首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Low serum concentrations of Mg(2+) ions have been reported, recently, in patients with coronary disease, atherosclerosis and stroke as well as in patients with cerebral hemorrhage. The aim of the present study was to determine whether potent antioxidants [alpha-tocopherol and pyrrolidine dithiocarbamate (PDTC)] can prevent or ameliorate intracellular Ca(2+) ([Ca(2+)](i)) overload associated with cerebral vascular injury induced by low extracellular free Mg(2+) ([Mg(2+)](o)). Exposure of cultured canine cerebral vascular smooth muscle cells to low [Mg(2+)](o) (0.15-0.6 mM) vs. normal [Mg(2+)](o) (1.2 mM) for either 10 min or 2 h induced concentration-dependent rises in [Ca(2+)](i). Treatment of the cultured cells with either PDTC (0.1 microM) or alpha-tocopherol (15 microM) for 24 h, alone, failed to interfere with basal [Ca(2+)](i) levels. However, preincubation of the cells with either alpha-tocopherol or PDTC for 24 h completely inhibited the elevation of [Ca(2+)](i) induced by exposure to low [Mg(2+)](o), not only for 10 min, but also for 2 h. These results indicate that alpha-tocopherol and PDTC prevent rises in [Ca(2+)](i) produced by low [Mg(2+)](o), which probably result from low [Mg(2+)](o)-induced lipid peroxidation of cerebral vascular smooth muscle cell membranes. Moreover, these new results suggest that such protective effects of alpha-tocopherol and PDTC on cerebral vascular cells might be useful therapeutic tools in cerebral vascular injury associated with low [Mg(2+)](o) and accumulation of [Ca(2+)](i).  相似文献   

2.
This study was designed to examine the roles of intracellular free magnesium ion concentration ([Mg(2+)](i)) in ethanol-induced intoxication and development of tolerance in cultured canine cerebral vascular smooth muscle cells and astrocytes as well as intact rat brain. The basal, resting level of [Mg(2+)](i) in cerebrovascular cells was 732.5 +/- 82.4 microM. Exposure of cultured canine cerebral vascular smooth muscle cells to ethanol (10 and 25 mM) for 24 h reduced the concentrations of [Mg(2+)](i) to 521.1 +/- 59.6 microM, and 308.2 +/- 37.8 microM, respectively. However, exposure of these cultured vascular cells to the same concentrations of ethanol, after initial pretreatment with ethanol for 24 h, failed to interfere with the levels of [Mg(2+)](i). Measurement of [Mg(2+)](i) at 48 h and 72 h indicated that the decreased levels of [Mg(2+)](i) induced by ethanol at 24 h treatment returned toward baseline. Similar experiments were performed in cultured type-2 astrocytes isolated from neonatal rat brain. The basal level of [Mg(2+)](i) in type-2 astrocytes was about 125 microM. Incubation of these cells with 10 mM ethanol for 10 min resulted in a 27% reduction in the level of [Mg(2+)](i), whereas incubation with 25 mM ethanol resulted in almost a 50% reduction in [Mg(2+)](i). The decreased levels of [Mg(2+)](i) lasted around 30 min, until the measurement finished. Continuous incubation of these cultured astrocytes, with ethanol (either 10 mM or 25 mM), for more than 24 h, indicated that the concentrations of [Mg(2+)](i) in type-2 astrocytes were equivalent to those at basal, resting levels. In vivo 31P-NMR spectroscopy, performed on intact rat brains, indicated that an initial administration of 4 mg/kg ethanol ( approximately 20-25 mM blood alcohol level) resulted (after 20-40 min of exposure) in severe deficits in whole brain [Mg(2+)](i) (550 +/- 33 microM to 358 +/- 24 microM). Repeated injections of ethanol (4 mg/kg) over the next 24-72 h resulted in progressively diminishing effects on brain [Mg(2+)](i). These experimental data indicate that chronic ethanol treatment can induce a tolerance to depletion of [Mg(2+)](i) in cerebrovascular smooth muscle cells, type-2 astrocytes as well as intact rat brain. The results suggest that [Mg(2+)](i) might play a major role in alcohol-induced tolerance in the brain.  相似文献   

