首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluated the biologic activity of epicatechin gallate (ECG), a polyphenol in tea, to carcinoma HSC-2 cells and normal HGF-2 fibroblasts cells from the human oral cavity. The relative cytotoxicity of ECG, as compared to five other polyphenols in tea, was evaluated. For the HSC-2 carcinoma cells, ECG, catechin gallate (CG), and epigallocatechin gallate (EGCG) grouped as highly toxic, epigallocatechin (EGC) as moderately toxic, and catechin (C) and epicatechin (EC) as least toxic. For the HGF-2 fibroblasts, ECG and CG grouped as highly toxic, EGCG as moderately toxic, and EGC, C, and EC as least toxic. The cytotoxic effects of the polyphenols were more pronounced to the carcinoma, than to the normal, cells. The addition of ECG to cell culture medium led to the generation of hydrogen peroxide (H2O2). However, ECG, as compared to EGCG, was a poor generator of H2O2 and, hence, the cytotoxicity of ECG was unaffected by the presence of the antioxidants, N-acetyl cysteine and glutathione, and catalase. The cytotoxicity of ECG was unaffected by a metabolic activating system, i.e., a hepatic microsomal S-9 mix. DNA fragmentation, caspase-3 activity, and nuclear staining, both with acridine orange and the TUNEL procedure, were used to assess ECG-induced apoptosis. ECG induced apoptosis in the carcinoma HSC-2 cells, but not in the normal HGF-2 fibroblasts. This research supports those studies suggesting that tea green is an effective chemopreventive agent of oral carcinoma.  相似文献   

2.
Shaking the tea leaves is the key manipulation to making oolong tea. It contributes to the formation of flavor and fragrance in oolong tea. The dynamic variations of catechins and volatile organic compounds (VOCs) during the shaking process were investigated. The results showed that the contents of epicatechin, epigallocatechin, epicatechin gallate (ECG), and epigallocatechin gallate (EGCG) first decreased after the shaking and then increased to the initial value before the next shaking. Geraniol, linalool and its oxides, and phenylethyl alcohol showed similar variations. The contents of trans-β-ocimene, 1H-indole, and 3-hexenyl hexanoate increased after the second or third shaking (the late fermentation stage). However, the contents of aldehydes showed an opposite trend to other VOCs. The abundance of phenylethyl alcohol was positively related to the content of ECG and EGCG during fermentation, whereas the abundance of cis-3-hexenal was negatively related to the content of ECG. The correlations between catechin and VOCs indicated that shaking affected the chemical transformation of the compounds in oolong tea.  相似文献   

3.
The neurotoxicity of acrylamide (ACR) monomer occurs through different mechanisms such as oxidative stress. Epigallocatechin gallate (EGCG) and epicatechin gallate (ECG) are green tea catechins which are known as powerful antioxidants. In this study, we examined the possible protective effects of ECG and EGCG on ACR neurotoxicity in both in-vitro and in-vivo models. PC12 cells were exposed to different concentrations of ECG and EGCG. After 24 and 48?hours, ACR was added to the cells (IC50?=?4.85?mM) and cell viability was measured through MTT assay after 24?hours. Male Wistar rats were pretreated with ECG, EGCG (10, 20 and 40?mg/kg, i.p) and vitamin E (200?IU/kg i.p.) for 3?days. Afterwards they were treated with ACR (50?mg/kg, i.p.) for 11?days. After the treatment period, gait score examination was performed and molondialdehyde (MDA) and reduced glutathione (GSH) were measured in cerebral cortex. ACR reduced the cell viability in a concentration-dependent manner. Both ECG and EGCG (20?μM) showed inhibitory effects on ACR cytotoxicity. ACR significantly induced gait abnormalities, decreased GSH level and increased lipid peroxidation in cerebral cortex. ECG and EGCG (20?mg/kg) improved all ACR toxic effects. Although the food intake was increased in pretreated groups compared to the ACR-treated group, intensive weight loss was observed due to the green tea’s different weight loss mechanisms. ECG and EGCG inhibited the cytotoxicity of ACR in PC12 cells and increased GSH level and decreased lipid peroxidation in rat cerebral cortex.  相似文献   

