首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We analyzed the effect of a brief exposure to nerve growth factor (NGF) on insulin secretion and macroscopic barium currents of single adult rat pancreatic beta-cells. After a 1-h exposure to NGF (50 ng/ml), single beta-cells show a 2.5-fold increase in the insulin secretion index in 5.6 mmol/l glucose and a nearly twofold increase in 15.6 mmol/l glucose compared with control cells. We have recently demonstrated that pancreatic beta-cells synthesize and secrete NGF. We analyzed the effect of endogenous NGF on insulin secretion by incubating islet cells in the presence of an anti-NGF monoclonal antibody for 1 h in different glucose concentrations. Although the basal insulin secretion index (5.6 mmol/l glucose) is not affected, glucose-stimulated insulin secretion (15.6 mmol/l glucose) is decreased by 41% in the presence of the antibody. This effect is mediated by the activation of the NGF receptor TrkA because the specific inhibitor of Trk phosphorylation K252a also blocks NGF-induced increase in insulin secretion, both in the presence and absence of exogenous NGF. Using the whole-cell variation of the patch-clamp technique, we found that cells exposed to NGF for 5 min exhibit a 32% increase in the average barium current density. These results suggest that the effects of NGF on insulin secretion are partially mediated by an increase in calcium current through Ca channels. These results further suggest that NGF plays an important autoregulatory role in pancreatic beta-cell function. Two targets of short-term NGF-modulation are insulin secretion and calcium-channel activity.  相似文献   

3.

OBJECTIVE

Interleukin-6 (IL-6) has a significant impact on glucose metabolism. However, the effects of IL-6 on insulin secretion from pancreatic β-cells are controversial. Therefore, we analyzed IL-6 effects on pancreatic β-cell functions both in vivo and in vitro.

RESEARCH DESIGN AND METHODS

First, to examine the effects of IL-6 on in vivo insulin secretion, we expressed IL-6 in the livers of mice using the adenoviral gene transfer system. In addition, using both MIN-6 cells, a murine β-cell line, and pancreatic islets isolated from mice, we analyzed the in vitro effects of IL-6 pretreatment on insulin secretion. Furthermore, using pharmacological inhibitors and small interfering RNAs, we studied the intracellular signaling pathway through which IL-6 may affect insulin secretion from MIN-6 cells.

RESULTS

Hepatic IL-6 expression raised circulating IL-6 and improved glucose tolerance due to enhancement of glucose stimulated-insulin secretion (GSIS). In addition, in both isolated pancreatic islets and MIN-6 cells, 24-h pretreatment with IL-6 significantly enhanced GSIS. Furthermore, pretreatment of MIN-6 cells with phospholipase C (PLC) inhibitors with different mechanisms of action, U-73122 and neomycin, and knockdowns of the IL-6 receptor and PLC-β1, but not with a protein kinase A inhibitor, H-89, inhibited IL-6–induced enhancement of GSIS. An inositol triphosphate (IP3) receptor antagonist, Xestospondin C, also abrogated the GSIS enhancement induced by IL-6.