3.
Several studies have suggested that alcohol-induced brain injury is associated with generation of reactive oxygen species (ROS). The recent findings, that antioxidants (Vitamin E and pyrrolidine dithiocarbamate (PDTC)) prevent intracellular Ca(2+) ([Ca(2+)](i)) overload in cerebral vascular smooth muscle cells, induced by alcohol, demonstrate indirectly that ROS formation is related to cerebral vascular injury. The present experiments were designed to test the hypothesis that catalase, an hydrogen peroxide (H(2)O(2)) scavenging enzyme, can prevent or ameliorate alcohol-induced elevation of [Ca(2+)](i). Preincubation of cultured canine cerebral vascular smooth muscle cells with catalase (20-1000 units/ml) didn't produce any apparent changes from controls in resting levels of [Ca(2+)](i) after 1-3 days. Exposure of the cerebral vascular cells to culture media containing 10-100mM ethanol resulted in significant rises in [Ca(2+)](i) (p<0.01). Although exposure of these cells to a low concentration of catalase (20 units/ml) failed to prevent the increased level of [Ca(2+)](i) induced by ethanol, concomitant addition of higher concentrations of catalase (100-1000 units/ml) and ethanol (10-100mM) inhibited or ameliorated the rises of [Ca(2+)](i) induced by ethanol either at 24h or at 3 days, in a concentration-dependent manner. Catalase, in the range of 100-200 units/ml, inhibited approximately 50% of the [Ca(2+)](i) increases caused by ethanol in the first 24h. Catalase at a concentration of 1000 units/ml inhibited completely excessive [Ca(2+)](i) accumulation. The present results when viewed in light of other recently published data suggest that H(2)O(2) generation may be one of the earliest events triggered by alcohol in alcohol-induced brain-vascular damage, neurobehavioral actions and stroke.  相似文献   

4.
Low serum concentrations of Mg2+ ions have been reported, recently, in patients with coronary disease, atherosclerosis, and stroke as well as in patients with cerebral hemorrhage. The aim of the present study was to determine whether potent antioxidants [α-tocopherol and pyrrolidine dithiocarbamate (PDTC)] can prevent or ameliorate intracellular Mg2+ ([Mg2+]i) depletion associated with cerebral vascular injury induced by alcohol. Exposure of cultured canine cerebral vascular smooth muscle cells to alcohol (10–100 mM) for 24 h induced marked depletion in [Mg2+]i (i.e., 30–65%, depending upon alcohol concentration). Treatment of the cultured cells with either PDTC (0.1 μM) or α-tocopherol (15 μM) for 24 h, alone, failed to interfere with basal [Mg2+]i levels. However, preincubation of the cells with either α-tocopherol or PDTC for 24 h completely inhibited the depletion of [Mg2+]i induced by exposure to 10–100 mM ethanol. These results indicate that α-tocopherol and PDTC prevent decreases in [Mg2+]i produced by ethanol. Moreover, these new results suggest that such protective effects of α-tocopherol and PDTC on cerebral vascular cells might be useful therapeutic tools in prevention and amelioration of cerebral vascular injury and stroke in alcoholics.  相似文献   

5.
The acute effects of low concentrations of ethanol on intracellular free magnesium ions ([Mg2+]i) in cultured type-2 astrocytes were studied by digital imaging microscopy using the Mg2+ fluorescent probe, mag-fura-2. In 0-mM ethanol, the basal level of [Mg+]i was 124.7+/-2.56 microM with a heterogeneous distribution within the cells. Treatment of the cells with 10 and 25 mM ethanol (10 min) resulted in rapid concentration-dependent reduction in [Mg2+]i; the greater the concentration of alcohol, the greater the depletion of [Mg2+]i. Exposure of cells to 10 and 25 mM resulted in approximately 27 and 50% reductions in [Mg2+]i, respectively. Reincubation in normal Mg2+-physiological buffer solution restored [Mg2+]i levels. These observations may suggest that acute "binge drinking" of ethanol, which often results in cerebral ischemia and stroke, may do so as a result of depletion of astrocytic [Mg2+]i, possibly producing disruption of the blood-brain barrier.  相似文献   