4.
Catechins are the main ingredients of green tea extracts and have been shown to possess versatile biological activities, including antimicrobial. We determined that the catechins inhibit bacterial DNA gyrase by binding to the ATP binding site of the gyrase B subunit. In the group of four tested catechins, epigallocatechin gallate (EGCG) had the highest activity, followed by epicatechin gallate (ECG) and epigallocatechin (EGC). Specific binding to the N-terminal 24 kDa fragment of gyrase B was determined by fluorescence spectroscopy and confirmed using heteronuclear two-dimensional NMR spectroscopy of the EGCG-15N-labeled gyrase B fragment complex. Protein residues affected by binding to EGCG were identified through chemical shift perturbation. Molecular docking calculations suggest that the benzopyran ring of EGCG penetrates deeply into the active site while the galloyl moiety anchors it to the cleft through interactions with its hydroxyl groups, which explains the higher activity of EGCG and ECG.  相似文献   

5.
Both the anti- and pro-oxidant effects of tea catechins, have been implicated in the alterations of cellular functions which determine their chemoprotective and therapeutic potentials in toxicity and diseases. Here, we have studied the protective mechanism (s) of three main green tea catechins namely, epicatechin (EC), epicatechin gallate (ECG) and epigallocatechin gallate (EGCG) on free radical induced oxidative degradation of membrane lipids and proteins under in vitro conditions using isolated cell free fractions from rat liver. In addition, we have also studied the effects of the tea catechins on 2-deoxyribose degradation in the presence of Fenton and Haber-Weiss oxidants. Glutathione S-transferase and cytochrome P450 2E1 activities and lipid peroxidation were found to be markedly inhibited by tea catechins. These catechins also inhibited the reactive oxygen species formation and oxidative carbonylation of subcellular proteins induced by a physiological oxidant, 4-hydroxynonenal. EGCG and the other catechins showed a time and concentration-dependent effects on the degradation of 2-deoxyribose in the presence of Fenton oxidants. Our results indicate that tea catechins prevent molecular degradation in oxidative stress conditions by directly altering the subcellular ROS production, glutathione metabolism and cytochrome P450 2E1 activity. These results may have implications in determining the chemotherapeutic use of tea catechins in oxidative stress related diseases.  相似文献   

6.
Green tea and green tea catechins have been shown to possess potent cancer-preventive activities in rodent cancer models. At present, epidemiological evidence of the protective effect of green tea consumption against the development of human cancers is not conclusive. Oral bioavailability of green tea catechins has been shown to be low in animals and possibly in humans. This study is designed to determine the contribution of first-pass hepatic elimination to the low oral bioavailability of green tea catechins. Green tea catechin mixture was dosed to rats by intravenous or intraportal infusion. Blood samples were collected after dosing and analyzed using high-performance liquid chromatography with the coulometric electrode array detection system. The systemic clearance of epigallocatechin gallate (EGCG), epigallocatechin (EGC), and epicatechin (EC) was 8.9, 6.3, and 9.4 ml/min, respectively. The steady state volume of distribution (V(ss)) of EGCG, EGC, and EC was 432, 220, and 187 ml, respectively. We found that high percentage of green tea catechins escaped first-pass hepatic elimination, with 87.0, 108.3, and 94.9% of EGCG, EGC, and EC, respectively, available in the systemic blood following intraportal infusion. Our results suggest that factors within the gastrointestinal tract such as limited membrane permeability, transporter mediated intestinal secretion, or gut wall metabolism may contribute more significantly to the low oral bioavailability of green tea catechins.  相似文献   

