首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
OBJECTIVE: Enamel matrix derivative (EMD) has been clinically used to promote periodontal tissue regeneration. The purpose of the present study is to clarify EMD affects on osteoblastic cells and bone regeneration. MATERIALS AND METHODS: Mouse osteoblastic cells (ST2 cells and KUSA/A1 cells) are used in culture experiments. After cells were treated with EMD, cell growth was evaluated with DNA measurement, 5-bromo-2'-deoxyurydine (BrdU) incorporation assay. Measurement of alkaline phosphatase (ALP) activity and mineralized-nodule (MN) formation, Northern blotting analysis and zymography are also performed. In addition, EMD was applied to a rat skull defect and the defect was radiographically and histologically evaluated 2 weeks after the application. RESULTS: EMD did not stimulate ST2 cell growth; however, it enhanced KUSA/A1 cell proliferation. Although EMD stimulated ALP activity in both the cells, ALP activity in KUSA/A1 cells was affected to a much greater degree. Corresponding to the increase in ALP activity, MN formation in KUSA/A1 cells was enhanced by EMD. EMD stimulated osteoblastic phenotype expression of KUSA/A1 cells such as type I collagen, osteopontin, transforming growth factor beta 1 and osteocalcin. EMD treatment also stimulated matrix metalloproteinase production in KUSA/A1 cells. Although the effects of EMD on osteoblastic cells depend on cell type, the overall effect of EMD on osteoblastic cells is stimulatory rather than inhibitory. Finally, EMD application to a rat skull defect accelerated new bone formation. CONCLUSION: These results indicate that EMD affects osteoblastic cells and has potential as a therapeutic material for bone healing.  相似文献   

2.
Emdogain (EMD), a formulation of Enamel Matrix Proteins (EMP), is used clinically for periodontal regeneration, where it stimulates cementum formation and promotes gingival healing. In this study, we investigated the in vitro effects of EMD on rat bone marrow stromal cells (BMSC) and gingival fibroblasts (GF). EMD (at 25 micro g/mL) increased the osteogenic capacity of bone marrow, as evidenced by approximately three-fold increase in BMSC cell number and approximately two-fold increase in alkaline phosphatase (ALP) activity and mineralized nodule formation. The presence of EMD in the initial stages (first 48 hrs) of the culture was crucial for this effect. In contrast, EMD did not induce osteoblastic differentiation of GF (evidenced by lack of mineralization or ALP activity) but increased up to two-fold both their number and the amount of matrix produced. These in vitro data on BMSC and GF could explain the promotive effect of EMD on bone formation and connective tissue regeneration, respectively.  相似文献   

3.
4.
Enamel matrix derivative (EMDOGAIN, EMD) has been clinically used to promote regeneration of periodontal tissue, including cementum, periodontal ligament (PDL), and alveolar bone. However, it has not been clear whether EMD directly affects osteoblastic cells. To answer this question, we examined EMD effects on bovine PDL cells, rat and mouse bone marrow cells (RBM cells and MBM cells, respectively), and mouse osteoblastic cells (Kusa/A 1 cells). EMD was dissolved in 10 mM acetic acid and added to the culture medium at a final concentration of 50 micrograms/ml. EMD stimulated mineralized-nodule formation of PDL cells, RBM cells, and Kusa/A 1 cells. In Kusa/A 1 cells, EMD enhanced ALP activity, together with DNA content. Northern blotting analysis on Kusa/A 1 cells demonstrated stimulatory effects of EMD on the gene expression of type I collagen and osteopontin. Further, application of EMD on MBM cell culture, under 1,25(OH)2 vitamin D3 supplementation, stimulated osteoclast-like cell formation. These results indicate that osteoblastic cells respond to EMD, and that EMD would be potentially useful for bone regeneration.  相似文献   