CONCLUSIONS

The results obtained from both in vivo and in vitro experiments strongly suggest that IL-6 acts directly on pancreatic β-cells and enhances GSIS. The PLC-IP3–dependent pathway is likely to be involved in IL-6-mediated enhancements of GSIS.Interleukin-6 (IL-6) is a pleiotropic cytokine produced by several cell types, such as immune cells, adipocytes, myocytes, and endothelial cells. Although IL-6 was initially identified as an immuno-modulatory cytokine secreted from macrophages, several previous studies revealed that IL-6 also has significant impacts on nonimmune events (1), including glucose metabolism.Obesity is reportedly associated with elevation of circulating IL-6 (2). Functions of IL-6 in insulin-sensitive tissues have been explored by many researchers. There is growing evidence suggesting that IL-6 exacerbates insulin resistance in the liver and adipose tissue, while improving insulin sensitivity in muscle (2). In contrast, the effect of IL-6 on insulin secretion from pancreatic β-cells remains unclear. The IL-6 receptor (IL-6R) was reportedly expressed in murine pancreatic β-cells (3), suggesting a direct impact of IL-6 on pancreatic β-cells. However, a number of controversial in vitro studies demonstrated IL-6 to increase (4,5), decrease (68), and have no effect on (9) insulin secretion from isolated pancreatic islets or β-cell lines.On the other hand, two studies have recently suggested stimulatory effects of IL-6 on insulin secretion in vivo. IL-6 overexpression in muscle, using an electro-transfer method, reduced body fat with liver inflammation and decreased insulin sensitivity in muscle (10). Blood glucose was also shown to be lowered especially in fed states due to enhanced glucose-stimulated insulin secretion (GSIS) in mice, although this study was focused mainly on the liver and muscle (10). In addition, involvement of IL-6 in insulin secretion was recently reported using IL-6-deficient mice (3). High fat (HF)-fed IL-6-knockout (KO) mice displayed no pancreatic α-cell expansion and decreased glucagon levels with impaired GSIS (3). Although the effects of IL-6 on pancreatic α-cell expansion were mainly analyzed, the aforementioned finding prompted us to hypothesize that HF-induced hyperIL-6-emia enhances GSIS. Furthermore, in human subjects as well, association of the plasma IL-6 concentration with first-phase insulin secretion was reported (11). Collectively, chronic elevation of plasma IL-6 concentrations might promote insulin secretion independently of insulin resistance. Therefore, in the current study, to determine the precise role of IL-6 in pancreatic β-cell function, we performed in vivo and in vitro experiments. We first expressed IL-6 in the livers of mice using the adenoviral gene transfer system. Hepatic IL-6 expression raised circulating IL-6 levels accompanied by marked enhancements of GSIS. We also examined the in vitro effects of IL-6 pretreatment on insulin secretion from both pancreatic islets isolated from mice and MIN-6 cells, a murine β-cell line. These experiments showed GSIS enhancement. Finally, we demonstrated that the phospholipase C (PLC)-inositol triphosphate (IP3) dependent pathway is involved in IL-6 enhancement of GSIS in pancreatic β-cells.  相似文献   

4.
Delayed-rectifier K+ currents (I(DR)) in pancreatic beta-cells are thought to contribute to action potential repolarization and thereby modulate insulin secretion. The voltage-gated K+ channel, K(V)2.1, is expressed in beta-cells, and the biophysical characteristics of heterologously expressed channels are similar to those of I(DR) in rodent beta-cells. A novel peptidyl inhibitor of K(V)2.1/K(V)2.2 channels, guangxitoxin (GxTX)-1 (half-maximal concentration approximately 1 nmol/l), has been purified, characterized, and used to probe the contribution of these channels to beta-cell physiology. In mouse beta-cells, GxTX-1 inhibits 90% of I(DR) and, as for K(V)2.1, shifts the voltage dependence of channel activation to more depolarized potentials, a characteristic of gating-modifier peptides. GxTX-1 broadens the beta-cell action potential, enhances glucose-stimulated intracellular calcium oscillations, and enhances insulin secretion from mouse pancreatic islets in a glucose-dependent manner. These data point to a mechanism for specific enhancement of glucose-dependent insulin secretion by applying blockers of the beta-cell I(DR), which may provide advantages over currently used therapies for the treatment of type 2 diabetes.  相似文献   

