首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A retractable wire knife was employed to transect the reticular formation at the pontomedullary junction in order to assess the respective importance of pontine and medullary reticular neurons and their pathways in paradoxical sleep. Thirteen cats were implanted with a standard array of electrodes for polygraphic recording of sleep-wakefulness states during 3 days in baseline condition and during 21 days after transections. Average electroencephalographic (EEG) amplitude, average electromyographic (EMG) amplitude, and ponto-geniculo-occipital (PGO) spike rate were measured per 1-min epoch for each day. A trivariate computer graphics display of 1 day's data revealed three major clusters of points that corresponded to wakefulness, slow wave sleep, and paradoxical sleep in baseline. (a) After transections through the entire reticular formation at the pontomedullary junction, paradoxical sleep was no longer evident in the trivariate computer graphics or polygraphic record, either by the presence of a high PGO spike rate or by that of muscle atonia in association with a low-amplitude EEG. These results indicated that the reticular fibers that pass through the pontomedullary junction and interconnect the pontine tegmentum and the medullary reticular formation are necessary for generating the cluster of electrographic variables that normally characterizes paradoxical sleep. (b) After transections through the dorsal half of the reticular formation, paradoxical sleep was still evident, though with a reduced PGO spike rate, and muscle atonia was normal. These results indicated that the descending noradrenaline locus coeruleus fibers and the "longitudinal catecholamine bundle," which course through the dorsal tegmentum, are not necessary for the generation of muscle atonia or the state of paradoxical sleep. (c) After transections through the ventral half of the reticular formation, paradoxical sleep was still apparent by the association of a moderate, though reduced, rate of PGO spiking in association with low-amplitude EEG activity and a high-amplitude EMG, indicating a loss of muscle atonia. The duration of the PS episodes, however, was greatly reduced. These results indicated that the descending "tegmentoreticular" and ascending reticulotegmental pathways, which course ventrally through the pontomedullary junction and interconnect the dorsolateral pontine tegmentum and the ventromedial medullary reticular formation, are essential for the muscle atonia of paradoxical sleep and important for the normal cyclic generation and maintenance of the state of paradoxical sleep.  相似文献   

2.
In the present study we examined the distribution of cholinergic and catecholaminergic neurons, in the feline brainstem, as defined by choline acetyltransferase (ChAT) and tyrosine hydroxylase (TH) immunohistochemistry. In the dorsal tegmentum, ChAT immunoreactive neurons were distributed in the parabrachial area [the pedunculopontine group (PPG)] and along the medial adjacent central gray [the lateral dorsal tegmental group (LDT)]. The cholinergic neurons in the LDT area were larger than those in the PPG. When adjacent tissue sections were labeled with TH we noted extensive overlap between catecholamine and cholinergic neurons in the PPG, suggesting that REM sleep may occur as a result of an interaction between these transmitters in this area rather than the medial pontine reticular formation where no cholinergic or catecholamine neurons were found. Cholinergic neurons were also found in the cranial nerve nuclei and the nucleus ambiguus. The presence of cholinergic neurons in the PPG and LDT suggest that these neurons may play an important role in the generation of some of the tonic and phasic components of REM sleep, such as cortical desynchronization, pontogeniculo occipital waves, and muscle atonia.  相似文献   

3.
The ventral part of the cat oral pontine reticular nucleus (vRPO) is the site in which microinjections of small dose and volume of cholinergic agonists produce long-lasting rapid eye movement sleep with short latency. The present study determined the precise location and proportions of the cholinergic brainstem neuronal population that projects to the vRPO using a double-labeling method that combines the neuronal tracer horseradish peroxidase–wheat germ agglutinin with choline acetyltransferase immunocytochemistry in cats. Our results show that 88.9% of the double-labeled neurons in the brainstem were located, noticeably bilaterally, in the cholinergic structures of the pontine tegmentum. These neurons occupied not only the pedunculopontine and laterodorsal tegmental nuclei, which have been described to project to other pontine tegmentum structures, but also the locus ceruleus complex principally the locus ceruleus and peri-, and the parabrachial nuclei. Most double-labeled neurons were found in the pedunculopontine tegmental nucleus and locus ceruleus complex and, much less abundantly, in the laterodorsal tegmental nucleus and the parabrachial nuclei. The proportions of these neurons among all choline acetyltransferase positive neurons within each structure were highest in the locus ceruleus complex, followed in descending order by the pedunculopontine and laterodorsal tegmental nuclei and then, the parabrachial nuclei. The remaining 11.1% of double-labeled neurons were found bilaterally in other cholinergic brainstem structures: around the oculomotor, facial and masticatory nuclei, the caudal pontine tegmentum and the praepositus hypoglossi nucleus. The disperse origins of the cholinergic neurons projecting to the vRPO, in addition to the abundant noncholinergic afferents to this nucleus may indicate that cholinergic stimulation is not the only or even the most decisive event in the generation of REM sleep.  相似文献   