6.
Neuronal excitability is inhibited by somatostatin, which might play important roles in seizure and neuroprotection. The possibility of whether the effect of somatostatin on neurotransmission is susceptible to desensitization was investigated. We tested the effects of prolonged exposure to somatostatin on 0.1 mM extracellular Mg(2+) concentration ([Mg(2+)](o))-induced intracellular free Ca(2+) concentration ([Ca(2+)](i)) spikes in cultured rat hippocampal neurons using fura-2-based microfluorimetry. Reducing [Mg(2+)](o) to 0.1 mM elicited repetitive [Ca(2+)](i) spikes. These [Ca(2+)](i) spikes were inhibited by exposure to somatostatin-14. The inhibitory effects of somatostatin were blocked by pretreatment with pertussis toxin (PTX, 100 ng/ml) for 18-24 h. Prolonged exposure to somatostatin induced a desensitization of the somatostatin-induced inhibition of [Ca(2+)](i) spikes in a concentration-dependent manner. The somatostatin-induced desensitization was retarded by the nonspecific protein kinase C (PKC) inhibitor staurosporin (100 nM) or chronic treatment with phorbol dibutyrate (1 microM) for 24 h, but not by the protein kinase A inhibitor KT5720. The desensitization was significantly retarded by the novel PKCepsilon translocation inhibitor peptide (1 microM). In addition, suramin (3 microM), an inhibitor of G-protein-coupled receptor kinase 2 (GRK2), caused a reduction in the desensitization. After tetrodotoxin (TTX, 1 microM) completely blocked the low [Mg(2+)](o)-induced [Ca(2+)](i) spikes, glutamate-induced [Ca(2+)](i) transients were slightly inhibited by somatostatin and the inhibition was desensitized by prolonged exposure to somatostatin. These results indicate that the prolonged activation of somatostatin receptors induces the desensitization of somatostatin-induced inhibition on low [Mg(2+)](o)-induced [Ca(2+)](i) spikes through the activation of GRK2 and partly a novel PKCepsilon in cultured rat hippocampal neurons.  相似文献   

7.
Astrocytes exhibit three transmembrane Ca(2+) influx pathways: voltage-gated Ca(2+) channels (VGCCs), the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) class of glutamate receptors, and Na(+)/Ca(2+) exchangers. Each of these pathways is thought to be capable of mediating a significant increase in Ca(2+) concentration ([Ca(2+)](i)); however, the relative importance of each and their interdependence in the regulation astrocyte [Ca(2+)](i) is not known. We demonstrate here that 100 microM AMPA in the presence of 100 microM cyclothiazide (CTZ) causes an increase in [Ca(2+)](i) in cultured cerebral astrocytes that requires transmembrane Ca(2+) influx. This increase of [Ca(2+)](i) is blocked by 100 microM benzamil or 0.5 microM U-73122, which inhibit reverse-mode operation of the Na(+)/Ca(2+) exchanger by independent mechanisms. This response does not require Ca(2+) influx through VGCCs, nor does it depend upon a significant Ca(2+) influx through AMPA receptors (AMPARs). Additionally, AMPA in the presence of CTZ causes a depletion of thapsigargin-sensitive intracellular Ca(2+) stores, although depletion of these Ca(2+) stores does not decrease the peak [Ca(2+)](i) response to AMPA. We propose that activation of AMPARs in astrocytes can cause [Ca(2+)](i) to increase through the reverse mode operation of the Na(+)/Ca(2+) exchanger with an associated release of Ca(2+) from intracellular stores. This proposed mechanism requires neither Ca(2+)-permeant AMPARs nor the activation of VGCCs to be effective.  相似文献   

8.
The pH dependence of store-operated Ca(2+) influx (SOCI) into human platelets, as well as its physiological consequence, aggregation, was studied. In Ca(2+)-free medium, thapsigargin (1 microM) induced a small increase in intracellular free-Ca(2+) ([Ca(2+)](i)), which was not affected by changes in extracellular pH. The addition of Ca(2+) (0.5-3 mM) after Ca(2+) store depletion caused by thapsigargin resulted in concentration-dependent increases in [Ca(2+)](i) (SOCI), which were strongly inhibited by SKF-96365 (100 microM), an inhibitor of receptor-mediated Ca(2+) entry. SOCI was inhibited by acidosis (pH 6.9) and augmented by alkalosis (pH 7.9). The addition of Ca(2+) (0.5-3 mM) to platelets, which were kept in Ca(2+)-free medium, slightly but significantly increased [Ca(2+)](i). This Ca(2+) leak entry was also decreased and increased by extracellular acidosis (pH 6.9) and alkalosis (pH 7.9), respectively, but not affected by SKF-96365. Neither thapsigargin (1 microM) stimulation in Ca(2+)-free solution nor elevation of extracellular Ca(2+) alone was sufficient to induce platelet aggregation. In contrast, the addition of Ca(2+) (1 mM) to platelets activated by thapsigargin resulted in aggregation, which was markedly inhibited by SKF-96365 (100 microM). Platelet aggregation associated with SOCI was also inhibited by extracellular acidosis (pH 6.9) and augmented by extracellular alkalosis (pH 7.9). These results suggest that acidosis-induced inhibition, as well as alkalosis-induced promotion of platelet aggregation, involve pH effects on SOCI.  相似文献   