5.
C R Poulsen  K Bokvist  H L Olsen  M H?y  K Capito  P Gilon  J Gromada 《Diabetes》1999,48(11):2171-2181
In mouse pancreatic beta-cells, extracellular ATP (0.1 mmol/l) effectively reduced glucose-induced insulin secretion. This inhibitory action resulted from a direct interference with the secretory machinery, and ATP suppressed depolarization-induced exocytosis by 60% as revealed by high-resolution capacitance measurements. Suppression of Ca2+-dependent exocytosis was mediated via binding to P2Y1 purinoceptors but was not associated with inhibition of the voltage-dependent Ca2+ currents or adenylate cyclase activity. Inhibition of exocytosis by ATP resulted from G-protein-dependent activation of the serine/threonine protein phosphatase calcineurin and was abolished by cyclosporin A and deltamethrin. In contrast to the direct inhibitory action on exocytosis, ATP reduced the whole-cell ATP-sensitive K+ (K(ATP)) current by 30% (via activation of cytosolic phospholipase A2), leading to membrane depolarization and stimulation of electrical activity. The stimulatory effect of ATP also involved mobilization of Ca2+ from thapsigargin-sensitive intracellular stores. We propose that the inhibitory action of ATP, by interacting with the secretory machinery at a level downstream to an elevation in [Ca2+]i, is important for autocrine regulation of insulin secretion in mouse beta-cells.  相似文献   

6.
Zhang B  Hosaka M  Sawada Y  Torii S  Mizutani S  Ogata M  Izumi T  Takeuchi T 《Diabetes》2003,52(11):2720-2730
Parathyroid hormone-related protein (PTHrP) increases the content and mRNA level of insulin in a mouse beta-cell line, MIN6, and primary-cultured mouse islets. We examined the mechanism of PTHrP-induced insulin expression. The PTHrP effect was markedly augmented by SB203580, a mitogen-activated protein (MAP) kinase inhibitor, and SB203580 itself increased insulin expression extensively, even without PTHrP. Because SB203580 inhibits both p38 and c-jun NH(2)-terminal kinases (JNKs), we investigated the JNK-specific inhibitor SP600125. SP600125 also increased insulin content and its mRNA level. PTHrP induced dephosphorylation of JNK1/2, and PTHrP-induced insulin expression was blocked by a dominant-negative type JNK-APF. We suspected that dual specificity MAP kinase phosphatases (MKPs) may be involved in the PTHrP-induced insulin expression by inactivating JNK1/2. MIN6 cells contained at least five MKPs, among which only MKP-1 was inducible by PTHrP. PTHrP-induced insulin expression was blocked by the MKP-1 expression inhibitor Ro-31-8220, indicating that the PTHrP effect is mediated by MKP-1. Indeed, adenoviral MKP-1 expression increased insulin expression by decreasing a phosphorylation form of JNKs and a resulting phosphorylated form of c-jun in MIN6 cells. The phosphorylated form of c-jun is known to repress cAMP-dependent insulin gene promoter activity. Thus, MKP-1 controls the insulin expression by downregulating a JNK/c-jun pathway.  相似文献   

7.
Yang J  Wong RK  Park M  Wu J  Cook JR  York DA  Deng S  Markmann J  Naji A  Wolf BA  Gao Z 《Diabetes》2006,55(1):193-201
We have recently shown that leucine culture upregulates ATP synthase beta-subunit (ATPSbeta) and increases ATP level, cytosolic Ca(2+), and glucose-induced insulin secretion in rat islets. The aim is to test whether glucokinase expression is also affected in rat islets and its role in glucose sensitization during leucine culture. Leucine culture increased glucose-induced NAD(P)H level at 1 and 2 days but not at 1 week. The half-maximal effective concentration of the glucose response curve for NAD(P)H was left-shifted from 5-7 to 2-3 mmol/l. The effect was dose dependent and rapamycin insensitive. Leucine culture did not affect glyceraldehyde effects on NAD(P)H. Leucine pretreatment for 30 min had no effects on NAD(P)H levels. Leucine culture for 2 days also increased glucose-induced cytosolic Ca(2+) elevation, ATP level, and insulin secretion. Leucine increase of glucokinase mRNA levels occurred as early as day 1 and lasted through 1 week. That of ATPSbeta did not occur until day 2 and lasted through 1 week. Leucine effects on both mRNAs were dose dependent. The upregulation of both genes was confirmed by Western blotting. Leucine culture also increased glucose-induced insulin secretion, ATP level, glucokinase, and ATPSbeta levels of type 2 diabetic human islets. In conclusion, leucine culture upregulates glucokinase, which increases NAD(P)H level, and ATPSbeta, which increases oxidation of NADH and production of ATP. The combined upregulation of both genes increases glucose-induced cytosolic Ca(2+) and insulin secretion.  相似文献   

