extensive in the presence of sulfatides than in the presence of kaolin. In prekallikrein-deficient plasma, factor XII cleavage was completed within 5 min in the presence of sulfatides and within 15 min in the presence of kaolin. Thus, the appearance of factor-XII-dependent coagulant activity correlates with the limited proteolysis of factor XII when normal or prekallikrein- deficient plasma is activated by sulfatides or kaolin.  相似文献   

4.
Veloso  D; Silver  LD; Hahn  S; Colman  RW 《Blood》1987,70(4):1053-1062
Of five IgGI/k murine monoclonal anti-human prekallikrein antibodies produced (MAbs), MAb 13G11 was selected for studying interaction of prekallikrein with factor XII and high-mol-wt kininogen (HMWK) during activation on a surface. Immunoblots from sodium dodecyl sulfate (SDS) gels showed that this MAb recognizes two variants (88 kd and 85 kd) of prekallikrein and kallikrein both in purified proteins and normal plasma. Under reducing conditions, kallikrein exhibits the epitope on the heavy chain but not on the light chains. Preincubation of MAb 13G11 with prekallikrein (added to prekallikrein-deficient plasma) or with normal plasma inhibited surface activation of prekallikrein 60% to 80%, as judged by amidolytic and coagulant assays. In normal plasma, inhibition by the Fab fragments was 87% of that with the entire MAb. Inhibition was not by competition between the MAb and HMWK, since neither binding of 13G11 to prekallikrein (coated on microtiter plates) was inhibited by an excess of HMWK, nor was hydrolysis of HMWK by kallikrein inhibited by 13G11. Using purified proteins in a system mimicking contact activation, inhibition by 13G11 of prekallikrein activation by factor XIIa, HMWK, and kaolin present was approximately 80%. Decreased inhibition (55% to 25%) occurred without HMWK or when kallikrein was used instead of prekallikrein. Kallikrein activity was not inhibited by 13G11 Fab fragments. These results indicate that the effect of 13G11 in plasma was neither dissociation of prekallikrein- HMWK complex nor a direct effect on kallikrein activity. Similar to the results in plasma, activation of prekallikrein, HMWK present, by factor XIIa bound to kaolin, was inhibited approximately 70% by 13G11. The results suggest a previously unrecognized site on the prekallikrein (heavy chain) required for its interaction with factor XIIa, either shared with the 13G11 epitope or located in very close proximity. The inhibition of kallikrein by intact 13G11 indicates that its binding site on the heavy chain is sterically related to the active site (light chain).  相似文献   

5.
In the contact phase of activation of the kinin-forming, intrinsic clotting, and fibrinolytic systems, high-molecular-weight kininogen acts as a cofactor for the activation of Factor XI, prekallikrein, and Hageman factor. One mechanism by which high-molecular-weight kininogen acts as a cofactor has been studied by using 125I-labeled Factor XI and prekallikrein in kaolin-activated normal human plasma and plasmas deficient in high-molecular-weight kininogen and Hageman factor. High-molecular-weight kininogen was found to be essential for normal binding and cleavage of both Factor XI and prekallikrein on the kaolin surface. Hageman factor was essential for cleavage but not for binding of Factor XI and prekallikrein to kaolin. In normal plasma 80% of the activated Factor XI remained surface-bound, whereas 80% of the kallikrein was not surface-bound. These findings are consistent with the hypothesis that, in the initial phase of contact activation, high-molecular-weight kininogen links both Factor XI and prekallikrein to the exposed surface where they are activated by surface-bound activated Hageman factor. Once activated, the Factor XI molecules remain localized at the site of activation, in contrast to the kallikrein molecules which are found largely in the surrounding plasma.  相似文献   