4.
本文用胆碱乙酰转移酶的单克隆抗体免疫组织化学技术,观察了胆碱能神经元在大鼠低位脑干睡眠相关结构的分布。结果表明,蓝斑是非胆碱能的,很蓝斑腹侧部网状结构含有胆碱乙酰转移酶阳性反应神经元。胆碱乙酰转移酶还出现在脑桥内侧网状结构,相应于脑桥尾侧网状核以及中缝大核。延髓网状巨细胞核及其腹侧部也有胆碱能神经元出现。这些区域的胆碱能神经元可能参与异相睡眠的诱发及其某些特性的产生,也可能和慢波睡眠有关。  相似文献   

5.
The effects of brainstem microinjections of carbachol on the hippocampal theta rhythm were examined in urethane anesthetized rats. The two most effective theta-eliciting sites with carbachol were the nucleus pontis oralis (RPO) and the acetylcholine-containing pedunculopontine tegmental nucleus (PPT) of the dorsolateral pontine tegmentum. RPO injections generated theta at mean latencies of 38.5±70.8 s and for mean durations of 12.9±5.1 min. Five of seven RPO injections gave rise to theta virtually instantaneously, i.e., before the completion of the injection. PPT injections generated theta at mean latencies of 1.7±1.1 min and for mean durations of 11.9±6.0 min. Injections rostral or caudal to RPO in the caudal midbrain reticular formation (RF) or the caudal pontine RF (nucleus pontis caudalis) generated theta at considerably longer latencies (generally greater than 5 min) or were without effect. Medullary RF injections essentially failed to alter the hippocampal EEG. The finding that theta was produced at very short latencies at RPO suggests that RPO, the putative brainstem source for the generation of theta, is modulated by a cholinergic input. The further demonstration that theta was also very effectively elicited with PPT injections suggests this acetylcholine-containing nucleus of the dorsolateral pons may be a primary source of cholinergic input to RPO in the generation of theta. The hippocampal theta rhythm is a major event of REM sleep. The present results are consistent with earlier work showing that each of the other major events of REM sleep, as well as the REM state, are cholinergically activated at the level of the pontine tegmentum.  相似文献   

6.
Bilateral lesions of the pontine gigantocellular tegmental field in the cat resulted in the complete elimination of paradoxical sleep during 3 weeks postoperative recording. The tonic muscular atonia, normally characteristic of this state, was absent. The phasic components, rapid eye movements and ponto-geniculooccipital (PGO) spikes, did not occur in association with an activated EEG, as they normally do in paradoxical sleep. In fact, PGO spikes were virtually absent immediately after the lesion and were only secondarily apparent as isolated phenomena during slow wave sleep to represent in total daily number 5% of normal the first week and 15% of normal the third week after the lesion. These results indicate that neurons whose perikarya and/or processes are located within the pontine gigantocellular tegmental field and which are not part of the noradrenaline locus coeruleus complex, are critical for paradoxical sleep.  相似文献   