9.
Clinically, it is known that: (1) magnesium (Mg) supplementation relieves premenstrual problems (e.g., migraine, bloating and edema) occurring in the late luteal phase of the menstrual cycle; and (2) migraine syndromes, particularly in women, are associated with deficits in brain and serum ionized Mg levels. We investigated whether concentrations of sex steroid hormones, found in the serum during the menstrual cycle of women, are associated with changes in the levels of cytosolic free magnesium ions ([Mg2+]i in single cultured canine cerebral vascular smooth muscle cells. The resting level of [Mg2+]i in these cells was 645 +/- 89 microM before exposure to sex steroid hormones. Exposure of these vascular cells to a low concentration of estrogen (10 pg/ml) failed to interfere with the levels of [Mg2+]i. However, exposure to estrogen, at concentrations ranging from 40 to 200 pg/ml, induced significant loss of [Mg2+]i in a concentration-dependent manner. At a concentration of 200 pg/ml estrogen, the level of [Mg2+]i decreased approximately 30% in comparison with controls. Progesterone produced biphasic effects on the levels of [Mg2+]i, depending on its concentration. Exposure of the cultured cells to a low concentration of progesterone (0.5 ng/ml) resulted in an increased level of [Mg2+]i (from 690 +/- 50 microM to 753 +/- 56 microM, p < 0.05). However, when these cells were exposed to higher concentrations of progesterone (i.e., from 5.0 to 20 ng/ml), the cellular levels of [Mg2+]i were decreased significantly. The higher the estrogen or progesterone concentration, the lower the levels of [Mg2+]i. In contrast, testosterone, a male hormone, didn't produce any significant alteration in [Mg2+]i levels in these cerebral vascular smooth muscle cells. These data indicate that low, physiological concentrations of female sex hormones, estrogen and progesterone, help cerebral vascular smooth cells sustain normal concentrations of [Mg2+]i, which are beneficial to vascular function, whereas high levels of estrogen and progesterone deplete, significantly, [Mg2+]i in cerebral vascular smooth muscle cells, possibly resulting in cerebrovasospasms and reduced cerebral blood flows related to premenstrual syndromes, migraine and stroke risk. Our findings could provide new insight into the mechanism whereby migraine occurs frequently in the late luteal phase in the premenstrual syndrome. In addition, our results demonstrate that female sex steroids but not testosterone (in physiologic concentrations) can exert direct effects on [Mg2+]i in cerebral vascular cells.  相似文献   

10.
Easton AS  Abbott NJ 《Brain research》2002,953(1-2):157-169
The blood-brain barrier (BBB) was modelled in this study using ECV304 cells in co-culture with rat C6 glioma cells, which resulted in elevated transendothelial electrical resistance (TEER). The inflammatory mediator bradykinin (1 microM) was studied and found to induce a fall in TEER; the link between this change and intracellular free calcium concentration ([Ca(2+)](i)) was then examined. 1 microM bradykinin produced a peak-plateau increase in [Ca(2+)](i). The peak showed desensitization and was dose dependent (over 0.1 nM to 1 microM). The [Ca(2+)](i) increase was blocked by the B(2) antagonist HOE 140 (1 microM) without effect from a B(1) agonist and antagonist. The plateau response was abolished in Ca(2+)-free solution containing 2 mM EDTA, and also by the Ca(2+) channel blockers lanthanum, La(3+) (10 microM), and SKF 96365 (100 microM). The store Ca(2+)ATPase inhibitor thapsigargin (1 microM) abolished the peak response. The putative phospholipase C inhibitors, U73122 (20 microM) and ETH-18-OCH(3) (100 microM), unexpectedly increased [Ca(2+)](i); after their application, bradykinin was ineffective. Agents without effect on Ca(2+) responses to bradykinin included the phospholipase A(2) (PLA(2)) inhibitor aristolochic acid (0.5 mM), cyclooxygenase inhibitor indomethacin (100 microM), 5-lipoxygenase inhibitor nordihydroguaiaretic acid, NDGA (100 microM), calphostin C (0.5 microM), L-NAME (1 mM) and nifedipine (10 microM). The fall in TEER from bradykinin was blocked by HOE 140, U73122 and thapsigargin combined with La(3+), and also by aristolochic acid and NDGA, but not indomethacin, calphostin C or L-NAME. U73122 increased TEER while ETH-18-OCH(3) reduced it. Thus bradykinin reduced TEER through B(2) receptor-linked release of Ca(2+) from thapsigargin-sensitive stores, leading to activation of PLA(2) and metabolism of arachidonic acid by 5-lipoxygenase.  相似文献   