6.
Recent studies indicate that assembly of high molecular weight kininogen on its multiprotein receptor allows for prekallikrein activation. On endothelial cells, factor XII activation is secondary to prekallikrein activation and amplifies it. The immediate consequence of plasma prekallikrein activation is the cleavage of high molecular weight kininogen (HK) with liberation of bradykinin. Cleaved high molecular weight kininogen is antiangiogenic. Bradykinin stimulates tPA liberation and nitric oxide formation. In addition, formed plasma kallikrein promotes single-chain urokinase activation and subsequent plasminogen activation. Kininogens and their breakdown products also are antithrombins. The angiotensin converting enzyme breakdown product of bradykinin prevents canine coronary thrombosis. The author presents a new hypothesis for physiologic assembly and activation of the plasma kallikrein/kinin system and discusses its influence on vascular biology.  相似文献   

7.
Hojima  Y; Cochrane  CG; Wiggins  RC; Austen  KF; Stevens  RL 《Blood》1984,63(6):1453-1459
A large number of negatively charged macromolecules, including DNA, glycosaminoglycans, and proteoglycans, were tested as possible activators of the contact (Hageman factor) system in vitro. Activation was assessed by conversion of prekallikrein to kallikrein, as determined by amidolytic assay and by cleavage of 125I-Hageman factor into 52,000- and 28,000-dalton fragments. Of particular interest to these studies, heparin proteoglycan and glycosaminoglycan from rat peritoneal mast cells, and squid chondroitin sulfate E, which is representative of the glycosaminoglycan from cultured mouse bone marrow derived mast cells, induced the reciprocal activation between Hageman factor and prekallikrein. In addition, naturally occurring heparin glycosaminoglycans from pig mucosa, bovine lung, and rat mast cells also induced activation. In contrast, native connective tissue matrix glycosaminoglycans and proteoglycans from several sources were inactive, although when one such chondroitin sulfate was further sulfated in vitro, it gained activity. When the negative charge of the activating agents was blocked by the addition of hexadimethrine bromide, the cleavage of 125I-Hageman factor in the presence of prekallikrein was prevented. The active negatively charged macromolecules induced cleavage of 125I-high molecular weight kininogen in normal plasma but not in Hageman factor-deficient or prekallikrein- deficient plasmas. Reconstitution of prekallikrein-deficient plasma with purified prekallikrein restored the kininogen cleavage upon addition of the active proteoglycans. These results suggest that both heparin from connective tissue mast cells and highly sulfated chondroitin sulfate E from cultured mouse bone marrow derived mast cells (which are considered synonomous with mucosal mast cells) could activate the contact system of plasma subsequent to an activation secretion response.  相似文献   

8.
Whether Escherichia coli and Staphylococcus aureus cell wall fractions can trigger the activation of prekallikrein was investigated in a mixture of purified human factor XII, prekallikrein, and high-relative-molecular-weight (Mr) kininogen. After exposure for 30 min to bacterial preparations (0.02-5 mg/ml) at 0 C, lallikrein amidolytic activity was expressed as a percentage of the optimal activation of prekallikrein induced by dextran sulfate. Lipopolysaccharide (LPS) fractions of five E coli strains and lipid A of E coli O111B4 induced 50%-90% optimal activity. However, the polysaccharide fraction induced less than 5% activity. Peptidoglycan and teichoic acid of S aureus induced 70%-100% optimal activity at 5 mg/ml, but protein A did not generate activity. No activation of prekallikrein occurred in the absence of factor XII. Thus, LPS and lipid A of E coli and peptidoglycan and teichoic acid of S aureus can generate kallikrein amidolytic activity in a mixture of purified factor XII, prekallikrein, and high-Mr kininogen.  相似文献   