8.
Evidence is presented showing that a neuronal isoform of nitric oxide synthase (NOS) is expressed in rat pancreatic islets and INS-1 cells. Sequencing of the coding region indicated a 99.8% homology with rat neuronal NOS (nNOS) with four mutations, three of them resulting in modifications of the amino acid sequence. Double-immunofluorescence studies demonstrated the presence of nNOS in insulin-secreting beta-cells. Electron microscopy studies showed that nNOS was mainly localized in insulin secretory granules and to a lesser extent in the mitochondria and the nucleus. We also studied the mechanism involved in the dysfunction of the beta-cell response to arginine and glucose after nNOS blockade with N(G)-nitro-L-arginine methyl ester. Our data show that miconazole, an inhibitor of nNOS cytochrome c reductase activity, either alone for the experiments with arginine or combined with sodium nitroprusside for glucose, is able to restore normal secretory patterns in response to the two secretagogues. Furthermore, these results were corroborated by the demonstration of a direct enzyme-substrate interaction between nNOS and cytochrome c, which is strongly reinforced in the presence of the NOS inhibitor. Thus, we provide immunochemical and pharmacological evidence that beta-cell nNOS exerts, like brain nNOS, two catalytic activities: a nitric oxide production and an NOS nonoxidating reductase activity, both of which are essential for normal beta-cell function. In conclusion, we suggest that an imbalance between these activities might be implicated in beta-cell dysregulation involved in certain pathological hyperinsulinic states.  相似文献   

9.
Khan FA  Goforth PB  Zhang M  Satin LS 《Diabetes》2001,50(10):2192-2198
Insulin is known to regulate pancreatic beta-cell function through the activation of cell surface insulin receptors, phosphorylation of insulin receptor substrate (IRS)-1 and -2, and activation of phosphatidylinositol (PI) 3-kinase. However, an acute effect of insulin in modulating beta-cell electrical activity and its underlying ionic currents has not been reported. Using the perforated patch clamp technique, we found that insulin (1-600 nmol/l) but not IGF-1 (100 nmol/l) reversibly hyperpolarized single mouse beta-cells and inhibited their electrical activity. The dose-response relationship for insulin yielded a maximal change (mean +/- SE) in membrane potential of -13.6 +/- 2.0 mV (P < 0.001) and a 50% effective dose of 25.9 +/- 0.1 nmol/l (n = 63). Exposing patched beta-cells within intact islets to 200 nmol/l insulin produced similar results, hyperpolarizing islets from -47.7 +/- 3.3 to -65.6 +/- 3.7 mV (P < 0.0001, n = 11). In single cells, insulin-induced hyperpolarization was associated with a threefold increase in whole-cell conductance from 0.6 +/- 0.1 to 1.7 +/- 0.2 nS (P < 0.001, n = 10) and a shift in the current reversal potential from -25.7 +/- 2.5 to -63.7 +/- 1.0 mV (P < 0.001 vs. control, n = 9; calculated K(+) equilibrium potential = -90 mV). The effects of insulin were reversed by tolbutamide, which decreased cell conductance to 0.5 +/- 0.1 nS and shifted the current reversal potential to -25.2 +/- 2.3 mV. Insulin-induced beta-cell hyperpolarization was sufficient to abolish intracellular calcium concentration ([Ca(2+)](i)) oscillations measured in pancreatic islets exposed to 10 mmol/l glucose. The application of 100 nmol/l wortmannin to inactivate PI 3-kinase, a key enzyme in insulin signaling, was found to reverse the effects of 100 nmol/l insulin. In cell-attached patches, single ATP-sensitive K(+) (K(ATP)) channels were activated by bath-applied insulin and subsequently inhibited by wortmannin. Our data thus demonstrate that insulin activates the K(ATP) channels of single mouse pancreatic beta-cells and islets, resulting in membrane hyperpolarization, an inhibition of electrical activity, and the abolition of [Ca(2+)](i) oscillations. We thus propose that locally released insulin might serve as a negative feedback signal within the islet under physiological conditions.  相似文献   