11.
Sodium valproate (VPA) has been used clinically for treatment of not only epilepsy but also mood disorder. Although VPA is effective for treatment of epilepsy via inhibition of gamma-aminobutyric acid transaminase, it remains unknown why VPA is effective for the treatment of mood disorder. The authors examined the effect of VPA at therapeutic concentrations (300 and 600 microM) on the elevation of intracellular free calcium concentration ([Ca(2+)](i)) induced by carbachol, a muscarinic receptor agonist, in 1321N1 human astrocytoma cells. Treatment of the cells with 300 and 600 microM VPA for 2 min did not change the carbachol-induced [Ca(2+)](i) elevation. Treatment with 300 and 600 microM VPA for 48 h, however, reduced the elevation. Since we have shown that Li(+) reduced carbachol-induced [Ca(2+)](i) elevation in protein kinase C (PKC)-downregulated 1321N1 cells [Kurita, M., Mashiko, H., Rai, M., Kumasaka, T., Kouno, S., Niwa, S., Nakahata, N., 2002. Lithium chloride at a therapeutic concentration reduces Ca(2+)response in protein kinase C down-regulated human astrocytoma cells, Eur. J. Pharmacol. 442, 17-22.], the activity of PKC was examined. Treatment with VPA at the same concentrations for 24 or 48 h weakly reduced protein kinase C activity in membrane and cytosol fractions from the cells. On the other hand, the treatment of the cells with 600 microM VPA for 24 or 48 h slightly increased the B(max) value, but not the K(d) value, in the binding of [(3)H]quinuclidinyl benzylate, a muscarinic receptor ligand, to the membranes, suggesting that the number or affinity of muscarinic receptor did not decrease after VPA treatment. These results indicate that VPA at therapeutic concentrations slightly decreases the PKC activity and inhibits muscarinic receptor-mediated [Ca(2+)](i) elevation probably through change in the intracellular signaling pathway. VPA-induced reduction of PKC activity and [Ca(2+)](i) elevation may play a role in the treatment of mood disorder.  相似文献   

12.
Intracellular calcium handling by rat olfactory ensheathing cells (OECs) is implicated in their support for regrowth of adult CNS neurites in a coculture model of axonal regeneration. Pretreatment of OECs with BAPTA-AM to sequester glial intracellular calcium ([Ca(2+)](i)) reduces significantly the numbers of cocultured neurons regrowing neurites. The mean resting [Ca(2+)](i) of OECs cultured alone or with neurons was 300 nM in an external solution containing 2.5 mM calcium ([Ca(2+)](o)). In high [K(+)](o) or zero [Ca(2+)](o), resting [Ca(2+)](i) significantly decreased. [Ca(2+)](i) significantly increased when [Ca(2+)](o) was increased to 20 mM, lonomycin, thapsigargin, and thimerosal increased [Ca(2+)](i), and caffeine, ryanodine, and cyclopiazonic acid were without effect. Of the receptor agonists tested, none induced a change in [Ca(2+)](i). The calcium influx induced by high [Ca(2+)](o) was blocked by La(3+) and SKF96365, partially inhibited by Cd(2+), and insensitive to Ni(2+) and nifedipine. Pretreatment of OECs with La(3+) reduced neurite regrowth in cocultures in a concentration-dependent manner over the range that blocked the non-voltage-gated calcium flux through a putative TRP-like channel, which, we propose, is activated in OEC-mediated axonal regeneration.  相似文献   