7.
Summary A total of 260 neurons were recorded in the rostral pontine tegmentum of freely moving cats during the sleep-waking cycle. Of these, 207 neurons (80%) were located in the dorsal pontine tegmentum containing monoaminergic and choline acetyltransferase (ChAT)-immunoreactive, or cholinergic neurons. In addition to presumably monoaminergic PS-off cells (n = 51) showing a cessation of discharge during paradoxical sleep (PS) and presumably cholinergic PGO-on cells (n = 40) exhibiting a burst of discharge just prior to and during ponto-geniculo-occipital (PGO) waves, we observed tonic (n = 108) and phasic (n = 61) neurons exhibiting, respectively, tonic and phasic patterns of discharge during wakefulness and/or paradoxical sleep. Of 87 tonic cells histologically localized in the dorsal pontine tegmentum rich in cholinergic neurons, 46 cells (53%) were identified as giving rise to ascending projections either to the intralaminar thalamic complex (n = 26) or to the ventrolateral posterior hypothalamus (n = 13) or to both (n = 9). Two types of tonic neurons were distinguished: 1) tonic type I neurons (n = 28), showing a tonic pattern and high rates of discharge during both waking and paradoxical sleep as compaired with slow wave sleep; and 2) tonic type II neurons (n = 20), exhibiting a tonic pattern of discharge highly specific to the periods of paradoxical sleep. Tonic type I neurons were further divided into two subclasses on the basis of discharge rates during waking: a) rapid (Type I-R; n = 17); and b) slow (Type I-S; n = 11) units with a discharge frequency of more than 12 spikes/s or less than 5 spikes/s, respectively. Like monoaminergic PS-off and cholinergic PGO-on cells, both tonic type II and type I-S cells were characterized by a long spike duration (median: 3.3 and 3.5 ms), as well as by a slow conduction velocity (median: 1.8 and 1.7 m/s). In the light of these data, we discuss the possible cholinergic nature and functional significance of these ascending tonic neurons in the generation of neocortical electroencephalographic desynchronization occurring during waking and paradoxical sleep.  相似文献   

8.
In this study we determined that cholinergic neurons from the lateral dorsal tegmental (LDT) and peribrachial pontine region (PPG) innervate the medial pontine reticular formation (medial PRF), a region involved in the generation of REM sleep. Wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) was injected into the medial PRF and the brainstem tissue was processed using a combined retrograde transport/immunocytochemical procedure. Results showed that 10-15% of choline acetyltransferase (ChAT) immunoreactive neurons in the LDT and PPG project to the medial PRF. It is hypothesized that these neurons play an important role in the generation of the REM sleep state.  相似文献   

9.
Considerable evidence suggests that pedunculopontine tegmental cholinergic cells are critically involved in normal regulation of rapid eye movement sleep. The major excitatory input to the cholinergic cell compartment of the pedunculopontine tegmentum arises from glutamatergic neurons in the pontine reticular formation. Immunohistochemical studies reveal that both ionotropic and metabotropic receptors are expressed in pedunculopontine tegmental cells. This study aimed to identify the role of endogenous glutamate and its specific receptors in the pedunculopontine tegmentum in the regulation of physiological rapid eye movement sleep. To identify this physiological rapid eye movement sleep-inducing glutamate receptor(s) in the pedunculopontine tegmental cholinergic cell compartment, specific receptors were blocked differentially by local microinjection of selective glutamate receptor antagonists into the pedunculopontine tegmental cholinergic cell compartment while quantifying the effects on rapid eye movement sleep in freely moving chronically instrumented rats. By comparing the alterations in the patterns of rapid eye movement sleep following injections of control vehicle and selective glutamate receptor antagonists, contributions made by each receptor subtype in rapid eye movement sleep were evaluated. The results demonstrate that when kainate receptors were blocked by local microinjection of a kainate receptor selective antagonist, spontaneous rapid eye movement sleep was completely absent for the first 2 h, and for the next 2 h the total percentage of rapid eye movement sleep was significantly less compared to the control values. In contrast, when N-methyl-D-aspartate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid, groups I, II, and III metabotropic receptors were blocked, total percentages of rapid eye movement sleep did not change compared to the control values. These findings suggest, for the first time, that the activation of kainate receptors within the cholinergic cell compartment of the pedunculopontine tegmentum is a critical step for the regulation of normal rapid eye movement sleep in the freely moving rat. The results also suggest that the different types of glutamate receptors within a small part of the brainstem may be involved in different types of physiological functions.  相似文献   