7.
The bioavailability of green tea catechins (GTCs), including epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG) and epicatechin (EC) is low in both animals and humans. The contribution of intestinal efflux to this low bioavailability has been suggested by previous studies. The objective of the present study was to investigate the kinetics of efflux transport of the four major GTCs in Caco-2 cell lines, to provide comparison on the efflux transport between each GTC. The basal-to-apical transport of each GTC at concentrations ranging from 15 to 265 microM was examined using the Caco-2 cell monolayer model. Transported amount of GTC was measured by high-performance liquid chromatography with electrochemical detection. Kinetic parameters, V(max), K(m) and V(max)/K(m) were determined and compared among the four studied GTCs. The extent of basal-to-apical transport was, in descending order, EC > EGC > ECG approximately EGCG. Kinetic studies indicated that active and saturable efflux transport of EC took place in Caco-2 cells, with a K(m) of 131 microM, a V(max) of 0.0249 nmol min cm(-2) and an intrinsic clearance (V(max)/K(m)) of 0.19 microL min cm(-2). No saturation could be observed for the efflux transport of EGC, ECG and EGCG even at concentrations up to about 200 microM, which may be due to their low affinity towards the transporters at the concentration range studied. In conclusion, the extent of efflux transport of GTCs in Caco-2 cells was, in descending order, EC > EGC > ECG approximately EGCG, which may reflect the order of elimination occurring in the intestine. The kinetic studies showed the importance of efflux transporters in basal-to-apical transport of EC and suggests their role in the limited oral bioavailability of EC.  相似文献   

8.
Abstract: The anticancer properties of tea catechins are most frequently attributed to the principal catechin (‐)‐epigallocatechin‐3‐gallate (EGCg). Efficacy was evaluated using growth of cultured HeLa cells and inhibition of the enzymatic activity of a putative cell surface tea target enzyme, a cancer‐associated cell surface‐located NADH oxidase (ECTO‐NOX) designated tNOX. The amounts of EGCg required to inhibit by both criteria was reduced 10 times by combination with inactive catechins such as (‐)‐epicatechin (EC), (‐)‐epigallocatechin (EGC) or (‐)‐epicatechin‐3‐gallate (ECG). Various synthetic mixtures based on purified catechins and decaffeinated tea extracts treated enzymatically to reduce the ester bond‐containing catechins varying in EGCg content from 0.065 to 40% were of comparable efficacy to decaffeinated green tea extracts as long as EGCg was present and the ratio of total catechins to EGCg + EGC was about 1.5. Such mixtures appear to offer potential cancer protection and therapeutic advantages over those of EGCg alone through lowered toxicity of the mixture to normal cells and for more efficient blood delivery of orally‐administered catechins to a tumour site.  相似文献   

9.
High concentrations of specific catechins [epigallocatechin gallate (EGCG), epigallocatechin (EGC) and epicatechin gallate (ECG)] inhibit the proliferation of many different cancer cell lines. The aim of this work was to determine if low concentrations of catechins with and without 4-hydroxytamoxifen (4-OHT) co-treatment would cause significant cytotoxicity in estrogen receptor-positive (ERalpha+) and -negative (ERalpha-) human breast cancer cells. Therefore, MCF-7, T47D, MDA-MB-231 and HS578T cells were incubated with EGCG, EGC or ECG (5-25 microM) individually and in combination with 4-OHT for 7 days. Cell number was determined by the sulforhodamine B cell proliferation assay. As single agents, none of the catechins were cytotoxic to T47D cells, while only EGCG (20 microM) elicited cytotoxicity in MCF-7 cells. Additionally, no benefit was gained by combination treatment with 4-OHT. ERalpha- human breast cancer cells were more susceptible as all three catechins were significantly cytotoxic to HS578T cells at concentrations of 10 microM. In this cell line, combination with 4-OHT did not increase cytotoxicity. However, the most striking results were produced in MDA-MB-231 cells. In this cell line, EGCG (25 microM) produced a greater cytotoxic effect than 4-OHT (1 microM) and the combination of the two resulted in synergistic cytotoxicity. In conclusion, low concentrations of catechins are cytotoxic to ERalpha- human breast cancer cells, and the combination of EGCG and 4-OHT elicits synergistic cytotoxicity in MDA-MB-231 cells.  相似文献   

