首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nature of the muscarinic receptor subtype mediating contraction of the endothelium-denuded bovine coronary artery was investigated in vitro by functional measurements and radioligand binding studies. The acetylcholine (ACh)-induced isotonic contraction of circularly cut muscle strips was recorded and expressed as a percentage of the maximum contraction obtained with 80 mM K+. In order to distinguish between M1, M2 and M3 receptors, the potency of the five subtype-selective antagonists, 4-diphenylacetoxy-N-methyl-piperidine methobromide (4-DAMP), parafluor-hexahydro-siladifenidol (pFHHSiD), pirenzepine, AF-DX 116 and methoctramine, to block the ACh-induced contraction was estimated. All the antagonists competitively inhibited the responses induced by ACh, with one exception, namely, 4-DAMP, whose Schild plot had a slope greater than one. The low affinity of pirenzepine (pA2 7.14 +/- 0.14) excluded an action at the M1 subtype. The low affinity of AF-DX 116 (pA2 6.49 +/- 0.18) and methoctramine (pA2 5.88 +/- 0.07) suggest that the bovine coronary artery smooth muscle receptor is not of the M2 (cardiac) subtype. In contrast, 4-DAMP (pA2 9.04 +/- 0.03) and pFHHSiD (pA2 7.64 +/- 0.04) potently inhibited the ACh-induced contraction with affinities similar to those reported for the M3 (glandular) receptor. In addition, the muscarinic receptors mediating coronary artery contraction were characterized in antagonist/[3H]N-methyl-scopolamine ([3H]NMS) competition binding studies. With the exception of AF-DX 116, all antagonists bound to a homogeneous population of receptors with pseudo-Hill slopes not different from unity. The pKi values, albeit somewhat lower, essentially substantiated the functional affinity estimates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
1. In vitro experiments in a microvascular myograph were designed to characterize postjunctional muscarinic receptors producing contraction both in the presence and absence of the endothelium in coronary resistance arteries (normalized diameter of 150-450 microns), isolated from the left ventricle of hearts from 3-6 month old lambs. Preferential muscarinic receptor antagonists were used to determine the receptor subtype: pirenzepine (M1 receptor), AFDX 116 (M2 receptor), 4-DAMP and pFHHSiD (M3 receptor). 2. The rank order of potency for muscarinic agonist-induced increases in tension in endothelium-intact preparations was oxotremorine-M = methacholine = acetylcholine (ACh) > carbachol. Removal of the endothelium increased the potency of ACh, but this procedure did not change either the sensitivity or maximal response to carbachol. 3. The contractile response to ACh was reproducible. Incubation with 3 x 10(-7)-3 x 10(-6) M pirenzepine induced non-parallel rightward shifts and depressed the maximum of the concentration-response curve to ACh in endothelium-intact arteries. The slope by Schild analysis was 2.9 +/- 0.8 (P < 0.05, n = 7). Atropine, AFDX 116, 4-DAMP and pFHHSiD produced parallel rightward shifts of the curves to ACh and the slopes of the Schild plots were not significantly different from unity. The pKB values for the antagonists from plots constrained to unity in endothelium-intact segments were: atropine (9.4), 4-DAMP (9.0), pFHHSiD (7.9) and AFDX 116 (6.2). 4. In endothelium-denuded arteries, pirenzepine, AFDX 116 and pFHHSiD caused concentration-dependent, parallel rightward displacements of the concentration-response curves to ACh and the slopes of the Schild plots were not significantly different from unity. The plots constrained to a slope of unity gave the following pKB values: pFHHSiD (8.7), pirenzepine (7.5) and AFDX 116 (6.2). 5. In the presence of the endothelium, low concentrations of pirenzepine (10(-9)-10(-7) M) produced leftward shifts of the ACh concentration-response curves. This potentiating effect of pirenzepine was reversed by endothelial cell removal. In preparations precontracted with the thromboxane-mimetic, U46619, the putative M1-selective agonist, McN-A-343, induced a biphasic relaxation with log IC50 of 8.53 +/- 0.14 and 5.02 +/- 0.08 for the first and second phase of the relaxation, respectively, and maximal relaxations of 22.8 +/- 4.3% and 41.1 +/- 5.4% (n = 16). McN-A-343 relaxed the vessels in the presence of 10(-7) M pFHHSiD and 3 x 10(-7) M AFDX 116, but not after incubation with 10(-9) M pirenzepine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
1. The muscarinic receptor subtype involved in the methacholine-induced enhancement of phosphoinositide metabolism in bovine tracheal smooth muscle was identified by using the M2-selective antagonist AF-DX 116 and the M3-selective antagonist 4-diphenylacetoxy-N-methylpiperidine (4-DAMP) methobromide, in addition to the M1-selective antagonist pirenzepine, in a classical Schild analysis. 2. All the antagonists shifted the methacholine dose-response curve to the right in a parallel and concentration-dependent fashion, yielding Schild plots with slopes not significantly different from unity. The pA2 values (6.94, 6.32 and 8.54 for pirenzepine, AF-DX 116 and 4-DAMP methobromide respectively) indicate that it is the M3 (smooth muscle/glandular), but not the M2 (cardiac) muscarinic receptor subtype, present in this tissue, that mediates phosphoinositide turnover, in accordance with our previous contractile studies. 3. The results provide additional evidence for the involvement of phosphoinositide turnover in the pharmacomechanical coupling between muscarinic receptor stimulation and contraction in (bovine tracheal) smooth muscle.  相似文献   