9.
Reddigari  SR; Kaplan  AP 《Blood》1989,74(2):695-702
We developed a mouse monoclonal antibody (MoAb 115-21) to human high- molecular-weight kininogen (HK) that recognizes its prekallikrein binding site (residues 565 through 595 of HK). The corresponding synthesized 31-amino acid peptide (peptide IV) was recently shown to retain native HK's prekallikrein binding property. The same peptide bound factor XI also, although less avidly. Our MoAb recognizes purified HK, peptide IV, and the light chain moiety of HK (where the peptide IV resides), as shown by enzyme-linked immunosorbent assay (ELISA) and Western blotting experiments. The apparent dissociation constant for the HK and MoAb 115-21 interaction was 2.2 nmol/L. It does not recognize low-molecular-weight kininogen (LK) with which HK shares its heavy chain moiety or any antigens in human plasma congenitally deficient in kininogens. The binding of MoAb 115-21 to purified light chain of HK was competitively inhibited by peptide IV. In addition, the antibody inhibits HK-dependent clotting activity of normal human plasma and dextran sulfate-mediated activation of prekallikrein in plasma and retards cleavage of HK in normal plasma after contact activation with dextran sulfate. Also, purified Fab fragments of MoAb 115-21 inhibited the HK-dependent coagulant activity and dextran sulfate-mediated prekallikrein activation in normal plasma. Since the kd for HK-MoAb 115- 21 interaction is ten times lower than that of HK-prekallikrein, our data suggest that binding of MoAb 115-21 to HK's peptide IV site increases the free prekallikrein concentration in plasma and thus results in the decreased efficiency of factor XIIa-mediated activation of prekallikrein. Decreased levels of kallikrein thus formed may be responsible for the inhibition of HK-dependent clotting activity and the decrease in rate and extent of HK cleavage in normal plasma on contact activation with dextran sulfate. MoAb 115-21 may thus prove very useful, especially with its high affinity for HK, in further delineation of the role of HK and prekallikrein in contact activation and kinin-related human pathology.  相似文献   

10.
A system was developed for studying the activation of factor XII (Hageman factor) in the presence of dextran sulfate (DS). Salient features of the system included low ionic strength (0.08), low concentration of factor XII (approximately 1/10,000 that in normal plasma), and an excess of exogenous prekallikrein (PK). In this system, factor XII was rapidly converted to the 80,000 molecular weight (mol wt) form of factor XIIa (alpha-factor-XIIa). Once formed, the factor XIIa converted PK to kallikrein at a rate that was proportional to the amount of factor XII originally present in the incubation mixture. This system was used to construct a simple sensitive assay for factor XII in plasma and other biologic samples. The kallikrein produced was measured spectrophotometrically with the chromogenic substrate (H-D-Pro-Phe-Arg- p-nitroanilide (S-2302). This assay was shown to be independent of the high molecular weight kininogen and the PK content of the sample being analyzed. The measurements obtained were consistent with fundamental enzymologic principles and, if desired, could be processed with a simple calculator program to achieve linear standard curves. When applied to the quantitation of factor XII in plasma, the assay yielded values in close agreement with those determined by coagulant assay or by radial immunodiffusion.  相似文献   

11.
Chang  JJ; Scott  CF; Colman  RW 《Blood》1986,67(3):805-810
High molecular weight (HMW) kininogen, the cofactor for activation of the contact system of plasma proteolysis, transports and optimally positions prekallikrein and factor XI on a negatively charged surface, allowing those zymogens to be activated by surface-bound factor XIIa. HMW kininogen circulates in plasma as a procofactor that, after cleavage by kallikrein or factor XIIa, gains ability to bind to the surface. The mechanism responsible for this increased affinity for the surface is unknown. We hypothesized that modification of arginine residues may prevent cleavage of HMW kininogen, since the initial kallikrein-induced cleavage sites on the HMW kininogen molecule are at the NH2 terminal and the COOH terminal of the bradykinin-containing portion of the molecule, each of which contains arginine. We found that modification with butanedione of four arginine residues in the HMW kininogen molecule prevented bradykinin release, which results from cleavage of HMW kininogen. Furthermore, HMW kininogen coagulant activity was lost, in proportion to the degree of arginine modification, until 6.6 residues had been modified. Complex formation with prekallikrein, however, was found to be uneffected by the modification of modified HMW kininogen. To account for the loss of coagulant activity, we also examined the ability of modified HMWKa (active cofactor) to bind to an activating surface. The affinity of modified HMWKa for kaolin was tenfold less than the affinity of unmodified HMWKa. These data suggest that arginine residues play a critical role in the ability of HMW kininogen to function as an activation cofactor, both by preventing the cleavages that produce HMWKa as well as by decreasing the affinity of HMWKa for the surface.  相似文献   