13.
The effects of the environmental contaminants methylmercury (MeHg) and inorganic mercury (HgCl(2)) on cell viability, intracellular calcium concentration ([Ca(2+)](i)), and reactive oxygen species (ROS) generation were studied in rat cerebellar granule neuron cultures using fluorescent methods. MeHg exhibited an LC(50) (2.47 microM) tenfold lower than that of HgCl(2) (26.40 microM). To study the involvement of oxidative stress and Ca(2+) homeostasis disruption in mercury-induced cytotoxicity, we tested the neuroprotective effects of several agents that selectively interfere with these mechanisms. After a 24 hr exposure, the cytotoxic effect of both mercury compounds was reduced by thapsigargin, an inhibitor of endoplasmic reticulum Ca(2+)-ATPase; the Ca(2+) channel blocker flunarizine; and the Na(+)/Ca(2+) exchanger blocker benzamil. All these compounds decreased the mercury-mediated [Ca(2+)](i) rise. These results indicate that Ca(2+) influx through Ca(2+) channels and the Na(+)/Ca(2+) exchanger and Ca(2+) mobilization from the endoplasmic reticulum are involved in mercury-mediated cytotoxicity. The antioxidants probucol and propyl gallate reduced the HgCl(2) toxicity. Probucol and vitamin E partially inhibited the MeHg toxicity after a 24 hr period, whereas propyl gallate completely prevented this effect. Probucol slightly reduced ROS generation in methylmercury-exposed cultures and decreased mercury-mediated rise of [Ca(2+)](i). Propyl gallate abolished ROS generation and partially inhibited the increase of [Ca(2+)](i) induced by both mercury compounds. Propyl gallate also protected human cerebral cortical neuron cultures from the MeHg effect even after 72 hr of MeHg exposure, thus showing a long-lasting effect. Our data suggest that disruption of redox equilibrium and Ca(2+) homeostasis contribute equally to HgCl(2)-mediated toxicity, whereas oxidative stress is the main cause of MeHg neurotoxicity.  相似文献   

14.
Stout C  Charles A 《Glia》2003,43(3):265-273
The extracellular concentrations of Ca(2+) and Mg(2+) are well known to play important roles in the function of the central nervous system. We examined the effects of extracellular Ca(2+) and Mg(2+) on ATP release and intercellular signaling in astrocytes. The extent of propagation of intercellular Ca(2+) waves evoked by mechanical stimulation was increased by reduction of extracellular Ca(2+) ([Ca(2+)](o)) or Mg(2+) concentration ([Mg(2+)](o)) and was decreased by elevated [Mg(2+)](o). Reduction of extracellular Ca(2+) concentration ([Ca(2+)](o)) evokes intercellular Ca(2+) signaling in astrocytes; a similar effect was observed in response to change from 5 mM [Mg(2+)](o) to 0 [Mg(2+)](o). Release of low-molecular-weight dyes and ATP was also activated by low [Ca(2+)](o) or [Mg(2+)](o) and inhibited by high [Ca(2+)](o) or [Mg(2+)](o). Astrocytes showed low [Ca(2+)](o)-activated whole cell currents consistent with currents through connexin hemichannels. These currents were inhibited by extracellular Mg(2+). We conclude that extracellular divalent cations modulate intercellular Ca(2+) signaling in astrocytes by modulating the release of ATP, possibly via connexin hemichannels.  相似文献   

15.
Inhibiting Ca(2+) uptake by the sarcoendoplasmic reticular Ca(2+)-ATPase pump (SERCA) causes release of Ca(2+) from the endoplasmic reticulum (ER), increased cytosolic Ca(2+) ([Ca(2+)](cyt)) and depletion of ER Ca(2+) stores. These studies were designed to test the effects of SERCA inhibition on neuronal viability, using as a model the human neuroblastoma cell line, SH-SY5Y. Continuous exposure to the SERCA inhibitor thapsigargin (TG) decreased SH-SY5Y viability to <30% after 48 h exposure, and produced DNA laddering. Two other SERCA inhibitors, BHQ and cyclopiazonic acid CPA, were similarly toxic, although at 1000-fold higher concentrations. BHQ and CPA toxicity was prevented by removing drug within several hours, whereas TG toxicity was essentially irreversible. All three SERCA inhibitors caused an increase in [Ca(2+)](cyt) that was partially blocked by the ryanodine receptor inhibitors, dantrolene and DHBP. Pretreatment with 40 microM dantrolene gave substantial protection against TG- or BHQ-induced cell death but it did not inhibit death from staurosporine, which does not cause release of ER Ca(2+). DHBP (20-100 microM) also gave partial protection against TG toxicity, as did ruthenium red (2 microM), but not ryanodine (10 microM). Inhibition of capacitative Ca(2+) entry with EGTA or LaCl(3) or low extracellular Ca(2+), or chelation of [Ca(2+)](cyt) with BAPTA-AM, failed to inhibit TG toxicity, although they prevented increases in [Ca(2+)](cyt) caused by TG. Taken together, these data suggest that toxicity caused by SERCA inhibition in SH-SY5Y cells is caused by ER Ca(2+) depletion, which triggers an apparent apoptotic pathway.  相似文献   