4.
Pre- and postjunctional muscarinic receptor subtypes in dog airways.   总被引:1,自引:0,他引:1  
To examine muscarinic receptor subtypes involved in cholinergically mediated contractions of the airway, we studied the effects of the M1-selective antagonist, pirenzepine, the M2-selective antagonist, AF-DX 116, the M3-selective antagonist, 4-diphenyl-acetoxy-N-methylpiperidine (4-DAMP) methiodide, and the non-selective antagonist, atropine, on acetylcholine (ACh)- and electrically induced contractions in dog bronchi and bronchioles. The relative potencies of the antagonists based on IC50 values of each antagonist for contractions induced by the two concentrations of ACh that produced 50% of the maximum (ED50) and the maximum (EDmax) contractions and the pA2 values were atropine greater than or equal to 4-DAMP methiodide greater than pirenzepine = AF-DX 116 in both the bronchi and bronchioles. The IC50 and pA2 values of each antagonist did not differ significantly between the bronchi and bronchioles. 4-DAMP methiodide significantly inhibited the contractile response to electrical field stimulation (EFS) at 5 Hz at concentrations that did not alter the contractile responses to exogenous ACh in both the bronchi and bronchioles, whereas pirenzepine, AF-DX 116 and atropine inhibited the EFS-induced contraction only at the concentrations that reduced the contraction induced by exogenous ACh. The present results suggest that the cholinergic contraction is mediated via the postsynaptic receptor M3, based on functional potencies of muscarinic antagonists and presynaptic receptor auto-facilitatory M3, based on the suppression of the contractile response to EFS by 4-DAMP methiodide in central and peripheral airways.  相似文献   