10.
目的:本文研究从绿茶分离提纯儿茶酚衍生物的血管舒张和抗平滑肌细胞增生的作用.方法:测定分离的大白鼠动脉及肠系膜动脉的收缩力以及动脉平滑肌增生能力.结果:儿茶酚混合物以及其中两个衍生物(表儿茶酚和没食子表食子儿茶酚)浓度依赖性地舒张去甲肾上腺素收缩的动脉以及抑制血管平滑肌细胞增生.结论:绿茶分离提纯儿茶酚混合物及其中两个衍生物具有血管舒张的功能.而它们抗血管平滑肌细胞增生的作用更为显著.没食子表食子儿茶酚是绿茶儿茶酚混合物的主要成份,它的药理作用明显强过表儿茶酚.  相似文献   

11.
Besides aflatoxin B1, recent findings suggested that oxidative stress plays an important role in the toxicity of an other mycotoxin: ochratoxin A (OTA). The protective effect of two catechins (epigallocatechin gallate, EGCG, and epicatechin gallate, ECG) against OTA-induced cytotoxicity was investigated in a pig kidney cell line (LLC-PK1). The ability of the catechins to reduce ROS production and DNA fragmentation induced by OTA was also investigated. Our experiments proved the significant cytoprotective effects of the molecules in vitro from OTA-induced cell damage. In particular a 24h pre-treatment with EGCG or ECG restored cell viability with respect to OTA alone. Pre-treatment with EGCG at low concentration for 8 days protected cells from OTA-induced cell death. Moreover both catechins reduced OTA-induced ROS production. A reduction of OTA-induced DNA fragmentation was found for LLC-PK1 cells pre-treated with EGCG and ECG. The free-radical scavenging capacity of both catechins was tested with the Briggs-Rauscher oscillating method (pH approximately 2) and the TEAC assay (pH 7.4). The results show a good scavenging power according with inhibition of ROS production. Catechins could be useful to develop alimentary strategies for both humans and animals to prevent OTA-induced cytotoxicity.  相似文献   

12.
13.
Recent studies have shown that lead causes oxidative stress by inducing the generation of reactive oxygen species (ROS) and reducing the antioxidant defense system of cells. This suggests that antioxidants may play an important role in the treatment of lead poisoning as a kind of excellent scavenger of free radicals and chelator of heavy metal. Whether tea catechins have protective effects against oxidative stress after lead treatment in cell systems remains unclear. The present study was designed to elucidate if tea catechins have any protective effects on lipid peroxidation damage in lead-exposed HepG2 cells. Exposure of HepG2 cells to Pb(++) decreased cell viability and stimulated lipid peroxidation of cell membranes as measured by the thioburbituric acid reaction. Electron spin resonance (ESR) spin-labeling studies indicated that lead exposure could decrease the fluidity in the polar surface of cell membranes. Tea catechin treatment significantly increased cell viability, decreased lipid peroxidation levels, and protected cell membrane fluidity in lead-exposed HepG2 cells in a concentration-dependent manner. The galloylated catechins showed a stronger effect than nongalloylated catechins. Cotreatment with (-)-epigallocatechin gallate (EGCG) and (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), and (-)-epigallocatechin gallate (EGCG) showed a synergistically protective effect. The results suggest that tea catechin supplementation may have a role to play in modulating oxidative stress in lead-exposed HepG2 cells.  相似文献   

