首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eger EI  Gong D  Xing Y  Raines DE  Flood P 《Anesthesia and analgesia》2002,95(6):1611-5, table of contents
There are acetylcholine receptors throughout the central nervous system, and they may mediate some forms and aspects of convulsive activity. Most high-affinity binding sites on nicotinic acetylcholine receptors for nicotine, cytisine, and epibatidine in the brain contain the beta2 subunit of the receptor. Transitional inhaled compounds (compounds less potent than predicted from their lipophilicity and the Meyer-Overton hypothesis) and nonimmobilizers (compounds that do not produce immobility despite a lipophilicity that suggests anesthetic qualities as predicted from the Meyer-Overton hypothesis) can produce convulsions. The nonimmobilizer flurothyl [di-(2,2,2,-trifluoroethyl)ether] blocks the action of gamma-aminobutyric acid on gamma-aminobutyric acid(A) receptors, whereas the nonimmobilizer 1,2-dichlorohexafluorocyclobutane (2N, also called F6) does not. 2N can block the action of acetylcholine on nicotinic acetylcholine receptors. We examined the relative capacities of these compounds to cause convulsions in mice having and lacking the beta2 subunit of the acetylcholine receptor. The partial pressure causing convulsions in half the mice (the 50% effective concentration [EC(50)]) was the same as in control mice. For the knockout mice, the EC(50) for flurothyl was 0.00170 +/- 0.00030 atm (mean +/- SD), and for 2N, it was 0.0345 +/- 0.0041 atm. For the control mice, the respective values were 0.00172 +/- 0.00057 atm and 0.0341 +/- 0.0048 atm. The ratio of the 2N to flurothyl EC(50) values was 20.8 +/- 3.5 for the knockout mice and 21.7 +/- 7.0 for the control mice. These results do not support the notion that acetylcholine receptors are important mediators of the capacity of 2N or flurothyl to cause convulsions. However, we also found that both nonimmobilizers inhibit rat alpha4beta2 neuronal nicotinic acetylcholine receptors at EC(50) partial pressures (0.00091 atm and 0.062 atm for flurothyl and 2N, respectively) that approximate those that produce convulsions (0.0015 atm and 0.04 atm). IMPLICATIONS: The results from the present study provide conflicting data concerning the notion that acetylcholine receptors mediate the capacity of nonimmobilizers to produce convulsions.  相似文献   

2.
Gerstin KM  Gong DH  Abdallah M  Winegar BD  Eger EI  Gray AT 《Anesthesia and analgesia》2003,96(5):1345-9, table of contents
Several reports suggest that clinically used concentrations of inhaled anesthetics can increase conductance through noninactivating potassium channels and that the resulting hyperpolarization might decrease excitability, thereby leading to the anesthetic state. We speculated that animals deficient in such potassium channels might be resistant to the effects of anesthetics. Thus, in the present study, we measured the minimum alveolar anesthetic concentration (MAC) needed to prevent movement in response to a noxious stimulus in 50% of adult mice lacking functional KCNK5 potassium channel subunits and compared these results with those for heterozygous and wild-type mice. We also measured MAC in weaver mice that had a mutation in the potassium channel Kir3.2 and compared the resulting values with those for wild-type mice. MAC values for desflurane, halothane, and isoflurane for KCNK5-deficient mice and isoflurane MAC values for weaver mice did not differ from MAC values found in control mice. Our results do not support the notion that these potassium channels mediate the capacity of inhaled anesthetics to produce immobility. In addition, we found that the weaver mice did not differ from control mice in their susceptibility to convulsions from the nonimmobilizers flurothyl [di-(2,2,2,-trifluoroethyl)ether] or 2N (1,2-dichlorohexafluorocyclobutane). IMPLICATIONS: Mice harboring mutations in either of two different potassium channels have minimum alveolar anesthetic concentration (MAC) values that do not differ from MAC values found in control mice. Such findings do not support the notion that these potassium channels mediate the capacity of inhaled anesthetics to produce immobility in the face of noxious stimulation.  相似文献   