5.
1. The effects of seven muscarinic receptor antagonists were used to characterize the receptors which mediate carbachol-evoked contractions of intertaenial circular and taenial longitudinal muscle in human isolated colon. The effects of these antagonists were studied upon colon contractions induced by cumulatively added carbachol which had mean EC50 values of 11.7 +/- 2.3 microM (n = 8) and 12.6 +/- 2.3 microM (n = 8) respectively upon circular and longitudinal smooth muscle. 2. All antagonists displaced concentration-response curves to carbachol to the right in a parallel manner. The maximum concentration of each antagonist added (30 nM-10 microM) did not significantly suppress the maximum response. 3. In circular muscle, the M3 muscarinic receptor antagonists, 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP), hexahydrosiladiphenidol (HHSiD) and para-fluoro-hexahydrosiladiphenidol (p-F-HHSiD) inhibited responses with pA2 values of 9.41 +/- 0.23, 7.17 +/- 0.07, 6.94 +/- 0.18 respectively. The M2 muscarinic receptor antagonist, AF-DX 116, the M2/M4 muscarinic receptor antagonist, himbacine, and the M1 muscarinic receptor antagonist, pirenzepine, yielded pA2 values of 7.36 +/- 0.43, 7.47 +/- 0.14 and 7.23 +/- 0.48 respectively. The non-selective antagonist, atropine, had a pA2 of 8.72 +/- 0.28. 4. In longitudinal muscle 4-DAMP, HHSiD, p-F-HHSiD, AF-DX 116, himbacine and pirenzepine gave pA2 values of 9.09 +/- 0.16, 7.45 +/- 0.43, 7.44 +/- 0.21, 6.44 +/- 0.1, 7.54 +/- 0.40, 6.87 +/- 0.38 respectively. Atropine yielded a pA2 value of 8.60 +/- 0.08.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The aim of the present study was to analyse the muscarinic receptors involved in the vasodilation elicited by acetylcholine (ACh) and the carbachol inhibition of electrically-evoked [3H]noradrenaline (NA) release in cat femoral artery. For this purpose, the following receptor antagonists were used, atropine, pirenzepine (M1-antagonist), AF-DX 116 (M2-antagonist) and 4-diphenylacetoxy-N-methylpiperidine methobromide (4-DAMP; M3-antagonist). The order of potency (pA2 values) of these drugs at postjunctional level was: atropine (9.7) greater than or equal to 4-DAMP (9.6) greater than pirenzepine (7.2) greater than AF-DX 116 (6.0), and at prejunctional level (pIC50 values) was: 4-DAMP (9.3) greater than atropine (8.5) greater than AF-DX 116 (7.1) greater than pirenzepine (5.9). These findings indicate that the muscarinic receptors mediating the vasodilation induced by ACh and the carbachol inhibition of NA release are of the M3-subtype.  相似文献   

7.
The interaction between the muscarinic receptor agonists, carbachol, acetylcholine (ACh) and methacholine, and antagonists, atropine, gallamine, 4-DAMP and pirenzepine, was studied on the rat isolated rectum preparation. ACh (1.93 X 10(-8)-1.95 X 10(-6) M), methacholine (8.7 X 10(-8)-1.1 X 10(-6) M) and carbachol (1.1 X 10(-7)-3.5 X 10(-6) M) induced contractions that were reversibly antagonized by atropine (1.9 X 10(-9)-4.8 X 10(-8) M), 4-DAMP (1.5 X 10(-8)-2.86 X 10(-7) M) gallamine (1.12 X 10(-6)-1.12 X 10(-4) M) and pirenzepine (2.8 X 10(-7)-7.0 X 10(-6) M). The pA2 values were atropine: 8.99 +/- 0.28, 9.29 +/- 0.14 and 8.86 +/- 0.05; 4-DAMP: 8.39 +/- 0.10, 8.66 +/- 0.15 and 8.26 +/- 0.30, gallamine: 5.85 +/- 0.23, 5.73 +/- 0.25 and 5.96 +/- 0.10 and pirenzepine: 6.85 +/- 0.44, 7.17 +/- 0.13 and 7.21 +/- 0.03 against ACh, methacholine and carbachol, respectively. The experimental dose-ratio (atropine + gallamine) was greater than the expected dose-ratio (as predicted by the Paton & Rang rule) for ACh and methacholine while the experimental dose-ratio closely approximates the expected dose-ratio for carbachol. It is suggested that atropine, 4-DAMP pirenzepine and gallamine act on the same receptors but gallamine allosterically altered the binding of the agonists and antagonists to varying extents.  相似文献   

8.
Muscarinic receptor subtypes controlling the nonselective cationic current in response to carbachol (ICCh) were studied in circular smooth muscle cells of the guinea pig gastric antrum using putative muscarinic agonists and antagonists. Both oxotremorine-M (an M2-selective agonist) and CCh dose-dependently activated the cationic current with EC50 values of 0.21 +/- 0.01 microm and 0.97 +/- 0.06 microM, respectively. In contrast, pilocarpine and McN-A 343 (an M1-selective and a putative M4 agonist) were weak partial agonists. In response to 10/microM CCh, 4-DAMP, methoctramine and pirenzepine dose-dependently inhibited ICCh and had IC50 values of 1.91 +/- 0.2 nM, 0.46 +/- 0.07 microM and 8.33 +/- 0.4 microM, respectively. 4-DAMP, methoctramine and pirenzepine shifted the concentration-response curves of ICCh to the right without significantly reducing the maximal current. Values of the apparent dissociation constant pA2 obtained from Schild plot analysis were 9.24, 7.72 and 6.62 for 4-DAMP, methoctramine and pirenzepine, respectively. Also, pertussis toxin completely blocked ICCh generation. These results suggest that the M2-subtype plays a crucial role in the activation of the ICCh, and a block of the M3-subtype reduces the sensitivity of the M2-mediated response with no significant reduction of maximum response.  相似文献   