14.
Breast cancer is a disease that is in need of novel treatment strategies and the use of the catechins epigallocatechin gallate (EGCG), epigallocatechin (EGC) and epicatechin gallate (ECG) is currently being investigated as a potential therapy. The catechins reduce the proliferation of human breast cancer cells in vitro and decrease breast tumor growth in rodents. Furthermore, in vitro studies have demonstrated that the combination of EGCG and tamoxifen is synergistically cytotoxic to ERalpha- breast cancer cells. These results suggest that the catechins have significant potential in the treatment of breast cancer. The mechanisms of these effects are considered and the possible future development of these compounds is explored.  相似文献   

15.
1. Oxidative stress is recognized as a major contributing factor for the development of late complications of diabetes. 2. Tea contains polyphenolic compounds (catechins), which have many important biological properties, including strong anti-oxidant activity. 3. The present study was undertaken to evaluate the effect of tea catechins (epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG) and epicatechin (EC)) on markers of oxidative stress (malondialdehyde (MDA), reduced glutathione (GSH) and membrane -SH group) in erythrocytes from type 2 diabetics. 4. Oxidative stress was induced in normal and type 2 diabetic erythrocytes by incubating with tert-butyl hydroperoxide (t-BHP). 5. Diabetic erythrocytes have higher MDA and decreased GSH and membrane -SH groups compared with normal erythrocytes. 6. Our results show that tea catechins protect erythrocytes from t-BHP-induced oxidative stress, the effect being more pronounced in diabetic erythrocytes. The relative effectiveness of individual catechins are in the order of EGCG>ECG>EGC>EC. 7. We hypothesise that a higher intake of catechin-rich food by diabetic patients may provide some protection against the development of long-term complications of diabetes.  相似文献   

16.
Abstract

An anti-aging effect may be obtained by skin application of tea catechins (Camellia sinensis) since they have high ultraviolet (UV)-protection activity. In this study, the skin permeation of catechin (C), epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECg) and epigallocatechin gallate (EGCg) was determined and compared, and the effect of emulsification on the skin permeation of C was measured. The UV-protective effect of C was also determined. The in vitro skin permeability of each catechin derivative was determined using side-by-side diffusion of cells. The UV-protective effect of C was determined by applying different concentrations of C to the solution or emulsion on a three-dimensional cultured human skin model or normal human epidermal keratinocytes with UV-irradiation. ECg and EGCg with gallate groups showed lower skin permeability than C, EC and EGC without gallate groups, suggesting that the skin permeability of catechin derivatives may be dependent on the existence of a gallate group. Interestingly, the skin permeation of C was increased by an o/w emulsification. In addition, the C emulsion showed a significantly higher UV-protective effect by C than that with its aqueous solution. These results suggest that the o/w emulsion of catechin derivatives is probably useful as a cosmetic formulation with anti-aging efficacy.  相似文献   

17.
目的研究表儿茶素没食子酸酯(epicatechingallate,ECG)和表没食子儿茶素没食子酸酯(epigallocatechingallate,EGCG)对异质性万古霉素耐药金黄色葡萄球菌(h—VRSA)感染小鼠的抗菌作用。方法通过小鼠腹腔感染模型,观察EcG和EGCG对h—VRsA感染小鼠的体内抗菌作用,按Bliss法计算半数有效剂量(ED50)值。结果h-VRSA感染小鼠在ECG和EGcG的作用下,小鼠的死亡率有所下降,其中EcG对h—VRsA原代菌和诱导菌的ED50分别为13.848mg/kg和18.630mg/kg,EGCG的ED50分别为17.650mg/kg和19.328mg/kg。结论EcG和EGCG对h—VRSA感染小鼠均具有一定的治疗作用,以ECG治疗效果较佳。  相似文献   