16.
Golovina VA  Blaustein MP 《Glia》2000,31(1):15-28
Signaling by two classes of endoplasmic reticulum (ER) Ca(2+) stores was studied in primary cultured rat astrocytes. Cytosolic and intra-ER Ca(2+) concentrations ([Ca(2+)](CYT) and [Ca(2+)](ER)) were measured with, respectively, Fura-2 and Furaptra, in separate experiments. The agonists, glutamate and ATP, released Ca(2+) primarily from cyclopiazonic acid (CPA)-sensitive ER Ca(2+) stores (CPA inhibits ER Ca(2+) pumps). Agonist-evoked release was abolished by prior treatment with CPA but was unaffected by prior depletion of caffeine/ryanodine (CAF/RY)-sensitive ER Ca(2+) stores. Conversely, prior depletion of the CPA-sensitive stores did not interfere with Ca(2+) release or reuptake in the CAF/RY-sensitive stores. Unloading of the CPA-sensitive stores, but not the CAF/RY-sensitive stores, promoted Ca(2+) entry through "store-operated channels." Resting [Ca(2+)](ER) averaged 153 microM (based on in situ calibration of Furaptra: K(D) = 76 microM, vs 53 microM in solution). The releasable Ca(2+) in both types of ER Ca(2+) stores was increased by Na(+) pump inhibition with 1 mM ouabain or K(+)-free medium. Using high spatial resolution imaging and image subtraction methods, we observed that some regions of the ER (45-58% of the total ER) unloaded and refilled when CPA was added and removed. Other regions of the ER (24-38%) unloaded and refilled when CAF was added and removed. The overlap between these two classes of ER was only 10-18%. These data indicate that there are two structurally separate, independent components of the ER and that they are responsible for the functional independence of the CPA-sensitive and CAF/RY-sensitive ER Ca(2+) stores.  相似文献   

17.
Carey MB  Matsumoto SG 《Brain research》2000,862(1-2):201-210
In a previous study we have shown that cultured neural crest cells exhibit spontaneous calcium transients and that these events are required for neurogenesis. In this study, we examine the mechanism that generates these calcium transients. Extracellular Ca(2+) modulates calcium transient activity. Lanthanum (La(3+)), a general calcium channel antagonist and zero extracellular Ca(2+), reduces the percentage of cells exhibiting calcium transients (26.2 and 40. 5%, respectively) and decreases calcium spiking frequency (4.5 to 1. 0 and 2.5 to 1.0 spikes/30 min, respectively). Intracellular calcium stores also contribute to the generation of calcium transients. Depleting the calcium stores of the endoplasmic reticulum (ER) reduces the percentage of active cells (15.7%) and calcium spiking frequency (2.8 to 1.5 spikes/30 min). Ryanodine (100 microM), which blocks calcium release regulated by the ryanodine receptor (RyR), had no effect on calcium transient activity. Blocking inositol 1,4, 5-triphosphate receptor (IP(3)R)-dependent calcium release, with elevated extracellular Mg(2+) (20 mM), abolished calcium transient activity. Mg(2+) did not block caffeine-sensitive calcium release (RyR-dependent) or voltage dependent calcium channels. Mg(2+) also suppressed thimerosal-induced calcium oscillations (IP(3)R-dependent). Small increases in the intracellular calcium concentration ([Ca(2+)](i)), increases the percentage of active cells and the calcium spiking frequency, while larger increases in [Ca(2+)](i) block the transients. Reducing intracellular IP(3) levels reduces the percentage of active cells and the calcium spiking frequency. We conclude that the mechanism for generating spontaneous calcium transients in cultured neural crest cells fits the model for IP(3)R-dependent calcium excitability of the ER.  相似文献   