9.
1. In the portal vein of permanently cannulated, freely moving, unanaesthetized rats, methacholine (MCh) is able to inhibit the electrically-evoked endogenous noradrenaline (NA) overflow. This inhibition is mediated by presynaptic inhibitory muscarinic heteroreceptors. 2. By use of pirenzepine, 4-diphenylacetoxy-N-methylpiperidine methobromide (4-DAMP) and AF-DX 116 as M1-, M3-, and M2-selective antagonists respectively, the MCh (0.1 microM)-induced inhibition of the electrically-evoked NA overflow could be reversed to the control stimulation value dose-dependently. 3. The potency order of the antagonists was: 4-DAMP greater than AF-DX 116 greater than pirenzepine, pIC50 values being 8.50, 7.96 and 7.01, respectively. 4. From these results it was concluded that the inhibitory presynaptic heteroreceptors in the portal vein of conscious unrestrained rats are of the cardiac M2-subtype.  相似文献   

10.
The pA2 values and the Schild plots of the antimuscarinic drugs AF-DX 116, atropine and pirenzepine for muscarinic receptors of isolated guinea pig gastric fundus (acid secretion) and atrial and urinary bladder preparations (contractile force) obtained from the same animals were calculated against bethanechol as the agonist. The antimuscarinic drugs concentration-dependently shifted the concentration-response curves to bethanechol to the right without any change in the maximum response. The analysis of data based on Schild plots was consistent with a simple competitive antagonism, since regression slopes did not differ significantly from unity. The pA2 values indicated a significantly higher affinity of AF-DX 116 and atropine for atrial muscarinic receptors with respect to those of the gastric mucosa or urinary bladder. By contrast, in the case of pirenzepine the pA2 values for the three tissues did not differ significantly. These results suggest that each examined tissue apparently contains homogeneous population of acetylcholine muscarinic (M2) receptors. The pA2 values found for AF-DX 116 and atropine suggest, however, that the putative M2 subtype of atrial muscarinic receptor differs from both those of the gastric fundus and those of the urinary bladder.  相似文献   

11.
12.
1. The characteristics of muscarinic receptors mediating relaxation and/or contraction in the rat iris dilator muscle were examined. 2. Relaxation was induced in a dilator muscle by application of acetylcholine (ACh) at low doses (3 microM or less) and contraction was induced by high doses. Methacholine and carbachol also showed biphasic effects similar to those of ACh; in contrast, bethanechol, arecoline, pilocarpine and McN-A-343 induced mainly relaxation but no substantial contraction. 3. After parasympathetic denervation by ciliary ganglionectomy, the relaxant response to muscarinic agonists disappeared upon nerve stimulation. Application of McN-A-343 and pilocarpine induced only small contractions in denervated dilator muscles, indicating that these are partial agonists for contraction. 4. pA2 values of pirenzepine, methoctramine, AF-DX 116, himbacine, and 4-DAMP for antagonism to pilocarpine-induced relaxation in normal dilator muscles and those for antagonism to ACh-induced contraction in denervated dilator muscles were determined. The pA2 values for antagonism to relaxation of all these antagonists were most similar to those for M3-type muscarinic receptors. 5. Although pA2 values for contraction of these antagonists, except for methoctramine, were very close to those for relaxation, contraction was not significantly antagonized by methoctramine. Contraction might be mediated by M3-like receptors which have a very low affinity for methoctramine. 6. In conclusion, ACh-induced biphasic responses in rat iris dilator muscles were clearly distinguished from each other by specific muscarinic agonists and parasympathetic denervation, whereas muscarinic receptors could not be subclassified according to the pA2 values of 5 specific antagonists only.  相似文献   