5.
Enamel matrix derivative (EMD) may enhance periodontal wound healing by inducing angiogenesis. We sought to investigate the effect and the mechanism of action of EMD on vascular endothelial growth factor (VEGF) production by human gingival fibroblasts. Cells were stimulated with EMD, transforming growth factor‐β1 (TGF‐β1), or fibroblast growth factor 2 (FGF‐2), with or without antibodies to TGF‐β1 or FGF‐2. The levels of VEGF in the culture media were measured using an ELISA. We examined the effects of SB203580 [a p38 mitogen‐activated protein kinase (MAPK) inhibitor], U0126 [an extracellular signal‐regulated kinase (ERK) inhibitor], SP600125 [a c‐Jun N‐terminal kinase (JNK) inhibitor], and LY294002 [a phosphatidylinositol 3‐kinase (PI3K)/Akt inhibitor] on EMD‐induced VEGF production. Enamel matrix derivative stimulated the production of VEGF in a dose‐ and time‐dependent manner. Treatment of human gingival fibroblasts with antibodies to TGF‐β1 or FGF‐2 significantly decreased EMD‐induced VEGF production, whereas the addition of exogenous TGF‐β1 and FGF‐2 stimulated VEGF production. Enamel matrix derivative‐induced VEGF production was significantly attenuated by SB203580, U0126, and LY294002. Our results suggest that EMD stimulates VEGF production partially via TGF‐β1 and FGF‐2 in human gingival fibroblasts and that EMD‐induced VEGF production is regulated by ERK, p38 MAPK, and PI3K/Akt pathways. Enamel matrix derivative‐induced production of VEGF by human gingival fibroblasts may be involved in the enhancement of periodontal wound healing by inducing angiogenesis.  相似文献   

6.
OBJECTIVES: Enamel matrix derivative (EMD) is used clinically to promote periodontal tissue regeneration, however, there are few reports regarding effects of EMD on bone metabolism. We evaluated the influence of EMD on osteoclast formation using in vitro bone marrow culture. METHODS: Bioactive fractions were purified from EMD by reverse-phase HPLC on a C18 hydrophobic support, then mouse bone marrow cells were cultured with EMD or its purified fractions for 8 days. Following tartrate resistant acid phosphatase (TRAP) staining, TRAP-positive multinucleated cells were counted. The expression of receptor activator of NF-kappaB ligand (RANKL) in osteoblastic cells was detected using immunoblotting. RESULTS: EMD was dissolved in 0.1% (vol/vol) trifluoroacetic acid and applied to a C18 column for HPLC. Two major peaks were obtained of which the second (fraction numbers 21-25) was found to induce the formation of osteoclasts in mouse marrow cultures. Further, osteoprotegerin completely inhibited osteoclast formation in mouse marrow cultures with or without osteoblastic stromal cells, when being cultured with EMD or its purified fractions. In addition, Western blot analysis revealed the presence of RANKL in mouse osteoblastic cells stimulated with EMD or its purified fractions. CONCLUSION: Our results indicate that EMD induces the formation of osteoclasts through RANKL expressed by osteoblastic cells, and suggest that EMD may regulate both bone formation and bone resorption during periodontal tissue regeneration.  相似文献   

7.
BACKGROUND: Embryonic enamel matrix proteins are hypothesized to be involved in the formation of acellular cementum during tooth development, suggesting that these proteins can be used to regenerate periodontal tissues. Enamel matrix protein derived from embryonic porcine tooth germs is used clinically, but the mechanisms by which it promotes the formation of cementum, periodontal ligament, and bone are not well understood. METHODS: This study examined the response of osteoblasts at 3 stages of osteogenic maturation to porcine fetal enamel matrix derivative (EMD). Proliferation (cell number and [3H]-thymidine incorporation), differentiation (alkaline phosphatase and osteocalcin), matrix synthesis ([35S]-sulfate incorporation; percentage of collagen production), and local factor production (prostaglandin E2 [PGE2] and transforming growth factor-beta 1 [TGF-beta1]) were measured in cultures of 2T9 cells (pre-osteoblasts which exhibit osteogenesis in response to bone morphogenetic protein-2 [BMP-2]), MG63 human osteoblast-like osteosarcoma cells, and normal human osteoblasts (NHOst cells). RESULTS: EMD regulated osteoblast proliferation and differentiation, but the effects were cell-specific. In 2T9 cell cultures, EMD increased proliferation but had no effect on alkaline phosphatase-specific activity. EMD decreased proliferation of MG63 cells and increased cellular alkaline phosphatase and osteocalcin production. There was no effect on collagen synthesis, proteoglycan sulfation, or PGE2 production; however, TGF-beta1 content of the conditioned media was increased. There was a 60-fold increase in cell number in third passage NHOst cells cultured for 35 days in the presence of EMD. EMD also caused a biphasic increase in alkaline phosphatase that was maximal at day 14. CONCLUSIONS: EMD affects early states of osteoblastic maturation by stimulating proliferation, but as cells mature in the lineage, EMD enhances differentiation.  相似文献   