3.
General anesthetics cause surgical immobility and oblivion (unconsciousness and amnesia). A class of compounds known as "nonimmobilizers" were predicted to be anesthetic, based on their physiochemical properties, but found to cause only amnesia. In humans, cerebrocortical electrical activity after auditory stimulation is depressed by concentrations of anesthetics which impair auditory recall. We sought to use these evoked responses to characterize the effects of the nonimmobilizer 1,2-dichlorohexafluorocyclobutane (2N) and conventional inhaled anesthetics on early sensory processing in rats. Unrestrained rats with chronically implanted epidural silver screw electrodes were put into a chamber. On separate days, the same population of rats were exposed to isoflurane, desflurane, nitrous oxide, or 2N, each at several subminimum alveolar concentration of anesthetic required to eliminate movement in response to a noxious stimulus concentrations. After equilibration at each concentration, auditory-evoked responses were obtained. The behavioral state (activity and righting reflex) and electroencephalogram were also examined. 2N did not significantly change the middle latency auditory-evoked response, whereas the anesthetics all slowed conduction and depressed amplitude in a dose-dependent fashion. 2N neither depressed the righting reflex, nor induced epileptiform activity. IMPLICATIONS: Although the nonimmobilizer 1,2-dichlorohexafluorocyclobutane (2N) suppresses learning, we find that 2N does not depress middle latency auditory-evoked responses. This suggests that 2N may suppress learning by depressing transmission through rostral subcortical structures, such as the amygdala, rather than by acting on the brainstem or neocortical structures.  相似文献   

4.
Dutton RC  Maurer AJ  Sonner JM  Fanselow MS  Laster MJ  Eger EI 《Anesthesia and analgesia》2002,94(3):631-9; table of contents
The nonimmobilizer 1,2-dichlorohexafluorocyclobutane (2N, also termed F6) does not suppress movement to noxious stimuli but does suppress learning of fear-potentiated startle. The mechanism whereby 2N suppresses this learning is unknown. Herein, we report the effect of 2N on suppression of two other forms of learning, fear conditioning to context and to tone. Because 2N does not cause sedation, we could study the effect of 2N on short-term memory (memory for fear conditioning measured during or immediately after training) as well as on long-term memory (measured 24 h after training). The EC(50) for suppression of long-term memory (the concentration decreasing memory by 50%) of fear conditioning to context was 2.00% plus/minus 0.01% (mean plus/minus SEM), and for fear conditioning to tone was 3.45% plus/minus 0.26%, (P < 0.05). The EC(50) for suppression of short-term memory of fear conditioning to context was 2.59% plus/minus 0.21% (P < 0.05, compared with long-term memory of context conditioning), whereas short-term memory of fear conditioning to tone was not suppressed by 3.5%, the largest concentration studied. Thus, short-term memory resists the depressant effect of 2N more than long-term memory, fear conditioning to tone is less vulnerable to the effect of 2N than fear conditioning to context, and 3.5% 2N does not preclude transmission of tone and shock signals to the site where tone-shock associations are formed. IMPLICATIONS: The nonimmobilizer 1,2-dichlorohexafluorocyclobutane has a greater depressant effect on long-term memory than short-term memory, suggesting that it impairs the processes responsible for the retention of memory more than for the formation of memory itself.  相似文献   

5.
Inhaled and other anesthetics profoundly affect the central nervous system, causing amnesia, immobility in the face of noxious stimulation, and depression of thermoregulation. Nonimmobilizers, inhaled compounds whose lipophilicity suggests that they should be anesthetics, do not produce immobility, but they do cause amnesia. Their effects on thermoregulation were the subject of the present study. We gave eight rats isoflurane on one occasion and the nonimmobilizer 2N (1,2-dichlorolhexafluorocyclobutane) on another. We measured the effect of various concentrations of each compound on thermoregulation provoked by body cooling. The specific outcome was increased metabolism, as reflected in increased output of carbon dioxide. Isoflurane decreased the temperature threshold for such increases and the maximum response intensity, doing so in a concentration-dependent manner, whereas 2N had a minimal or no effect at any concentration up to 0.9 minimum alveolar concentration (estimated from its lipophilicity). Thus, 2N may be a useful tool for studies of the mechanisms mediating the thermoregulatory depression produced by anesthetics: 2N should not affect such a mechanism.  相似文献   