12.
The mechanism by which negatively charged substances such as celite, kaolin, or ellagic acid contribute to the surface-dependent activation of Hageman factor (Factor XII) was studied. Kinetic studies of the proteolytic activation of (125)I-labeled human Hageman factor by human plasma kallikrein, plasma, activated Factor XI, and trypsin were performed in the presence and absence of high molecular weight kininogen and surface materials such as celite, kaolin, or ellagic acid. The results showed that surface-bound Hageman factor was 500 times more susceptible than soluble Hageman factor to proteolytic activation by kallikrein in the presence of high molecular weight kininogen. Surface binding of Hageman factor enhanced its cleavage by plasmin, activated Factor XI, and trypsin by 100-fold, 30-fold, and 5-fold, respectively. On a molar basis, trypsin was twice as potent as kallikrein in the cleavage of the surface-bound Hageman factor, while plasmin and activated Factor XI were an order of magnitude less potent than kallikrein. Kallikrein even at concentrations as low as 0.5 nM (i.e., 1/1000th of the concentration of prekallikrein in plasma) was very potent in the limited proteolysis of the surface-bound Hageman factor. These results suggest that substances classically known as "activating surfaces" promote the activation of Hageman factor indirectly by altering its structure such that it is much more susceptible to proteolytic activation by other plasma or cellular proteases.  相似文献   

13.
The activation of factor XI initiates the intrinsic coagulation pathway. Until recently it was believed that the main activator of factor XI is factor XIIa in conjunction with the cofactor high molecular weight kininogen on a negatively charged surface. Two recent reports have presented evidence that in a purified system factor XI is activatable by thrombin together with the soluble polyanion dextran sulfate. To assess the physiological relevance of these findings we studied the activation of factor XI in normal and factor XII-deficient plasma. We used either kaolin/cephalin or dextran sulfate as a surface for the intrinsic coagulation pathway, tissue factor to generate thrombin via the extrinsic pathway, or the addition of alpha-thrombin directly. 125I-factor XI, added to factor XI-deficient plasma at physiologic concentrations (35 nmol/L), is rapidly cleaved on incubation with kaolin. The kinetics appear to be exponential with half the maximum cleavage at 5 minutes. Similar kinetics of factor XI cleavage are seen when 40 nmol/L factor XIIa (equal to 10% of factor XII activation) is added to factor XII-deficient plasma if an activating surface is provided. Tissue factor (1:500) added to plasma did not induce cleavage of factor XI during a 90-minute incubation, although fibrin formation within 30 seconds indicated that thrombin was generated via the extrinsic pathway. Adding 1 mumol/L alpha-thrombin (equivalent to 50% prothrombin activation) directly to factor XII deficient or normal plasma (with or without kaolin/cephalin/Ca2+ or dextran sulfate) led to instantaneous fibrinogen cleavage, but again no cleavage of factor XI was observable. We conclude that in plasma surroundings factor XI is not activated by thrombin, and that proposals of thrombin initiation of the intrinsic coagulation cascade are not supportable.  相似文献   

14.
To elucidate the mechanism by which activation of the contact system of blood coagulation leads to expression of fibrinolytic activity, we have determined the molecular characteristics of the plasminogen activators present in dextran sulfate-treated euglobulin fractions by electrophoretic-zymographic analysis and specific immunoadsorption. In addition to free and protease inhibitor-bound tissue-type plasminogen activator (t-PA), dextran sulfate precipitates of euglobulins contained the complex formed between plasma kallikrein and C1-inhibitor, an indicator of prekallikrein activation. These precipitates also contained substantial fibrinolytic activity related to urinary-type plasminogen activator (u-PA). Autoradiographic analysis was then used to evaluate the cleavage of 125I-single-chain u-PA (prourokinase) in dextran sulfate euglobulins as well as after exposure to kallikrein or beta-factor XIIa. This analysis supported the conclusion that plasma kallikrein-mediated cleavage and activation of single-chain u-PA is the mechanism operative for the development of lytic activity in euglobulin precipitates following activation of the contact system.  相似文献   