8.
9.
10.
Previous studies have provided the biological basis for the therapeutic use of enamel matrix derivative (EMD) at sites of periodontal regeneration. A purpose of this study is to determine effects of EMD on cell growth, osteoblastic differentiation and insulin-like growth factor-I (IGF-I) and transforming growth factor-beta 1 (TGF-beta 1) production in human periodontal ligament cells (HPLC). We also examined participation of endogenous IGF-I and TGF-beta 1 with EMD-stimulated cell growth in these cells. HPLCs used in this study were treated with EMD alone or in combination with antihuman IGF-I antibody (anti-hIGF-I) or anti-hTGF-beta 1, recombinant human bone morphogenetic protein-2 (rhBMP-2), 1,25-dihydroxyvitamin D3[1,25(OH)2D3], rhTGF-beta 1 or rhIGF-I. After each treatment, cell growth, the production of IGF-I and TGF-beta 1 and the expression of osteoblastic phenotypes were evaluated. EMD stimulated cell growth in dose-dependent and time-dependent manners. EMD was also stimulated to express IGF-I and TGF-beta 1 at protein and mRNA levels. The EMD-stimulated cell growth was partially suppressed by cotreatment with anti-hIGF-I or anti-hTGF-beta 1, and cell growth was also stimulated by treatment with rhIGF-I or rhTGF-beta 1. rhBMP-2 stimulated alkaline phosphatase (ALPase) activity and ALPase mRNA expression, and 1,25(OH)2D3 stimulated ALPase and osteocalcin mRNA expression. However, EMD showed no effect on the osteoblastic phenotypes expression. These results demonstrated that EMD has no appreciable effect on osteoblastic differentiation, however it stimulates cell growth and IGF-I and TGF-beta 1 production in HPLC, and that these endogenous growth factors partially relate to the EMD-stimulated cell growth in HPLC.  相似文献   

11.
12.
13.
14.
目的 探讨微小核糖核酸(micro ribonucleicacid,miRNA)是否参与到釉基质蛋白(EnamelMatrix Derivative,EMD)诱导的小鼠前成骨细胞系MC3T3-E1细胞成骨分化的过程,并对发生显著变化的miRNA进行分析.方法 将MC3T3-E1用含EMD(刺激组)/不含EMD(对照组)的培养液培养0天、7天和14天,检测碱性磷酸酶(alkaline phosphatase,ALP)活性,实时聚合酶链式反应(RT-PCR)技术分析成骨分化标记物ALP、骨涎蛋白(bone sialoprotein,BSP)和骨钙素(osteocalcin,OC)的信使RNA(mRNA)水平的表达变化.利用基因芯片技术分析miRNA的相对表达.结果 0天、7天、14天的ALP染色结果显示随着培养时间的增加,两组ALP活性均逐渐增强,EMD刺激组ALP活性增强较对照组更为明显.RT-PCR结果表明,与对照组相比,ALP、BSP、OC的mRNA表达量均显著增加,ALP与OC均于14天时表达量达到峰值,BSP则于7天时处于峰值表达,EMD刺激组MC3T3-E1成骨活性更强;各期11个miRNA表达上调,28个miRNA表达下调,其中miR-335-5p,miR-503已被证实可参与促进骨形成,而miR-30家族(miR-30a,-30b,-30c和-30d)则被证实参与抑制成骨.结论 miRNA参与EMD诱导的MC3T3-E1细胞的成骨分化过程,这一发现可以为了解EMD促进成骨分化的机理及临床应用提供指导.  相似文献   

15.
16.
Introduction: Recent studies have shown that the use of platelet preparations in bone and implant surgery might stimulate bone formation. However, the biological mechanisms are not well understood. Moreover, few studies have attempted to evaluate the effect of platelet-poor plasma (PPP), which is a product of the platelet-rich plasma preparation process.
Objective: Thus, this study investigated the behavior of osteoblasts isolated from fetal rat calvaria cultivated in the presence of homologous PPP.
Material and Methods: PPP was obtained by centrifugation of the rat mother's blood and used in replacement of fetal calf serum, which is classically used in primary culture procedures. Proliferation was measured by an MTT assay at 24, 48, and 72 h. Real-time PCR was performed to study the expression of Runx2, Dlx5, and osteocalcin (OC) on days 0 (4 h), 1, 3, 7, and 12.
Results: Alkaline phosphatase (ALP) biochemical activity was evaluated on days 0 (4 h), 1, 3, 7, and 12. Observations by phase-contrast microscopy showed that osteoblasts were able to differentiate until the mineralization of the matrix in the presence of PPP. PPP enhanced the proliferation significantly compared with the control group ( P ≤0.001). PCR results showed that Runx2, Dlx5, and OC were expressed by cells in the experimental group at lower levels compared with the control group. Biochemical assay of ALP showed a lower activity in the experimental group compared with the control group ( P <0.001).
Conclusion: These results suggest that, in the presence of homologous PPP, rat osteoblastic cells are able to maintain their phenotype, with a higher rate of proliferation. However, PPP seems to inhibit osteoblastic differentiation.  相似文献   