6.
Sonner JM  Vissel B  Royle G  Maurer A  Gong D  Baron NV  Harrison N  Fanselow M  Eger EI 《Anesthesia and analgesia》2005,101(1):143-8, table of contents
Combinations of GluR5-GluR7, KA1, and KA2 subunits form kainate receptors, a subtype of excitatory ionotropic glutamate receptors. Isoflurane enhances the action of kainate receptors comprising GluR6 subunits expressed in oocytes. To test whether alterations of the GluR6 subunit gene affect the actions of inhaled anesthetics in vivo, we measured the minimum alveolar concentration of desflurane, isoflurane, and halothane in mice lacking the kainate receptor subunit GluR6 (GluR6 knockout mice) and mice with a dominant negative glutamine/arginine (Q/R) editing mutation in membrane domain 2 of the GluR6 receptor (GluR6 editing mutants), which increases the calcium permeability of kainate receptors containing GluR6Q. We also measured the capacity of isoflurane to interfere with Pavlovian fear conditioning to a tone and to context. Absence of the GluR6 subunit did not change the minimum alveolar concentration of isoflurane, desflurane, or halothane. Possibly, kainate receptors assembled from the remaining kainate receptor subunits compensate for the absent subunits and thereby produce a normal minimum alveolar concentration. A Q/R mutation that dominantly affects kainate receptors containing the GluR6 subunit in mice increased isoflurane minimum alveolar concentration (by 12%; P < 0.01), decreased desflurane minimum alveolar concentration (by 18%; P < 0.001), and did not change halothane minimum alveolar concentration (P = 0.25). These data may indicate that kainate receptors containing GluR6Q subunits differently modulate, directly or indirectly, the mechanism by which inhaled anesthetics cause immobility. The mutations of GluR6 that were studied did not affect the capacity of isoflurane to interfere with fear conditioning.  相似文献   

7.
BACKGROUND: Production of retrograde amnesia by anesthetics would indicate that these drugs can disrupt mechanisms that stabilize memory. Such disruption would allow suppression of memory of previous untoward events. The authors examined whether isoflurane provides retrograde amnesia for classic (Pavlovian) fear conditioning. METHODS: Rats were trained to fear tone by applying three (three-trial) or one (one-trial) tone-shock pairs while breathing various constant concentrations of isoflurane. Immediately after training, isoflurane administration was either discontinued, maintained unchanged, or rapidly increased to 1.0 minimum alveolar concentration for 1 h longer. Groups of rats were similarly trained to fear context while breathing isoflurane by applying shocks (without tones) in a distinctive environment. The next day, memory for the conditioned stimuli was determined by presenting the tone or context (without shock) and measuring the proportion of time each rat froze (appeared immobile). For each conditioning procedure, the effects of the three posttraining isoflurane treatments were compared. RESULTS: Rapid increases in posttraining isoflurane administration did not suppress conditioned fear for any of the training procedures. In contrast, isoflurane administration during conditioning dose-dependently suppressed conditioning (P < 0.05). Training to tone was more resistant to the effects of isoflurane than training to context (P < 0.05), and the three-trial learning procedure was more was more resistant than the one-trial procedure (P < 0.05). CONCLUSIONS: Isoflurane provided intense dose-dependent anterograde but not retrograde amnesia for classic fear conditioning. Isoflurane appears to disrupt memory processes that occur at or within a few minutes of the conditioning procedure.  相似文献   

8.
Sonner JM  Xing Y  Zhang Y  Maurer A  Fanselow MS  Dutton RC  Eger EI 《Anesthesia and analgesia》2005,100(5):1333-7, table of contents
Previous reports suggest that the administration of epinephrine increases learning during deep barbiturate-chloral hydrate anesthesia in rats but not during anesthesia with 0.4% isoflurane in rabbits. We revisited this issue, using fear conditioning to a tone in rats as our experimental model for learning and memory and isoflurane and desflurane as our anesthetics. Expressed as a fraction of the minimum alveolar anesthetic concentration (MAC) preventing movement in 50% of rats, the amnestic 50% effective dose (ED(50)) for fear to tone in control rats inhaling isoflurane and injected with saline intraperitoneally (i.p.) was 0.32 +/- 0.03 MAC (mean +/- se) compared with 0.37 +/- 0.06 MAC in rats injected with 0.01 mg/kg of epinephrine i.p. and 0.38 +/- 0.03 MAC in rats injected with 0.1 mg/kg of epinephrine i.p. For desflurane, the amnestic ED(50) were 0.32 +/- 0.05 MAC in control rats receiving a saline injection i.p. versus 0.36 +/- 0.04 MAC in rats injected with 0.1 mg/kg of epinephrine i.p. We conclude that exogenous epinephrine does not decrease amnesia produced by inhaled isoflurane or desflurane, as assessed by fear conditioning to a tone in rats.  相似文献   