15.
To test whether endotoxin decreases blood pressure acutely in rats by activating the plasma kinin-forming system, plasma kallikrein activity was determined in different experimental settings of endotoxemia. Conscious normotensive rats were infused for 45 min with endotoxin (LPS E. coli 0111:B4) at a dose (0.01 mg/min) which had no effect on blood pressure. Additional rats were infused with the vehicle of endotoxin. Plasma prekallikrein activity was measured at the end of the 45 min infusions. In other rats, a bolus intravenous injection of endotoxin (2 mg) was administered following the 45 min infusion of endotoxin or its vehicle. In these two latter groups of rats, plasma prekallikrein activity was determined 15 min after administration of the bolus dose of endotoxin. In rats pretreated with the endotoxin infusion, the bolus dose of endotoxin had no significant effect on blood pressure, whereas rats infused with the vehicle became and remained hypotensive up to the end of the experiment. There was however no significant difference in plasma prekallikrein activity within the different groups of rats. In another group of rats, dextran sulfate (0.25 mg i.v.), which activates factor XII and thereby the conversion of prekallikrein to kallikrein, induced a short-lasting fall in blood pressure. 15 min after administration of dextran sulfate, plasma prekallikrein activity was almost completely suppressed. These results obtained in unanesthetized rats strongly suggest that the blood pressure fall induced by E. coli endotoxin is not due to activation of prekallikrein and consequently of the kinin-forming system.  相似文献   

16.
W A Wuillemin  I Huber  M Furlan  B L?mmle 《Blood》1991,78(4):997-1004
An 18-year-old healthy woman was found to have cross-reacting material (CRM)-positive factor XII (F XII) deficiency, F XII clotting activity was less than 0.01 U/mL, whereas F XII antigen was 0.11 U/mL. An F XII inhibitor was excluded. To partially characterize the molecular defect of the abnormal F XII, immunologic and functional studies were performed on the proposita's plasma. The abnormal F XII was a single chain molecule with the same molecular weight (80 Kd) and the same isoelectric points (pl, 5.9 to 6.8) as normal F XII. Dextran sulfate activation of the proposita's plasma showed no proteolytic cleavage of F XII even after 120 minutes, whereas F XII in pooled normal plasma, diluted 1:10 with CRM-negative F XII-deficient plasma, was completely cleaved after 40 minutes. Adsorption to kaolin was identical for both abnormal and normal F XII. In the presence of dextran sulfate and exogenous plasma kallikrein, the abnormal F XII was cleaved with the same rate as normal F XII. However, kallikrein-cleaved abnormal F XII was not able to cleave factor XI and plasma prekallikrein, in contrast to activated normal F XII. Thus, these studies show that the functional defect of this abnormal F XII, denoted as F XII Bern, is due to the lack of protease activity of the kallikrein-cleaved molecule. Therefore, the structural defect is likely to be located in the light chain region of F XII, containing the enzymatic active site.  相似文献   

17.
Various mechanisms have been hypothesized to explain the initiation of contact system activation in plasma. We investigated the capability of dextran sulphate (DS) of different molecular weights to initiate contact system activation in normal human plasma, and compared this with their capability to support factor XII autoactivation and to enhance factor XII susceptibility for cleavage by kallikrein.
Dextran sulphate of Mr 500 000 (DS500) and 50 000 (DS50) was able to initiate contact system activation in plasma (determined by measuring the amount of factor XIIa–C1-inhibitor, kallikrein–C1-inhibitor and factor XIa–C1-inhibitor complexes generated) as well as to support factor XII autoactivation and to enhance factor XII susceptibility for cleavage by kallikrein (as measured with amidolytic assays using purified proteins). In contrast, dextran sulphate of Mr 15 000 (DS15) and 5000 (DS5) neither induced contact system activation in plasma, nor supported autoactivation of factor XII, although both of these DS species enhanced the rate of activation of factor XII by kallikrein in the purified system. Based on these properties (i.e. binding of factor XII without inducing autoactivation), DS15 and DS5 were predicted to be inhibitors of contact system activation induced in plasma by DS500, which indeed was observed.
We conclude that enhanced factor XII susceptibility for kallikrein activation and factor XII autoactivation are distinct phenomena, the latter being necessary to support activation of the contact system in plasma.  相似文献   