10.
11.
Pituitary adenylate cyclase-activating polypeptide (PACAP), a member of the vasoactive intestinal peptide/secretin/glucagon family, stimulates insulin secretion from islets in a glucose-dependent manner at femtomolar concentrations. To assess PACAP's pancreatic function in vivo, we generated transgenic mice overexpressing PACAP in the pancreas under the control of human insulin promoter. Northern blot and immunohistochemical analyses showed that PACAP is overexpressed in pancreatic islets, specifically in transgenic mice. Plasma glucose and glucagon levels during a glucose tolerance test were not different between PACAP transgenic mice and nontransgenic littermates. However, plasma insulin levels in transgenic mice were higher after glucose loading. Also, increases of streptozotocin-induced plasma glucose were attenuated in transgenic compared with nontransgenic mice. Notably, an increase in 5-bromo-2-deoxyuridine-positive beta-cells in the streptozotocin-treated transgenic mice was observed but without differences in the staining patterns by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. Morphometric analysis revealed that total islet mass tends to increase in 12-month-old transgenic mice but showed no difference between 12-week-old transgenic and nontransgenic littermates. This is the first time that PACAP has been observed to play an important role in the proliferation of beta-cells.  相似文献   

12.
13.
Farfari S  Schulz V  Corkey B  Prentki M 《Diabetes》2000,49(5):718-726
The hypothesis proposing that anaplerosis and cataplerosis play an important role in fuel signaling by providing mitochondrially derived coupling factors for stimulation of insulin secretion was tested. A rise in citrate coincided with the initiation of insulin secretion in response to glucose in INS-1 beta-cells. The dose dependence of glucose-stimulated insulin release correlated closely with those of the cellular contents of citrate, malate, and citrate-derived malonyl-CoA. The glucose-induced elevations in citrate, alpha-ketoglutarate, malonyl-CoA, and the 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium reduction state, an index of beta-cell metabolic activity, were unaffected by the Ca2+ chelator EGTA. Glucose induced a rise in both mitochondrial and cytosolic citrate and promoted efflux of citrate from the cells. The latter amounted to approximately 20% of glucose carbons entering the glycolytic pathway. Phenylacetic acid, a pyruvate carboxylase inhibitor, reduced the glucose-induced rise in citrate in INS-1 cells and insulin secretion in both INS-1 cells and rat islets. The results indicate the feasibility of a pyruvate/citrate shuttle in INS-1 beta-cells, allowing the regeneration of NAD+ in the cytosol and the formation of cytosolic acetyl-CoA, malonyl-CoA, and NADPH. The data suggest that anaplerosis and cataplerosis are early signaling events in beta-cell activation that do not require a rise in Ca2+. It is proposed that citrate is a signal of fuel abundance that contributes to beta-cell activation in both the mitochondrial and cytosolic compartments and that a major fate of anaplerotic glucose carbons is external citrate.  相似文献   