9.
We investigated the hyperalgesic (antianalgesic) effect of the inhaled anesthetics isoflurane, halothane, nitrous oxide, and diethyl ether, or the nonimmobilizer 1, 2-dichlorohexafluorocyclobutane at subanesthetic partial pressures (or, for the nonimmobilizer, subanesthetic partial pressures predicted from lipid solubility) in rats. Hyperalgesia was assessed as a decrease in the time to withdrawal of a rat hind paw exposed to heat. All four anesthetics, including nitrous oxide and diethyl ether, produced hyperalgesia at low partial pressures, with a maximal effect at 0.1 minimum alveolar anesthetic concentration (MAC) required to prevent response to movement in 50% of animals, and analgesia (an increased time to withdrawal of the hind paw) at 0. 4 to 0.8 MAC. The nonimmobilizer had neither analgesic nor hyperalgesia effects. We propose that inhaled anesthetics with a higher MAC-Awake (the MAC-fraction that suppresses appropriate responsiveness to command), such as nitrous oxide and diethyl ether, can be used as analgesics because patients are conscious at higher anesthetic partial pressures, including those which have analgesic effects, whereas anesthetics with a lower MAC-Awake do not produce analgesic effects at concentrations that permit consciousness. Implications: The inhaled anesthetics isoflurane, halothane, nitrous oxide, and diethyl ether produce antianalgesia at subanesthetic concentrations, with a maximal effect at approximately one-tenth the concentration required for anesthesia. This effect may enhance perception of pain when such small concentrations are reached during recovery from anesthesia.  相似文献   

10.
Background: Production of retrograde amnesia by anesthetics would indicate that these drugs can disrupt mechanisms that stabilize memory. Such disruption would allow suppression of memory of previous untoward events. The authors examined whether isoflurane provides retrograde amnesia for classic (Pavlovian) fear conditioning.

Methods: Rats were trained to fear tone by applying three (three-trial) or one (one-trial) tone-shock pairs while breathing various constant concentrations of isoflurane. Immediately after training, isoflurane administration was either discontinued, maintained unchanged, or rapidly increased to 1.0 minimum alveolar concentration for 1 h longer. Groups of rats were similarly trained to fear context while breathing isoflurane by applying shocks (without tones) in a distinctive environ- ment. The next day, memory for the conditioned stimuli was determined by presenting the tone or context (without shock) and measuring the proportion of time each rat froze (appeared immobile). For each conditioning procedure, the effects of the three posttraining isoflurane treatments were compared.

Results: Rapid increases in posttraining isoflurane administration did not suppress conditioned fear for any of the training procedures. In contrast, isoflurane administration during conditioning dose-dependently suppressed conditioning (P < 0.05). Training to tone was more resistant to the effects of isoflurane than training to context (P < 0.05), and the three-trial learning procedure was more was more resistant than the one-trial procedure (P < 0.05).  相似文献   