10.
Koyama Y  Sakai K 《Neuroscience》2000,96(4):723-733
The mesopontine tegmentum, which contains both cholinergic and non-cholinergic neurons, plays a crucial role in behavioral state control. Using microiontophoresis in unanesthetized cats, we have examined the effect of cholinergic and monoaminergic drugs on two putative cholinergic neurons located mostly in the laterodorsal tegmental nucleus and X area (or the cholinergic part of the nucleus tegmenti pedunculopontinus, pars compacta): one (type I-S) exhibiting slow tonic discharge during both waking and paradoxical sleep, and the other (PGO-on) displaying single spike activity during waking and burst discharges in association with ponto-geniculo-occipital (PGO) waves during paradoxical sleep. We found that: (i) application of carbachol, a potent cholinergic agonist, inhibited single spike activity in both PGO-on and type I-S neurons, but had no effect on the burst activity of PGO-on neurons during paradoxical sleep; the inhibition was associated with either blockade or increased latency of antidromic responses, suggesting membrane hyperpolarization; (ii) application of glutamate, norepinephrine, epinephrine, or histamine resulted in increased tonic discharge in both PGO-on and type I-S neurons; this was state-independent and resulted in a change in the firing mode of PGO-on neurons from phasic to tonic; (iii) application of serotonin had only a weak state-dependent inhibitory effect on a few type I-S neurons; and (iv) application of dopamine had no effect on either type of neuron.The present findings suggest that cholinergic, glutamatergic and monoaminergic (especially noradrenergic, adrenergic and histaminergic) inputs have the capacity to strongly modulate the cholinergic neurons, altering both their rate and mode of discharge, such as to shape their state specific activity, and thereby contribute greatly to their role in behavioral state control.  相似文献   

11.
We have employed immunohistochemical and computerized morphometric procedures to study substance P-containing neurons in the tegmentum of adult humans. An estimated 192,500 +/- 40,500 substance P-containing neurons were found in three main cytoarchitectural regions: the mesencephalic reticular formation, the central gray, and the pontine reticular formation. The morphology of the immunoreactive neurons varied according to the region in which they were found. On the basis of size alone two types of substance P-containing neurons, large and small, were readily distinguishable by eye and measurement. Within each of the three main regions it was possible to distinguish distinct subgroups using cell size, morphology and position. Large neurons were concentrated in the caudal midbrain (pedunculopontine tegmental nuclei), in the oral pontine reticular nucleus and in the lateral dorsal tegmental nucleus. In contrast, small neurons were concentrated in the rostral mesencephalic reticular formation (cuniform nuclei). Both small and large neurons were found in the midbrain and pontine raphe nuclei. In addition, small neurons were concentrated in discrete midline regions (the periaqueductal gray, the tegmental nuclei of the pontine central gray, and the interpeduncular nucleus). The findings suggest that the majority of neurons in the brainstem tegmental nuclei previously identified as cholinergic also contain substance P in humans.  相似文献   

12.
1. Discharge pattern has been characterized by autocorrelation analysis of stationary portions of extracellularly recorded discharge trains of cat pontine brain stem neurons during spontaneously occurring desynchronized sleep episodes. 2. Neurons localized to the area implicated in control of the desynchronized phase of sleep, the gigantocellular tegmental field (FTG), show the most phasic or clustered discharge pattern, as evinced by initial peaks in the autocorrelations. At the peak, the FTG population average discharge probability is 3 times that expected had the discharges been evenly distributed over time. The initial peak extends beyond a lag of 3 s, indicating runs of clustered discharge extending beyond this duration. Neurons in other reticular tegmental fields, the tegmental reticular nucleus and pontine gray, show a more sustained or tonic discharge pattern. 3. Discharge patterns of a given cell are consistent from one desynchronized sleep episode to the next; units with phasic discharge patterns remain phasic, and tonic patterns remain tonic. 4. There is a three-way correlation among FTG units recorded at sites with many giant cells, units with high discharge rate increases on transition to desynchronized sleep, and units with a markedly phasic discharge pattern. This implicates the giant cells as the source of both the distinctive discharge rate and pattern changes of neurons during desynchronized sleep. 5. Stereotyped, regular discharge patterns are not characteristic of FTG or other units, suggesting they are not pacemakers and that endogenous activation of pacemaker cells is unlikely to be a mechanism for generation of the marked discharge rate increases on transition to desynchronized sleep that are found in FTG units. The irregular, clustered discharge pattern of FTG is more compatible with generation of discharge rate increases through interaction with other cells. The markedly phasic discharge of FTG units is also consistent with a driving role in generation of the phasic electrophysiologic events of desynchronized sleep.  相似文献   