18.
The taste quality of oolong tea generated from leaves of Camellia sinensis L. cultivated in the same mountain area is positively correlated to the cultivation altitude, partly due to the inverse correlation with the astringency of the tea infusion. The astringency of oolong tea mostly results from the presence of polyphenolic compounds, mainly catechins and their derivatives. Four catechins, (-)-epicatechin (EC) and (-)-epigallocatechin (EGC) together with their gallate derivatives (with relatively high astringency), (-)-EC gallate (ECG) and (-)-EGC gallate (EGCG), were detected as major compounds in oolong tea. The degrees of catechin galloylation, designated as ECG/(EC + ECG) and EGCG/(EGC + EGCG), in both oolong tea infusions and their fresh tea leaves, were found to be inversely correlated to the cultivation altitude at 200 m, 800 m, and 1300 m. A similar inverse correlation was observed when seven more oolong tea infusions and seven more fresh leaves harvested at altitude ranging from 170 m to 1600 m were recruited for the analyses. Moreover, catechin contents in oolong tea infusions were also found to be inversely correlated to the cultivation altitude. It is proposed that catechin content and the degree of its galloylation account for, at least partly, the inverse correlation between the astringency of oolong tea and the cultivation altitude.  相似文献   

19.
This study compared the in vitro responses of malignant and normal cells from the human oral cavity to tea extracts and to its main polyphenolic component, (-)-epigallocatechin gallate (EGCG). The antiproliferative effects of tea polyphenolic extracts and EGCG were more pronounced towards immortalized, tumourigenic (CAL27, HSC-2, and HSG(1)) and non-tumourigenic (S-G) cells than towards normal (GN56 and HGF-1) fibroblasts and green tea was more toxic than black tea. As the addition of tea extract or EGCG to cell culture medium led to the formation of hydrogen peroxide (H(2)O(2)), the research then focused on EGCG as an inducer of oxidative stress, using CAL27, the cancerous cells most sensitive to EGCG, HSG(1), the cancerous cells least sensitive to EGCG, and GN56 cells. The toxicity of EGCG was decreased in the presence of catalase, an enzyme that degrades H(2)O(2), or of deferoxamine, a chelator of Fe(3+). Conversely, pretreatment of the cells with the glutathione depleters, 1-chloro-2,4-dinitrobenzene and 1,3-bis(2-chloroethyl)-N-nitrosourea, potentiated the toxicity of EGCG. A 4-hr exposure to EGCG lessened the intracellular level of reduced glutathione in the CAL27 and HSG(1) cells, but not in the GN56 fibroblasts. Whereas EGCG itself did not induce lipid peroxidation, Fe(2+)-induced lipid peroxidation was potentiated by EGCG. A 72-hr exposure to cytotoxic concentrations of EGCG induced significant cytoplasmic vacuolization in all cell types. The results presented herein are consistent with EGCG acting as a prooxidant, with the cancerous cells more sensitive to oxidative stress than the normal cells.  相似文献   

20.
Although green tea polyphenol catechin is considered as a potential anti-inflammatory agent, its effect on bacterial component-induced inflammation has been poorly investigated. We examined the capacity of epigallocatechin gallate (EGCG) to regulate leukocyte responses to bacterial chemotactic peptide N-formylmethionyl-leucyl-phenylalanine (fMLF), which is recognized by a human G protein-coupled receptor FPR on phagocytic leukocytes. Pretreatment of human monocytic cells or FPR-transfected rat basophilic leukemia cells (ETFR cells) with EGCG significantly inhibited fMLF-induced chemotaxis. Intraperitoneal administration of EGCG in mice suppressed fMLF-induced leukocyte infiltration into the air pouch created in the skin. Mechanistic studies revealed that EGCG dose-dependently suppressed fMLF-induced calcium flux in monocytic cells and ETFR cells. fMLF-induced ETFR cell migration was significantly inhibited by a specific MEK1/2 inhibitor, PD98059, which was associated with reduction in fMLF-induced ERK1/2 phosphorylation. These results suggest that EGCG inhibits FPR-mediated leukocyte activation thus is a promising anti-inflammatory compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号