11.
Volatile anesthetics may decrease synaptic transmission at central neurons by presynaptic and/or postsynaptic actions. Nonimmobilizers are volatile compounds with lipophilicities that suggest that they should (but do not) prevent motor responses to surgical stimuli. However, nonimmobilizers interfere with learning and memory, and, thus, might be predicted to depress synaptic transmission in areas of the brain mediating memory (e.g., hippocampal CA1 neurons). To test this possibility, we stimulated the Schaffer collaterals of rat hippocampal slices and recorded from stratum pyramidale of CA1 neurons. At approximately 0.5 MAC (MAC is the minimum alveolar anesthetic concentration at one standard atmosphere that is required to eliminate movement in response to noxious stimulation in 50% of subjects), halothane decreased population spike amplitude 37% +/- 21% (mean +/- SD), increased latency 15% +/- 9%, and decreased excitatory postsynaptic potentials 16% +/- 10%. In contrast, at concentrations below (0.4 times) predicted MAC, the nonimmobilizer, 1,2 dichlorohexafluorocyclobutane (2N), slightly (not significantly) increased population spike amplitude, decreased population spike latency 9% +/- 4%, and increased excitatory postsynaptic potentials 22% +/- 16%. At concentrations above (2 times) predicted MAC, 2N did not significantly increase population spike, decreased latency 10% +/- 4%, and did not significantly change excitatory postsynaptic potentials. At 0.1 predicted MAC, a second nonimmobilizer, perfluoropentane, tended (P = 0.05) to increase (11% +/- 9%) population spike amplitude, decreased population spike latency 8% +/- 2%, and tended (P = 0.06) to increase excitatory postsynaptic potentials (9% +/- 8%). We conclude that clinically relevant concentrations of halothane depress synaptic transmission at Schaffer collateral-CA1 synapses and that the nonimmobilizers 2N and perfluoropentane have no effect or are excitatory. The Schaffer collateral-CA1 synapse may serve as a useful model for the production of immobility by volatile anesthetics, but is flawed as a model for the capacity of volatile anesthetics to interfere with memory and learning. IMPLICATIONS: Halothane, but not the nonimmobilizers 1,2-dichlorohexafluorocyclobutane and perfluoropentane, inhibits hippocampal synaptic transmission at Schaffer collateral-CA1 synapses.  相似文献   

12.
Raines DE  Claycomb RJ  Forman SA 《Anesthesia and analgesia》2002,95(3):573-7, table of contents
The nonhalogenated anesthetic alkanes, cyclopropane and butane, do not enhance gamma-aminobutyric acid-elicited GABAergic currents, suggesting that these agents produce anesthesia via interactions with other molecular targets. Perhalogenated nonimmobilizing alkanes, such as 1,2-dichlorohexafluorocyclobutane and 2,3-dichlorooctafluorobutane, also fail to enhance GABAergic currents, but display specific behavioral effects that are distinct from those of structurally similar anesthetics. At concentrations predicted to be anesthetic, 1,2-dichlorohexafluorocyclobutane and 2,3-dichlorooctafluorobutane produce amnesia but fail to produce immobility. Neuronal nicotinic acetylcholine (nACh) receptors are sensitive to many anesthetics and are thought to have an important role in learning and memory. We postulated that neuronal nACh receptors might mediate the common amnestic action of nonhalogenated and perhalogenated alkanes. To test the hypothesis that neuronal nACh receptors have a role in mediating the behavioral effects of general anesthetics and nonimmobilizers, we quantified the inhibitory potencies of nonhalogenated anesthetic alkanes and perhalogenated nonimmobilizing alkanes on currents mediated by alpha(4)beta(2) neuronal nACh receptors. Our studies reveal that anesthetics and nonimmobilizers significantly inhibit alpha(4)beta(2) neuronal nACh receptors at concentrations that suppress learning and with potencies that correlate with their hydrophobicities. These results support the hypothesis that alpha(4)beta(2) neuronal nACh receptors mediate the amnestic actions of alkanes but not their immobilizing actions. IMPLICATIONS: The results of this study suggest that the immobilizing actions of general anesthetics do not result from the inhibition of alpha(4beta2) neuronal nicotinic acetylcholine receptors. However, the inhibition of neuronal nicotinic acetylcholine receptors may account for the amnestic activities of general anesthetics and nonimmobilizers.  相似文献   