13.
In 7 cats, total transections of the brainstem at the caudal pontine or the prebulbar level led to preparations which presented neither behavioral nor electrophysiological signs of paradoxical sleep (PS) throughout their survival periods (17-30 days). Carbachol microinjections in the mediodorsal pontine tegmentum (MDPT), which induced PS in the intact cat, were no longer able to induce it in the transected animals. Rapid eye movement (REM) and pontogeniculo-occipital (PGO)-like bursts were evoked by carbachol microinjections in the pontine magnocellular tegmental field (FTM) of cats transected at the prebulbar level, as in the intact cat. Only REM bursts were obtained by the same injections in caudal pontine transected cats. It is concluded that (1) the pons is insufficient to generate PS; (2) complex reciprocal interactions with the medulla are necessary for the generation of this state of sleep; and (3) the production of long REM and PGO bursts is controlled by the caudal pontine tegmentum.  相似文献   

14.
Ascending projections from the several nuclei of the medullary reticular formation were examined using the autoradiographic method. The majority of fibers labeled after injections of [3H]leucine into nucleus gigantocellularis ascended within Forel's tractus fasciculorum tegmenti which is located ventrolateral to the medial longitudinal fasciculus. Nucleus gigantocellularis injections produced heavy labeling in the pontomesencephalic reticular formation, the intermediate layers of the superior colliculus, the pontine and midbrain central gray, the anterior pretectal nucleus, the ventral midbrain tegmentum including the retrorubral area, the centromedian-parafascicular complex, the fields of Forel/zona incerta, the rostral intralaminar nuclei and the lateral hypothalamic area. Nucleus gigantocellularis projections to the rostral forebrain were sparse. Labeled fibers from nucleus reticularis ventralis, like those from nucleus gigantocellularis, ascended largely in the tracts of Forel and distributed to the pontomedullary reticular core, the facial and trigeminal motor nuclei, the pontine nuclei and the dorsolateral pontine tegmentum including the locus coeruleus and the parabrachial complex. Although projections from nucleus reticularis ventralis diminished significantly rostral to the pons, labeling was still demonstrable in several mesodiencephalic nuclei including the cuneiform-pedunculopontine area, the mesencephalic gray, the superior colliculus, the anterior pretectal nucleus, the zona incerta and the paraventricular and intralaminar thalamic nuclei. The main bundle of fibers labeled by nucleus gigantocellularis-pars alpha injections ascended ventromedially through the brainstem, just dorsal to the pyramidal tracts, and joined Forel's tegmental tract in the midbrain. With the brainstem, labeled fibers distributed to the pontomedullary reticular formation, the locus coeruleus, the raphe pontis, the pontine nuclei, and the dorsolateral tegmental nucleus and adjacent regions of the pontine gray. At mesodiencephalic levels, labeling was present in the rostral raphe nuclei (dorsal, median and linearis), the mesencephalic gray, the deep and intermediate layers of the superior colliculus, the medial and anterior pretectal nuclei, the ventral tegmental area, zona incerta as well as the mediodorsal and reticular nuclei of the thalamus. Injections of the parvocellular reticular nucleus labeled axons which coursed through the lateral medullary tegmentum to heavily innervate lateral regions of the medullary and caudal pontine reticular formation, cranial motor nuclei (hypoglossal, facial and trigeminal) and the parabrachial complex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Choline acetyltransferase immunohistochemistry has identified a large group of cholinergic neurons in the pontine tegmentum. By combined immunohistochemical and enzyme histochemical studies this particular cholinergic cell group was found to contain an enzyme, NADPH-diaphorase, that can be visualized histochemically. Thus NADPH-diaphorase histochemistry provides a simple, reliable method to selectively stain the cholinergic neurons of the brainstem reticular formation. The resolution obtained by this novel histochemical technique is similar to that found with the Golgi stain, and it should therefore be of great value in morphological studies of this cholinergic cell group.  相似文献   