17.
18.
BACKGROUND: Bone regeneration techniques increasingly rely on the use of exogenous molecules able to enhance tissue formation in pathologic and traumatic defects. An enamel matrix derivative (EMD) has been largely used to promote tooth ligament regeneration within periodontal pockets. Recent evidence suggests that EMD may contribute to inducing osteoblast growth and differentiation. We investigated the effects of EMD on growth and osteogenic marker modulation in human mandibular osteoblasts. METHODS: We focused our attention on cell growth by 3-(4,5-dimethyl[thiazol-2-yl]-3,5-diphery)tetradium bromide (MTT) assay, cell differentiation, mineralized nodule formation, and, in particular, the expression of receptor activator of nuclear factor-kappa B ligand (RANKL), the main osteoclast differentiation factor, and its decoy receptor, osteoprotegerin (OPG), by enzyme-linked immunosorbent assay. RESULTS: Cell growth was significantly increased by EMD. Similarly, a significantly higher quantity of OPG and a lower amount of RANKL were detectable in groups treated with 50 and 100 microg/ml at weeks 1, 2, and 3, and alkaline phosphatase activity and osteocalcin production were enhanced in cultures treated with 50 and 100 microg/ml at weeks 2 and 3. Mineralized nodules appeared bigger and more numerous in cultures treated with 50 and 100 microg/ml EMD. CONCLUSIONS: EMD was able to enhance osteoblast cell growth and the expression of markers of osteoblastic phenotype and differentiation. EMD also seemed able to create a favorable osteogenic microenvironment by reducing RANKL release and enhancing osteoblastic OPG production.  相似文献   

19.
Background: Enamel matrix derivative (EMD) and collagen membranes (CMs) are simultaneously applied in regenerative periodontal surgery. The aim of this study is to evaluate the ability of two CMs and a collagen matrix to adsorb the activity intrinsic to EMD that provokes transforming growth factor (TGF)‐β signaling in oral fibroblasts. Methods: Three commercially available collagen products were exposed to EMD or recombinant TGF‐β1, followed by vigorous washing. Oral fibroblasts were either seeded directly onto collagen products or were incubated with the respective supernatant. Expression of TGF‐β target genes interleukin (IL)‐11 and proteoglycan 4 (PRG4) was evaluated by real time polymerase chain reaction. Proteomic analysis was used to study the fraction of EMD proteins binding to collagen. Results: EMD or TGF‐β1 provoked a significant increase of IL‐11 and PRG4 expression of oral fibroblasts when seeded onto collagen products and when incubated with the respective supernatant. Gene expression was blocked by the TGF‐β receptor I kinase inhibitor SB431542. Amelogenin bound most abundantly to gelatin‐coated culture dishes. However, incubation of palatal fibroblasts with recombinant amelogenin did not alter expression of IL‐11 and PRG4. Conclusion: These in vitro findings suggest that collagen products adsorb a TGF‐β receptor I kinase‐dependent activity of EMD and make it available for potential target cells.  相似文献   

20.
Topical administration of simvastatin recovers alveolar bone loss in rats   总被引:4,自引:0,他引:4  
Background and Objective:  Simvastatin, a cholesterol-lowering drug, has been reported to show anabolic effects on bone metabolism. We examined the effects of simvastatin in vitro using cultured rat calvaria cells and in vivo using periodontitis-induced rats.
Material and Methods:  Alkaline phosphatase activity and bone nodule formation were measured in cultured rat calvaria cells. Nylon ligature was placed around the maxillary molars of Fischer male rats for 20 d to induce alveolar bone resorption. After ligature removal, simvastatin was topically injected into the buccal gingivae for 70 d and then microcomputed tomography and histological examinations were performed.
Results:  Simvastatin maintained high alkaline phosphatase activity and increased bone nodule formation in rat calvaria cells in a dose-dependent manner, showing that simvastatin increased and maintained a high level of osteoblastic function. Microcomputed tomography images revealed that treatment with simvastatin recovered the ligature-induced alveolar bone resorption, showing a 46% reversal of bone height. Histological examination clarified that low-mineralized alveolar bone was formed in simvastatin-treated rats.
Conclusion:  These findings demonstrate that simvastatin has the potential to stimulate osteoblastic function and that topical administration of simvastatin may be effective for the recovery of alveolar bone loss in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号