13.
Eger EI  Xing Y  Laster MJ  Sonner JM 《Anesthesia and analgesia》2003,96(6):1661-4, table of contents
Agonism of alpha-adrenoreceptors has a powerful anesthetic result mediated, in part, by effects on the spinal cord. Alpha-adrenoreceptor agonists (e.g., dexmedetomidine) can decrease the minimum alveolar anesthetic concentration (MAC) of inhaled anesthetics (e.g., halothane) to zero, with an apparently additive interaction between halothane and dexmedetomidine. We tested whether the capacity of the inhaled anesthetic isoflurane to produce immobility in the face of noxious stimulation resulted from agonism of alpha-adrenoreceptors. MAC (the concentration required to eliminate movement in response to a noxious stimulus in 50% of subjects) of isoflurane was determined before and after intraperitoneal administration of the alpha-adrenoreceptor antagonists yohimbine and atipamezole. The doses of yohimbine and atipamezole equaled or exceeded those that reverse the ability of agonism of alpha-adrenoreceptors to decrease MAC. Smaller doses of yohimbine or atipamezole slightly increased (by 10%) the MAC of isoflurane, an increase we interpret as the result of blockade of a small amount of tonically active alpha-adrenoreceptor activity. Doses five-fold larger did not change MAC. Doses 10-fold larger decreased MAC. We conclude that alpha-adrenoreceptors do not or minimally mediate the capacity of inhaled anesthetics to produce immobility. IMPLICATIONS: Although stimulation (agonism) of alpha-2 adrenoreceptors can decrease the inhaled anesthetic concentration required to produce immobility in the face of noxious stimulation, blockade of alpha-2 adrenoreceptors minimally affects the concentration. Thus, augmentation of the effect of alpha-2 adrenoreceptors is not an appreciable part of the mechanism whereby inhaled anesthetics produce immobility.  相似文献   

14.
Xing Y  Zhang Y  Stabernack CR  Eger EI  Gray AT 《Anesthesia and analgesia》2003,97(4):1020-4, table of contents
Inhaled anesthetics produce immobility during noxious stimulation, primarily by actions on the spinal cord. In this study, we examined whether activation of potassium channels of the KCNK subfamily alters volatile anesthetic potency. We measured the change in isoflurane minimum alveolar anesthetic concentration (MAC) during 4-h intrathecal or IV infusions of the nonspecific KCNK activator riluzole in 54 Sprague-Dawley rats. IV or intrathecal infusions of riluzole doses that did not result in permanent injury or death equally decreased isoflurane MAC. We conclude that although riluzole exhibited anesthetic effects, the similar dose response from IV or intrathecal infusion suggests systemic absorption and actions in the brain rather than the spinal cord. IMPLICATIONS: Riluzole, a drug that activates potassium channels and decreases glutamatergic neurotransmission, primarily acts on supraspinal sites to produce immobility in response to noxious stimuli. This finding does not support the hypothesis that potassium channels mediate the capacity of inhaled anesthetics to produce immobility in the face of noxious stimulation.  相似文献   

15.
The authors have developed a method for studying the action of volatile anesthetics in Caenorhabditis elegans (C.e.), a free living nematode. C.e. appears to be a useful model for the study of the influence of genetics on susceptibility to anesthetics. This worm has a small, completely defined nervous system, easily manipulated genetics, and a large number of nervous system mutants. Under normal conditions C.e. moves almost constantly. When exposed to anesthetics there is an initial phase of increased locomotion, followed by uncoordinated motion that progresses to immobility. Motion returns quickly when the nematodes are removed from the anesthetic. The authors called loss of locomotion "anesthesia." The ED50S of various anesthetics with C.e. are as follows: methoxyflurane 0.45%, chloroform 1.25%, halothane 2.7%, enflurane 4.2%, isoflurane 5.6%, fluroxene 9.9%. The authors also studied the action of a convulsant, flurothyl, on C.e. Flurothyl has anesthetizing properties in these animals with an ED50 of 8.1%. No convulsant activity was noted. However, mixtures of halothane and flurothyl were antagonistic in their effects, while halothane and enflurane were additive. Furthermore, the authors isolated a mutant strain (HS1) of C.e. that shows altered responses to several anesthetics and a convulsant. HS1 is uncoordinated when not exposed to anesthetics. Like the normal strain (N2) HS1 loses mobility when exposed to anesthetics. The ED50S for various anesthetics in HS1 were as follows: methoxyflurane 0.04%, chloroform 0.52%, halothane 0.85%, isoflurane 4.9%, enflurane 6.0%, fluroxene 10.9%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
BACKGROUND: Recent reports suggest that one type of learning, fear conditioning to context, requires more neural processing than a related type, fear conditioning to tone. To determine whether these types of learning were differentially affected by anesthesia, the authors applied isoflurane during the training phases of fear conditioning paradigms for freezing to context and freezing to tone. METHODS: The authors trained seven groups of eight rats to fear tone by administering a tone (conditioned stimulus) while breathing various concentrations of isoflurane from 0.00 to 0.75 minimum alveolar concentration (MAC; one concentration per group) separated by 0.12-MAC steps. On the succeeding day, and in the absence of isoflurane, the authors presented the tone (without shock) in a different context (different cage shape and odor) and measured the time each rat froze (became immobile). Six other groups of eight rats were trained to fear context by applying the shock in the absence of a tone but in the presence of environmental cues such as cage shape, texture, and odor. Fear to context was determined the succeeding day by returning the rat to the training cage (without shock) and measuring duration of freezing. Control groups (16 per group) received 0.75 MAC isoflurane but no foot shocks. Group scores were compared using analysis of variance, and the ED50 values for quantal responses of individual rats were calculated using logistic regression. RESULTS: Conditioning to context occurred at 0.00 and 0.13 MAC (P < 0.05 compared with unshocked control) but not 0.25 MAC; the ED50 was 0.25 +/- 0.03 MAC (mean +/- SEM). In contrast, conditioning to tone occurred at 0.48 MAC (P < 0.05) but not 0.62 MAC; the ED50 was 0.47 +/- 0.02 MAC (P < 0.01 for the difference between ED50 values). CONCLUSIONS: Suppression of fear conditioning to tone required approximately twice the isoflurane concentration that suppressed fear conditioning to context. Thus, the concentration of anesthetic required to suppress learning may depend on the neural substrates of learning. Our results suggest that isoflurane concentrations greater than 0.5 MAC may be needed to suppress both forms of fear conditioning.  相似文献   