16.
Summary In an attempt to identify cholinergic neurons of the brain stem which project to the forebrain, retrograde labeling of neurons in the brain stem was examined by autoradiography following injections of 20 Ci [3H]choline into the thalamus, hypothalamus, basal forebrain and frontal cortex. After injections into the thalamus, retrogradely labeled neurons were evident within the lateral caudal mesencephalic and dorsolateral oral pontine tegmentum (particularly in the laterodorsal and pedunculopontine tegmental nuclei) and in smaller number within the latero-medial caudal pontine (Reticularis pontis caudalis, Rpc) and medullary (Reticularis gigantocellularis, Rgc) reticular formation. Following [3H]choline injections into the lateral hypothalamus and into the basal forebrain, retrogradely labeled neurons were localized in the dorsolateral caudal midbrain and oral pontine tegmentum and in smaller number in the medial medullary reticular formation (Rgc), as well as in the midbrain, pontine and medullary raphe nuclei. After injections into the anterior medial frontal cortex, a small number of retrogradely labeled cells were found in the brain stem within the laterodorsal tegmental nucleus and the dorsal raphe nucleus. In a parallel immunohistochemical study, choline acetyltransferase (ChAT)-positive neurons were found to be located in most of the regions of the reticular formation where cells were retrogradely labeled from the forebrain following [3H]choline injections. These results suggest that multiple cholinergic neurons within the lateral caudal midbrain and dorsolateral oral pontine tegmentum and a few within the caudal pontine and medullary reticular formation project to the thalamus, hypothalamus and basal forebrain and that a limited number of pontine cholinergic neurons project to the frontal cortex.Abbreviations of Neuroanatomical Terms 3 oculomotor nuc - 4 trochlear nuc - 4V fourth ventricle - 6 abducens nuc - 7 facial nuc - 7n facial nerve - 8n vestibulocochlear nerve - 10 dorsal motor nuc vagus - 12 hypoglossal nuc - 12n hypoglossal nerve - Amb ambiguus nuc - Aq cerebral aqueduct - bic brachium inf colliculus - CB cerebellum - CG central gray - CLi caudal linear nuc raphe - Cnf cuneiform nuc - cp cerebral peduncle - Cu cuneate nuc - D nuc Darkschewitsch - DCo dorsal cochlear nuc - DLL dorsal nuc lateral lemniscus - DPB dorsal parabrachial nuc - DR dorsal raphe nuc - dsc dorsal spinocerebellar tract - DTg dorsal tegmental nuc - dtgx dorsal tegmental decussation - ECu external cuneate nuc - Fl flocculus - IC inferior colliculus - icp inferior cerebellar peduncle - IF interfascicular nuc - InC interstitial nuc Cajal - IO inferior olive - IP interpeduncular nuc - KF Kolliker-Fuse nuc - LC locus coeruleus - Ldt laterodorsal tegmental nuc - Ifp longitudinal fasciculus pons - ll lateral lemniscus - LRt lateral reticular nuc - LRtS5 lateral reticular nucsubtrigeminal - LSO lateral superior olive - LTz lateral nuctrapezoid body - LVe lateral vestibular nuc - mcp middle cerebellar peduncle - Me5 mesencephalic trigeminal nuc - MGD medial geniculate nuc, dorsal - ml medial lemniscus - mlf medial longitudinal fasciculus - MnR median raphe nuc - Mo5 motor trigeminal nuc - MSO medial superior olive - MTz medial nuc trapezoid bbody - MVe medial vestibular nuc - PBg parabigeminal nuc - Pgl nuc paragigantocellularis lateralis - Pn pontine nuc - PPTg pedunculopontine tegmental nuc - Pr5 principal sensory trigeminal - PrH prepositive hypoglossal nuc - py pyramidal tract - Rgc reticularis gigantocellularis - Rgca reticularis gigantocellularis pars alpha - Rmes reticularis mesencephali - RMg raphe magnus nuc - RN red nuc - Ro nuc Roller - ROb raphe obscurus nuc - Rp reticularis parvicellularis - RPa raphe pallidus nuc - Rpc reticularis ponds caudalis - RPn raphe pontis nuc - Rpo reticularis pontis oralis - RR retrorubral nuc - rs rubrospinal tract - RtTg reticulotegmental nuc pons - s5 sensory root trigeminal nerve - SC superior colliculus - SCD superior colliculus,deep layer - SCI superior colliculus, intermediate layer - scp superior cerebellar peduncle - SCS superior colliculus, superficial layer - SGe suprageniculate nuc pons - SNC substantia nigra compact - SNL substantia nigra,lateral - SNR substantia nigra, reticular - SolL solitary tract nuc,lateral - SolM solitary tract nuc, medial - sp5 spinal tract trigeminal nerve - sp5I spinal trigeminal nuc, interpositus - Sp5O spinal trigeminal nuc, oral - spth spinothalamic tract - SpVe spinal vestibular nuc - SuVe superior vestibular nuc - tp tectopontine - ts tectospinal tract - tz trapezoid body - VCo ventral cochlear nuc - VLL ventral nuc lateral lemniscus - VPB ventral parabrachial nuc - vsc ventral spinocerebellar tract - VTA ventral tegmental area - VTg ventral tegmental nuc - vtgx ventral tegmental decussation - xscp decussation superior cerebellar peduncle This investigation was supported by grants from the Medical Research Council (MRC) of Canada (MT-6464: BEJ and MT 7376: AB). B.E. Jones holds a Chercheur Boursier Senior Award from the Fonds de la Recherche en Santé du Quebec (FRSQ), and A. Beaudet a Scientist Award from MRC  相似文献   