13.
14.
1. Experiments were designed to characterize the subtype(s) of endothelial muscarinic receptor that mediate(s) endothelium-dependent relaxation and contraction in the aorta of spontaneously hypertensive rats (SHR). 2. Rings of SHR aorta with endothelium were suspended in organ baths for the measurement of isometric force. Ecothiopate (an inhibitor of acetylcholinesterase) was present throughout the experiments. Endothelium-dependent contraction to acetylcholine was studied in quiescent aortic rings in the presence of NG-nitro-L-arginine (to prevent the formation of nitric oxide). Endothelium-dependent relaxation to acetylcholine was obtained during contraction to phenylephrine and in the presence of indomethacin (to inhibit cyclo-oxygenase activity). Responses to acetylcholine were assessed against the non-preferential muscarinic receptor antagonist, atropine, and the preferential antagonists pirenzepine (M1), methoctramine (M2) and 4-diphenylacetoxy-N-methylpiperidine methobromide (4-DAMP; M3). 3. The potency of acetylcholine in inducing endothelium-dependent contraction was 6.54 +/- 0.07 (EC50). Atropine, pirenzepine, methoctramine and 4-DAMP displayed competitive antagonism towards the endothelium-dependent contraction to acetylcholine. The pA2 values for these muscarinic receptor antagonists were estimated from Arunlakshana-Schild plots to be (-log M) 9.48 +/- 0.07, 6.74 +/- 0.22, 6.30 +/- 0.20 and 9.39 +/- 0.22 respectively. The potency of acetylcholine in inducing endothelium-dependent relaxation was 7.82 +/- 0.09 (IC50). Atropine, pirenzepine and 4-DAMP displayed competitive antagonism towards the endothelium-dependent relaxation to acetylcholine but methoctramine had no effect. The pA2 values for atropine and 4-DAMP for the relaxation to acetylcholine were estimated from Arunlakshana-Schild plots to be (-log M) 9.15 +/- 0.23 and 9.63 +/- 0.28, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The effects of various muscarinic antagonists on antigen- and acetylcholine-induced bronchoconstriction were studied. In isolated and ventilated lungs of naive rats, the pA2 values with respect to acetylcholine-induced bronchoconstriction were 9.01 (atropine), 8.39 (ipratropium bromide), 7.39 (pirenzepine), 5.94 (AF-DX 116, a M2-selective muscarinic antagonist), 6.91 (UH-AH 37, a novel muscarinic antagonist) and 9.37 (4-DAMP: 4-diphenylacetoxy-N-methylpiperidine methobromide). Except for ipratropium bromide, the slopes of the Schild plots were not significantly different from unity. None of the drugs were potent or effective in inhibiting bronchoconstriction or histamine release evoked by antigen challenge in actively sensitized rats. However, in vivo, in anesthetized spontaneously breathing rats, vagotomy and atropine (1 mg/kg) did reduce antigen-induced bronchoconstriction. It is concluded that functional muscarinic receptors in isolated rat lungs are probably of the M3 receptor subtype. With respect to antigen-induced bronchoconstriction and mediator release in a denervated model such as the isolated lung, they are of little, if any, importance. In vivo, vagotomy and atropine reduced antigen-induced bronchoconstriction, probably by blockade of a vagal reflex which is thought to play a role in antigen-evoked bronchoconstriction.  相似文献   

16.
To determine the muscarinic receptor subtype mediating guinea pig ileal mucosal electrolyte secretion, we compared the potencies (Kb) of selective M1 (pirenzepine) (PZ), M2 (AF-DX 116, methoctramine), and M3 [4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP), hexahydrosiladifenidol (HHSiD)] antagonists as inhibitors of carbachol-induced reductions in guinea pig atrial heart rate and ileal longitudinal muscle contractions, responses mediated by M2 and M3 receptors, respectively. Pretreatment with all five muscarinic antagonists shifted the carbachol concentration-response curve to the right, in a manner suggesting competitive antagonism. The following affinity profiles (Kb, nM) were obtained for: 1) ileal mucosa: 4-DAMP (2.7) greater than HHSiD (23.0) greater than PZ (110) greater than or equal to methoctramine (395) greater than AF-DX 116 (784); 2) atrial heart rate: 4-DAMP (9.5) congruent to methoctramine (11) greater than AF-DX 116 (63) greater than HHSiD (222) greater than PZ (256); and 3) ileal longitudinal muscle: 4-DAMP (3.1) greater than HHSiD (21) greater than PZ (143) greater than methoctramine (388) greater than or equal to AF-DX 116 (482). The selectivity profiles of these antagonists suggest that muscarinic receptors in the ileal mucosa more closely resemble those in the ileal muscle (M3) than those in atrial muscle (M2). Moreover, M1-muscarinic receptors appear to be relatively unimportant in mediating the effects of carbachol on short circuit current (ISC). Carbachol-induced increases in ISC were also unaffected by pretreatment with 0.5 microM tetrodotoxin, suggesting that electrolyte transport in the guinea pig ileal mucosa may be mediated, in part, by postsynaptic M3-muscarinic receptors on the enterocytes.  相似文献   