14.
L-783,281, an antidiabetic fungal metabolite that has previously been shown to activate insulin signaling in CHO cells, was tested for its effect on intracellular Ca(2+) ([Ca(2+)](i)) and insulin secretion in single mouse pancreatic beta-cells. Application of 10 micromol/l L-783,281 for 40 s to isolated beta-cells in the presence of 3 mmol/l glucose increased [Ca(2+)](i) to 178 +/- 10% of basal levels (n = 18) as measured by fluo-4 fluorescence. L-767,827, an inactive structural analog of the insulin mimetic, had no effect on beta-cell [Ca(2+)](i). The L-783,281-evoked [Ca(2+)](i) increase was reduced by 82 +/- 4% (n = 6, P < 0.001) in cells incubated with 1 micromol/l of the SERCA (sarco/endoplasmic reticulum calcium ATPase) pump inhibitor thapsigargin and reduced by 33 +/- 6% (n = 6, P < 0.05) in cells incubated with 20 micromol/l of the L-type Ca(2+)-channel blocker nifedipine. L-783,281-stimulated [Ca(2+)](i) increases were reduced to 31 +/- 3% (n = 9, P < 0.05) and 48 +/- 10% (n = 6, P < 0.05) of control values by the phosphatidylinositol 3-kinase (PI3-K) inhibitors LY294002 (25 micromol/l) and wortmannin (100 nmol/l), respectively. In beta-cells from IRS-1-/- mice, 10 micromol/l L-783,281 had no significant effect on [Ca(2+)](i) (n = 5). L-783,281 also resulted in insulin secretion at single beta-cells. Application of 10 micromol/l L-783,281 for 40 s resulted in 12.2 +/- 2.1 (n = 14) exocytotic events as measured by amperometry, whereas the inactive structural analog had no stimulatory effect on secretion. Virtually no secretion was evoked by L-783,281 in IRS-1-/- beta-cells. LY294002 (25 micromol/l) significantly reduced the effect of the insulin mimetic on beta-cell exocytosis. It is concluded that L-783,281 evokes [Ca(2+)](i) increases and exocytosis in beta-cells via an IRS-1/PI3-K-dependent pathway and that the [Ca(2+)](i) increase involves release of Ca(2+) from intracellular stores.  相似文献   

15.
The phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (ped/pea-15) gene is overexpressed in human diabetes and causes this abnormality in mice. Transgenic mice with beta-cell-specific overexpression of ped/pea-15 (beta-tg) exhibited decreased glucose tolerance but were not insulin resistant. However, they showed impaired insulin response to hyperglycemia. Islets from the beta-tg also exhibited little response to glucose. mRNAs encoding the Sur1 and Kir6.2 potassium channel subunits and their upstream regulator Foxa2 were specifically reduced in these islets. Overexpression of PED/PEA-15 inhibited the induction of the atypical protein kinase C (PKC)-zeta by glucose in mouse islets and in beta-cells of the MIN-6 and INS-1 lines. Rescue of PKC-zeta activity elicited recovery of the expression of the Sur1, Kir6.2, and Foxa2 genes and of glucose-induced insulin secretion in PED/PEA-15-overexpressing beta-cells. Islets from ped/pea-15-null mice exhibited a twofold increased activation of PKC-zeta by glucose; increased abundance of the Sur1, Kir6.2, and Foxa2 mRNAs; and enhanced glucose effect on insulin secretion. In conclusion, PED/PEA-15 is an endogenous regulator of glucose-induced insulin secretion, which restrains potassium channel expression in pancreatic beta-cells. Overexpression of PED/PEA-15 dysregulates beta-cell function and is sufficient to impair glucose tolerance in mice.  相似文献   

16.
Xu G  Kwon G  Cruz WS  Marshall CA  McDaniel ML 《Diabetes》2001,50(2):353-360
Recent findings have demonstrated that the branched-chain amino acid leucine can activate the translational regulators, phosphorylated heat- and acid-stable protein regulated by insulin (PHAS-I) and p70 S6 kinase (p70S6k), in an insulin-independent and rapamycin-sensitive manner through mammalian target of rapamycin (mTOR), although the mechanism for this activation is undefined. It has been previously established that leucine-induced insulin secretion by beta-cells involves increased mitochondrial metabolism by oxidative decarboxylation and allosteric activation of glutamate dehydrogenase (GDH). We now show that these same intramitochondrial events that generate signals for leucine-induced insulin exocytosis are required to activate the mTOR mitogenic signaling pathway by beta-cells. Thus, a minimal model consisting of leucine and glutamine as substrates for oxidative decarboxylation and an activator of GDH, respectively, confirmed the requirement for these two metabolic components and mimicked closely the synergistic interactions achieved by a complete complement of amino acids to activate p70s6k in a rapamycin-sensitive manner. Studies using various leucine analogs also confirmed the close association of mitochondrial metabolism and the ability of leucine analogs to activate p70s6k. Furthermore, selective inhibitors of mitochondrial function blocked this activation in a reversible manner, which was not associated with a global reduction in ATP levels. These findings indicate that leucine at physiological concentrations stimulates p70s6k phosphorylation via the mTOR pathway, in part, by serving both as a mitochondrial fuel and an allosteric activator of GDH. Leucine-mediated activation of protein translation through mTOR may contribute to enhanced beta-cell function by stimulating growth-related protein synthesis and proliferation associated with the maintenance of beta-cell mass.  相似文献   