18.
Systemic administration of 3-nitropropionic acid (3-NPA, a mycotoxin) induces brain damage accompanied by disturbance in the blood-brain barrier (BBB). Since the endothelial cells are important components of the BBB and the first target of a systemic intoxication, in the present study, the effect of 3-NPA on primary cultured rat brain endothelial cells (rBECs) was examined by studying intracellular Ca(2+) ([Ca(2+)](i)) response using imaging techniques with fura-2. rBECs were prepared using a method of Kis et al. [Eur. J. Pharmacol. 368 (1999) 35-42] and Szabo et al. [Neurobiology 5 (1997) 1-16]. Almost all cells were immunoreactive to antibody against the factor VIII-related antigen (von-Willebrand factor). They showed a typical dose-dependent increase of [Ca(2+)](i) in response to ATP or bradykinin. Low concentrations of 3-NPA (1.7 mM, 3.4 mM) caused no changes, and a medium concentration (6.8 mM) increased the [Ca(2+)](i) gradually and progressively, and the increase was reversed incompletely back to the resting level after washing. A high concentration (13.6 mM) increased the [Ca(2+)](i) irreversibly. These elevations of [Ca(2+)](i) were absent in a Ca(2+)-free medium. In endothelial cells treated with 17beta-estradiol (above 10(-5) M) or with a selective estrogen receptor modulator, tamoxifen (5 x 10(-7) M), no elevation of [Ca(2+)](i) was observed with 3-NPA treatment. The response to ATP was impaired after application of 3-NPA, but it was preserved by cotreatment with 17beta-estradiol or tamoxifen. An estrogen receptor antagonist ICI 182,780 inhibited these effects by 17beta-estradiol or tamoxifen. Lysosomal neutral red uptake and TUNEL experiments revealed the necrotic but not apoptotic cell death at least in this acute stage. Data indicate that a medium to high concentration of 3-NPA induces damage on rBECs as revealed by an accumulation of [Ca(2+)](i), but the damage was protected by cotreatment with 17beta-estradiol or tamoxifen, suggesting that estrogen may be protective for the brain vascular damage via estrogen receptor.  相似文献   

19.
The aim of this study was to characterize plasma membrane pathways involved in the intracellular calcium ([Ca(2+)](i)) response of small DRG neurons to mechanical stimulation and the modulation of these pathways by kappa-opioids. [Ca(2+)](i) responses were measured by fluorescence video microscopy of Fura-2 labeled lumbosacral DRG neurons obtained from adult rats in short-term primary culture. Transient focal mechanical stimulation of the soma, or brief superfusion with 300 nM capsaicin, resulted to [Ca(2+)](i) increases which were abolished in Ca(2+)-free solution, but unaffected by lanthanum (25 microM) or tetrodotoxin (10(-6) M). 156 out of 465 neurons tested (34%) showed mechanosensitivity while 55 out of 118 neurons (47%) were capsaicin-sensitive. Ninty percent of capsaicin-sensitive neurons were mechanosensitive. Gadolinium (Gd(3+); 250 microM) and amiloride (100 microM) abolished the [Ca(2+)](i) transient in response to mechanical stimulation, but had no effect on capsaicin-induced [Ca(2+)](i) transients. The kappa-opioid agonists U50,488 and fedotozine showed a dose-dependent inhibition of mechanically stimulated [Ca(2+)](i) transients but had little effect on capsaicin-induced [Ca(2+)](i) transients. The inhibitory effect of U50,488 was abolished by the kappa-opioid antagonist nor-Binaltorphimine dihydrochloride (nor-BNI; 100 nM), and by high concentrations of naloxone (30-100 nM), but not by low concentrations of naloxone (3 nM). We conclude that mechanically induced [Ca(2+)](i) transients in small diameter DRG somas are mediated by influx of Ca(2+) through a Gd(3+)- and amiloride-sensitive plasma membrane pathway that is co-expressed with capsaicin-sensitive channels. Mechanical-, but not capsaicin-mediated, Ca(2+) transients are sensitive to kappa-opioid agonists.  相似文献   

20.
The effects of pituitary adenylate cyclase activating polypeptides (PACAPs: PACAP27, PACAP38) on glutamate-induced neurotoxicity were examined using cultured retinal neurons obtained from 3- to 5-day old Wistar rats. Cell viability was evaluated by double staining with fluorescein diacetate and propidium iodide. Effects of PACAPs on the increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in retinal neurons was investigated using the Ca(2+) image analyzing system with fura-2. The cAMP contents and the mitogen-activated protein (MAP) kinase activity in retinal cultures were measured by radioimmunoassay. Concomitant application of PACAPs (10 nM-1 microM) with glutamate (1 mM) for 10 min inhibited the delayed death of retinal neurons, which was observed 24 h after glutamate (1 mM) treatment in a dose-dependent manner. Protection by PACAPs (100 nM) against glutamate-induced neurotoxicity was antagonized by PACAP6-38 (1 microM), a PACAP antagonist, and H-89 (1 microM), a protein kinase A (PKA) inhibitor. However, PACAPs did not affect the glutamate-induced increase in [Ca(2+)](i), but PACAPs (1-100 nM) increased the cAMP levels in a dose-dependent manner. In addition, activation of MAP kinase by PACAP38 (1 microM) was inhibited by simultaneous application with H-89 (1 microM). These findings suggest that PACAPs attenuate glutamate-induced delayed neurotoxicity in cultured retinal neurons by activating MAP kinase through the activation of cAMP-stimulated PKA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号