18.
Activation of prorenin in the neutral phase after pH 3.3 dialysis of human plasma depends on clotting factor XII-initiated prekallikrein to kallikrein conversion. Acid dialysis may be necessary for destroying kallikrein inhibitors or rendering prorenin susceptible to attack by kallikrein. If the latter possibility proves true, it is difficult to see how the factor XII-kallikrein pathway could activate prorenin in vivo. Plasma prorenin was therefore separated from active renin and from the protease inhibitors alpha 2-macroglobulin, C1-inactivator, alpha 1-antitrypsin, inter-alpha-trypsin inhibitor, and antithrombin III by gel filtration on Sephadex G-100 and affinity chromatography on Blue Sepharose CL-6B at neutral pH. The resulting prorenin preparation could be activated at pH 7.5 by highly purified human plasma kallikrein, which was prepared from prekallikrein by activation with active factor XII fragment beta-factor XII a. Activation proceeded at 4 and 37 C at a kallikrein concentration of 2 micrograms/ml, which is approximately 5% of the prekallikrein concentration in normal plasma. It appears that an acid-induced conformational change of the prorenin molecule is not required for its activation by plasma kallikrein.  相似文献   

19.
Prekallikrein and high-molecular-weight kininogen were found associated in normal human plasma at a molecular weight of 285,000 as assessed by gel filtration on Sephadex G-200. The molecular weight of prekallikrein in plasma that is deficient in high-molecular-weight kininogen was 115,000. This prekallikrein could be isolated at a molecular weight of 285,000 after plasma deficient in high-molecular-weight kininogen was combined with plasma that is congenitally deficient in prekallikrein. Addition of purified 125I-labeled prekallikrein and high-molecular-weight kininogen to the respective deficient plasma yielded a shift in the molecular weight of prekallikrein, and complex formation could be demonstrated by incubating prekallikrein with high-molecular weight kininogen. This study demonstrates that prekallikrein and high-molecular-weight kininogen are physically associated in plasma as a noncovalently linked complex and may therefore be adsorbed together during surface activation of Hageman factor. The complex is disrupted when these proteins are isolated by ion exchange chromatography.  相似文献   

20.
Collagen activation of platelet-associated Factor XI has been proposed as a mechanism for initiating intrinsic clotting independent of Factor XII. Since this could explain the lack of bleeding in patients with hereditary Factor XII deficiency, prekallikrein deficiency and high molecular weight kininogen deficiency, we subjected the hypothesis to rigorous testing. Incubation of isolated platelets with collagen and calcium ions failed to generate activity shortening the clotting time of an activated Factor XI (XIa) assay that had been modified to eliminate effects due to platelet-associated activated Factor V. Nor could generation of traces of Factor XIa in such mixtures be detected by incubation with purified Factor IX and testing for the generation of activated Factor IX (IXa) in clotting and amidolytic assays. Moreover, when blood or platelet-rich plasma containing added 125I-Factor IX was incubated with calcium ions and collagen and then subjected to reduced sodium dodecyl sulfate polyacrylamide gel electrophoresis, the radioactivity profiles revealed only native 125I-Factor IX without evidence of the polypeptide chains of Factor IXa. The negative results of this study mitigate against the hypothesis that collagen activation of platelet-associated Factor XI represents a physiologically significant mechanism for initiating clotting independent of Factor XII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号