17.
BACKGROUND: Although it does not suppress movement in response to noxious stimuli, the nonimmobilizer 1,2-dichlorohexafluorocyclobutane (F6, also known as 2N) does cause amnesia and seizures. These occur at 0.48 and 1.3 times, respectively, the concentrations that are predicted from its lipid solubility to cause immobility. The molecular and cellular basis of these effects is not known. The ionotropic gamma-aminobutyric acid type A (GABAA) receptor is modulated strongly by anesthetics, and it plays an important role in many seizure models. Also, the hippocampus is a structure central to the formation of memory and is susceptible to seizure generation. The authors therefore investigated the effect of F6 on GABAA receptor- mediated inhibition in hippocampal neurons. METHODS: Transverse hippocampal slices were prepared from young (12- to 21-day-old) Sprague-Dawley rats. Inhibitory postsynaptic currents were recorded from hippocampal CA1 pyramidal cells in the presence of ionotropic glutamate receptor antagonists. F6 was applied with the bath solution. The concentration of F6 achieved during the experiment at the location of synaptic inhibition was derived using a diffusion model. RESULTS: At tissue concentrations of up to 75 microm (approximately 5 x predicted minimal alveolar concentration), F6 had no discernible effect on either the amplitude or the kinetics of GABA-mediated synaptic currents. Isoflurane, by contrast, prolonged the decay time constant of these currents at 100 microm (approximately 0.3 x minimal alveolar concentration). CONCLUSIONS: At concentrations that bracket the in vivo amnestic and seizure-inducing range, F6 has no discernible effect on fast synaptic GABAA receptors in hippocampal CA1 pyramidal neurons. Synaptic GABAA receptors sharply discriminate between volatile anesthetics and a prototype nonimmobilizer. Similar in vivo effects of anesthetics and nonimmobilizers may be mediated by different cellular mechanisms.  相似文献   