17.
The afferent input to the basal forebrain cholinergic neurons from the pontomesencephalic tegmentum was examined by retrograde transport of wheatgerm agglutinin-horseradish peroxidase in combination with immunohistochemistry. Multiple tyrosine hydroxylase-, dopamine-beta-hydroxylase-, serotonin- and choline acetyltransferase-immunoreactive fibres were observed in the vicinity of the choline acetyltransferase-immunoreactive cell bodies within the globus pallidus, substantia innominata and magnocellular preoptic nucleus. Micro-injections of horseradish peroxidase-conjugated wheatgerm agglutinin into this area of cholinergic perikarya led to retrograde labelling of a large population of neurons within the pontomesencephalic tegmentum, which included cells in the ventral tegmental area, substantia nigra, retrorubral field, raphe nuclei, reticular formation, pedunculopontine tegmental nucleus, laterodorsal tegmental nucleus, parabrachial nuclei and locus coeruleus nucleus. Of the total population of retrogradely labelled neurons, a significant (approximately 25%) proportion were tyrosine hydroxylase-immunoreactive and found in the ventral tegmental area (A10), the substantia nigra (A9), the retrorubral field (A8), the raphe nuclei (dorsalis, linearis and interfascicularis) and the locus coeruleus nucleus (A6), Another important contingent (approximately 10%) was represented by serotonin neurons of the dorsal raphe nucleus (B7), the central superior nucleus (B8) and ventral tegmentum (B9). A small proportion (less than 1%) was represented by cholinergic neurons of the pedunculopontine (Ch5) and laterodorsal (Ch6) tegmental nuclei. These results demonstrate that pontomesencephalic monoamine neurons project in large numbers up to the basal forebrain cholinergic neurons and may represent a major component of the ventral tegmental pathway that forms the extra-thalamic relay from the brainstem through the basal forebrain to the cerebral cortex.  相似文献   