17.
18.
Recently a new peptide, pancreastatin, was isolated from porcine pancreatic extracts. It contains 49 amino acids and shows a structural similarity to chromogranin A, which occurs in secretory granules of the endocrine pancreas. Furthermore, pancreastatin has been found to inhibit glucose-induced insulin secretion in the perfused rat pancreas. However, its effects under in vivo conditions have never been studied. We have therefore investigated the effects of this peptide on insulin and glucagon secretion in vivo in the mouse. We found that an intravenous injection of pancreastatin (4.0 nmol/kg) lowered basal plasma insulin concentration at 6 min from 55 +/- 8 microU/ml in control mice to 21 +/- 7 microU/ml (P less than .01). The peptide also inhibited the plasma insulin response to both glucose (P less than .01) and the cholinergic agonist carbachol (P less than .001). Furthermore, 2 min after injection of pancreastatin, plasma glucagon concentration had increased to 301 +/- 19 pg/ml compared to 190 +/- 12 pg/ml in control mice (P less than .001). The peptide did not, however, affect the carbachol-induced plasma glucagon response. In addition, pancreastatin induced a transient hyperglycemia. Combined adrenergic blockade by means of a pretreatment of phentolamine and propranolol did not prevent pancreastatin from exerting its effects on plasma insulin levels, whereas the increase in plasma glucagon levels was abolished. Thus, in the mouse, the newly discovered intrapancreatic peptide pancreastatin 1) lowers baseline plasma insulin levels, 2) inhibits glucose- and cholinergically induced insulin secretion, 3) stimulates baseline glucagon secretion, and 4) induces hyperglycemia.  相似文献   

19.
目的 探讨硫酸乙酰肝素对大鼠成骨细胞增殖功能的影响和可能机制.方法 采用酶消化法分离新生大鼠颅骨的成骨细胞,采用不同浓度的硫酸乙酰肝素作用于成骨细胞,并用不同信号传导抑制剂进行预处理,细胞增殖的检测采用5-溴-2-脱氧尿嘧啶嵌入测定试剂盒.结果 外源性硫酸乙酰肝素呈剂量依赖性的促进大鼠成骨细胞5-溴-2-脱氧尿嘧啶的嵌入率,这一功能可以完全被蛋白激酶(protein kinase)-PKC的抑制剂calphotin C阻断,而细胞外信号调节激酶(extracellular signalregulated kinase;ERK)或p38的抑制剂并无此作用.结论 硫酸乙酰肝素可能通过PKC介导促进成骨细胞增殖.  相似文献   

20.
Ghrelin, a novel growth hormone-releasing peptide isolated from human and rat stomach, is a 28-amino acid peptide with a posttranslational acylation modification that is indispensable for stimulating growth hormone secretion by increasing intracellular Ca(2+) concentration. It also functions in the regulation of feeding behavior, energy metabolism, and gastric acid secretion and motility. Using two different antibodies against the NH(2)- and COOH-terminal regions of ghrelin, we studied its localization in human and rat pancreas by immunohistochemistry. Ghrelin-immunoreactive cells were identified at the periphery of pancreatic islets in both species. Ghrelin co-localized exclusively with glucagon in rat islets, indicating that it is produced in alpha-cells. We identified ghrelin and des-acyl ghrelin in the rat pancreas using reverse-phase high-performance liquid chromatography combined with two radioimmunoassays. We also detected mRNA encoding ghrelin and its receptor in the rat pancreatic islets. Ghrelin increased the cytosolic free Ca(2+) concentration in beta-cells and stimulated insulin secretion when it was added to isolated rat pancreatic islets. These findings indicate that ghrelin may regulate islet function in an endocrine and/or paracrine manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号