17.
The present study attempted to pharmacologically characterize the muscarinic receptor subtypes mediating contraction of human umbilical vein (HUV).HUV rings were mounted in organ baths and concentration-response curves were constructed for acetylcholine (ACh) (pEC50: 6.16+/-0.04; maximum response 80.00+/-1.98% of the responses induced by serotonin 10 microM). The absence of endothelium did not modify the contractile responses of ACh in this tissue. The role of cholinesterases was evaluated: neither neostigmine (acetylcholinesterase inhibitor) nor iso-OMPA (butyrylcholinesterase inhibitor) modified ACh responses. When both enzymes were simultaneously inhibited, a significantly but little potentiation was observed (control: pEC50 6.33+/-0.03; double inhibition: pEC50 6.57+/-0.05). Atropine, nonselective muscarinic receptors antagonist, inhibited ACh-induced contraction (pKB 9.67). The muscarinic receptors antagonists pirenzepine (M1), methoctramine (M2) and pFHHSiD (M3) also antagonized responses to ACh. The affinity values estimated for these antagonists against responses evoked by ACh were 7.58, 6.78 and 7.94, respectively. On the other hand, PD 102807 (M4 selective muscarinic receptors antagonist) was ineffective against ACh-induced contraction.In presence of a blocking concentration of pirenzepine, pFHHSiFD produced an additional antagonism activity on ACh-induced responses. The M1 muscarinic receptors agonist McN-A-343 produced similar maximum but less potent responses than ACh in HUV. The calculated pA2 for pirenzepine against McN-A-343 induced responses was 8.54. In conclusion, the data obtained in this study demonstrate the role of M1 muscarinic receptor subtypes and suggest the involvement of M3 muscarinic receptor subtypes in ACh-induced vasoconstriction in HUV rings. In addition, the vasomotor activity evoked by ACh does not seem to be modulated by endothelial factors, and their enzymatic degradation appears to have little functional relevance in this tissue.  相似文献   

18.
Selectivity of antimuscarinic actions of AF-DX 116 (AF-DX) on the atrioventricular (AV) nodal conduction was compared with those of pirenzepine and atropine by using the canine isolated, blood-perfused AV node preparation and the open-chest in situ dog heart. In the isolated AV node preparation, dose-response curves for negative dromotropic effects (prolongation of Atrio-His interval) of carbachol (CCh) injected into the posterior septal artery were shifted to the right in parallel by AF-DX, pirenzepine, and atropine with apparent pA2-values of 13, 27.5, and 0.45 microg, respectively, and slopes of the modified Schild plot of nearly unity. Meanwhile, dose-response curves for coronary vasodilator effects of CCh were shifted to the right by AF-DX, pirenzepine, and atropine with the apparent pA2 values of 68, 12.5, and 0.55 microg, respectively, but the slopes were far from unity. In the in situ open-chest heart, dose-response curves for negative dromotropic effects (prolongation of AV conduction time) of CCh given intravenously were shifted to the right in parallel by AF-DX, pirenzepine, and atropine with apparent pA2 values of 36, 32, and 1.25 microg/kg, respectively, and the slope of nearly unity, whereas dose-response curves for hypotensive effects of CCh were shifted to the right by AF-DX, pirenzepine, and atropine with apparent pA2 values of 105, 15, and 0.65 microg/kg, respectively, but the slopes of AF-DX and pirenzepine were far from unity. In addition, prolongations of AV conduction time by electrical stimulation of the left vagus nerve in the in situ heart were suppressed by AF-DX, pirenzepine, and atropine with the ID50, dose for 50% suppression, of 40, 35, and 1.9 microg/kg, respectively. These results suggest that (a) the potency of antimuscarinic actions of AF-DX on the CCh-induced negative dromotropic effects was almost equal to that of pirenzepine, and approximately 30 times less potent than atropine; (b) the M2-subtype selectivity of AF-DX was considerably higher in comparison with pirenzepine and atropine; and (c) the muscarinic receptor subtype on the canine AV node is entirely of the M2-type, but only sparsely developed in the coronary vascular beds.  相似文献   