18.
Liao M  Sonner JM  Jurd R  Rudolph U  Borghese CM  Harris RA  Laster MJ  Eger EI 《Anesthesia and analgesia》2005,101(2):412-8, table of contents
Mice bearing an N265M point mutation in the gamma-aminobutyric acid (GABA)(A) receptor beta3 subunit resist various anesthetic effects of propofol and etomidate. They also require a 16% larger concentration of enflurane and a 21% larger concentration of halothane to abolish the withdrawal reflex than do wild-type mice. Using a Pavlovian test, we measured whether this mutation increased the concentration of isoflurane required to impair learning and memory relative to wild-type mice. We found that the concentration was not significantly increased. We also measured MAC (the minimum alveolar concentration required to eliminate movement in response to noxious stimulation in 50% of subjects). Isoflurane MAC for mutant mice (1.93% +/- 0.0.03%; mean +/- se; n = 14) was 17.0% larger than MAC for wild-type mice (1.65 +/- 0.04; n = 14; P < 0.001). Similarly, the cyclopropane MAC for mutant mice (27.6% +/- 0.55%; n = 16) was 13.6% larger than MAC for wild-type mice (24.3 +/- 0.46; n = 8; P < 0.01). The increase in MAC for cyclopropane was unexpected, because published reports find only minimal actions at alpha1beta2gamma2 GABA(A) receptors whereas isoflurane provides a large enhancement. Consistent with previous work on alpha1beta2gamma2 GABA(A) receptors, we found in Xenopus oocytes that 5 MAC cyclopropane enhanced the effect of GABA on alpha1beta2gamma2 GABA(A) receptors by only 76%, and by a nearly identical enhancement in alpha1beta3gamma2, and alpha6beta3gamma2 receptors. In contrast, a much smaller concentration of isoflurane (1 MAC) produced a 160% to 310% enhancement in these receptors. If, relative to isoflurane, cyclopropane minimally increases GABA-induced chloride currents at any GABA(A) receptor subtype, the present data for MAC are consistent with the notion that GABA(A) receptors do not mediate the immobility produced by inhaled anesthetics. IMPLICATIONS: The results of the present study indicate that beta3-containing gamma-aminobutyric acidA receptors do not mediate the amnesia produced by isoflurane and do not mediate, or only partially mediate, the immobility produced by inhaled anesthetics.  相似文献   

19.
BACKGROUND: Drug-induced temporary amnesia is one of the principal goals of general anesthesia. The nonimmobilizer 1,2-dichlorohexafluorocyclobutane (F6, also termed 2N) impairs hippocampus-dependent learning at relative, i.e., lipophilicity-corrected, concentrations similar to isoflurane. Hippocampal theta oscillations facilitate mnemonic processes in vivo and synaptic plasticity (a cellular model of memory) in vitro and are thought to represent a circuit level phenomenon that supports memory encoding. Therefore, the authors investigated the effects of F6 and isoflurane on theta oscillations (4-12 Hz). METHODS: Thirteen adult rats were implanted with multichannel depth electrodes to measure the microelectroencephalogram and were exposed to a range of concentrations of isoflurane and F6 spanning the concentrations that produce amnesia. Five of these animals also underwent control experiments without drug injection. The authors recorded the behavioral state and hippocampal field potentials. They confirmed the electrode location postmortem by histology. RESULTS: The tested concentrations for isoflurane and F6 ranged from 0.035% to 0.77% and from 0.5% to 3.6%, respectively. Isoflurane increased the fraction of time that the animals remained immobile, consistent with sedation, whereas F6 had the opposite effect. Electroencephalographic power in the theta band was less when the animals were immobile than when they explored their environment. F6 suppressed the power of oscillations in the theta band. Isoflurane slowed theta oscillations without reducing total power in the theta band. CONCLUSIONS: Drug-induced changes in theta oscillations may be a common basis for amnesia produced by F6 and isoflurane. The different patterns suggest that these drugs alter network activity by acting on different molecular and/or cellular targets.  相似文献   

20.
We previously demonstrated that intrathecal administration of the noncompetitive gamma-aminobutyric acid type A (GABA(A)) receptor antagonist picrotoxin increased isoflurane MAC (the minimum alveolar concentration of anesthetic producing immobility in 50% of animals) by a maximum (ceiling effect) of approximately 40%. We also found that IV administration of picrotoxin increased MAC by more than 60%, without evidence of a ceiling effect. The larger increase with IV administration suggested a role of cerebral GABA(A) receptors. Accordingly, in this study we examined the effect of intracerebroventricular administration of picrotoxin in rats, finding that picrotoxin infusion into the third ventricle increased isoflurane MAC by a maximum of approximately 40%, without finding a ceiling effect. In addition, we concurrently infused picrotoxin into the intrathecal and intracerebroventricular spaces, producing an increase in MAC in excess of 70%, also with no evidence of a ceiling effect. The dose-response relationship for the intrathecal-intraventricular infusion paralleled that of the IV infusion but was shifted to the left by an order of magnitude. We conclude that both cerebral and spinal GABA(A) receptors modulate the capacity of inhaled anesthetics to produce immobility. Because other studies have shown that the spinal cord, and not the brain, mediates the capacity of inhaled anesthetics to produce immobility, these results call into question the relevance of GABA(A) receptors to the immobilizing action of isoflurane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号