18.
Carbachol, a long-acting cholinergic agonist, was microinjected (4 micrograms/250 nl per 90 s) into 90 sites within the anterodorsal pontine tegmentum of four cats and the time to onset and percentage of time spent in a desynchronized sleep-like state during 40 min postinjection were calculated. Compared with more posteroventral pontine sites, the shorter latencies and higher percentages observed confirmed earlier predictions of a sensitive cholinoceptive zone in the anterodorsal pons. In 27 trials a desynchronized sleep-like state was observed within 5 min; in 31 trials the latency was 5-10 min and in the remaining 32 trials, greater than 10 min. Plotting the desynchronized sleep-like state latency and the desynchronized sleep-like state percentage as a function of the three-dimensional coordinates revealed that injection sites with short latency (less than 5 min) and high percentage (greater than 80%) were concentrated between the coordinates of P 1.0 to 3.5 and V -3.5 to -5.5, at the lateral coordinate L 2.0. On the frontal plane, the short desynchronized sleep-like state latency and high desynchronized sleep-like state percentage sites begin in the pontine tegmental region just lateral to the ventral tegmental nucleus and extend 3 mm ventrocaudally. A regression plot of the data in sagittal plane 2.0 revealed a short latency axis, around which the short latency sites cluster, running in a slightly dorsoventral direction from about P 1.0 to V -4.0 to P 4.0 to V -5.5. This observation suggests that the sensitive zone might approximate a cylinder in shape, a hypothesis supported by the correlation of longer latencies and lower percentages at increasing radial distance from the axis. The non-linear relationship between cholinergic potency and distance from the short latency axis suggests that the desynchronized sleep-like state latency is a function of two factors; a variable diffusion-based delay of carbachol to distant neuronal populations involved in the desynchronized sleep-like state production, and a fixed recruitment-based delay following activation of neurons in the sensitive zone. Interpretation of these findings in light of earlier studies involving microstimulation of the pontine tegmentum argue in favor of a distributed network of discrete neuronal populations as the source of desynchronized sleep generation.  相似文献   

19.
We combined the retrograde transport of wheat germ agglutinin conjugated with horseradish peroxidase with choline acetyltransferase immunohistochemistry to study the projections of cholinergic and non-cholinergic neurons of the upper brainstem core to rostral and caudal intralaminar thalamic nuclei, reticular thalamic complex and zona incerta in the cat. After wheat germ agglutinin-horseradish peroxidase injections in the rostral pole of the reticular thalamic nucleus, the distribution and amount of retrogradely labeled brainstem neurons were similar to those found after tracer injection in thalamic relay nuclei (see preceding paper). After wheat germ agglutinin-horseradish peroxidase injections in the caudal intralaminar centrum medianum-parafascicular complex, rostral intralaminar central lateral-paracentral wing, and zona incerta, the numbers of retrogradely labeled brainstem neurons were more than three times higher than those found after injections in thalamic relay nuclei. The larger numbers of horseradish peroxidase-positive brainstem reticular neurons after tracer injections in intralaminar or zona incerta injections results from a more substantial proportion of labeled neurons in the central tegmental field at rostral midbrain (perirubral) levels and in the ventromedial part of the pontine reticular formation, ipsi- and contralaterally to the injection site. Of all retrogradely labeled neurons in the caudal midbrain core at the level of the cholinergic peribrachial area and laterodorsal tegmental nucleus, 45-50% were also choline acetyltransferase-positive after the injections into central lateral-paracentral and reticular nuclei, while only 25% were also choline acetyltransferase-positive after the injection into the centrum medianum-parafascicular complex. These findings are discussed in the light of physiological evidence of brainstem cholinergic mechanisms involved in the blockade of synchronized oscillations and in activation processes of thalamocortical systems.  相似文献   

20.
Activation of pontomedullary cholinergic neurons may directly and indirectly cause depression of respiratory motoneuronal activity, activation of respiratory premotor neurons and acceleration of the respiratory rate during REM sleep, as well as activation of breathing during active wakefulness. These effects may be mediated by distinct subpopulations of cholinergic neurons. The relative inactivity of cholinergic neurons during slow-wave sleep also may contribute to the depressant effects of this state on breathing. Cholinergic muscarinic and nicotinic receptors are expressed in central respiratory neurons and motoneurons, thus allowing cholinergic neurons to act on the respiratory system directly. Additional effects of cholinergic activation are mediated indirectly by noradrenergic, serotonergic and other neurons of the reticular formation. Excitatory and suppressant respiratory effects with features of natural states of REM sleep or active wakefulness can be elicited in urethane-anesthetized rats by pontine microinjections of the cholinergic agonist, carbachol. Carbachol models help elucidate the neural basis of respiratory disorders associated with central cholinergic activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号