19.
We have studied the muscarinic agonist induced responses on the guinea-pig superior cervical ganglion in vitro, as recorded from the internal carotid nerve using a grease-gap. The principal response was a depolarization, but a small hyperpolarizing response could be revealed under certain conditions. We determined the pA2 of a number of muscarinic antagonists against the muscarine induced depolarization. Four selective antagonists and atropine appeared to act competitively. The rank order of their pA2s was 4-DAMP (8.5), atropine (8.4), pirenzepine (8.0), methoctramine (7.2) and AF-DX 116 (6.3). In addition to muscarine, we assessed the potency and relative maximum response of nine other muscarinic compounds to depolarize this preparation: carbachol, 5-methylfurmethide, oxotremorine, oxotremorine-M, pilocarpine, RS 86, AF102B and two novel compounds L-670548 and L-679512. L-670548 was the most potent and AF102B was the least potent agonist tested. Only AF102B evoked a maximum depolarization that was significantly smaller than muscarine. A hyperpolarizing response to carbachol (1 microM) could be recorded when the superfusing medium contained 0.3 microM pirenzepine and only 0.1 mM CaCl2 (cf. usual 2.5 mM). This response was relatively small compared to that evoked on the superior cervical ganglion of the rat. It was blocked by the cardioselective antagonists methoctramine (0.1-0.3 microM) and AF-DX 116 (0.3-1.0 microM). Of the 10 agonists tested, only carbachol, oxotremorine and oxotremorine-M reproducibly evoked a hyperpolarizing response. It was concluded that muscarinic agonists can induce a depolarization of the guinea-pig superior cervical ganglion mediated by M1 receptors. The activation of cardiac-like M2 receptors resulted in a hyperpolarizing response that was relatively small.  相似文献   

20.
1. The pharmacological activities of liriodenine, isolated from Fissistigma glaucescens, were determined in isolated trachea, ileum and cardiac tissues of guinea-pigs. 2. Liriodenine was found to be a muscarinic receptor antagonist in guinea-pig trachea as revealed by its competitive antagonism of carbachol (pA2 = 6.22 +/- 0.08)-induced smooth muscle contraction. It was slightly more potent than methoctramine (pA2 = 5.92 +/- 0.05), but was less potent than atropine (pA2 = 8.93 +/- 0.07), pirenzepine (pA2 = 7.02 +/- 0.09) and 4-diphenylacetoxy-N-methylpiperidine (4-DAMP, pA2 = 8.72 +/- 0.07). 3. Liriodenine was also a muscarinic antagonist in guinea-pig ileum (pA2 = 6.36 +/- 0.10) with a pA2 value that closely resembled that obtained in the trachea. 4. Liriodenine was 10 fold less potent in atrial preparations (left atria, pA2 = 5.24 +/- 0.04; right atria, pA2 = 5.35 +/- 0.09 and 5.28 +/- 0.07 for inotropic and chronotropic effects, respectively) than in smooth muscle preparations. 5. High concentration of liriodenine (300 microM) partially depressed the contractions induced by U-46619, histamine, prostaglandin F2 alpha, neurokinin A, leukotriene C4 and high K+ in the guinea-pig trachea. The inhibitions were characterized by a rightward shift in the concentration-response curves with suppression of their maximal contraction. 6. High concentration of liriodenine (300 microM) did not affect U-46619- or neurokinin A-induced tracheal contraction in the presence of nifedipine (1 microM) or in Ca(2+)-free (containing 0.2 mM EGTA) medium. 7. Neither cyclic AMP nor cyclic GMP content of guinea-pig trachealis was changed by liriodenine (30-300 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号