首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumor progression is the continual selection of variant subpopulations of malignant cells that have acquired increasing levels of genetic instability (Nowell Science 1976, 194, 23-28). This instability is manifested as chromosomal aneuploidy or translocations, viral integration or somatic mutations that typically affect the expression of a gene (oncogene) that is especially damaging to the proper function of a cell. With the recent discovery of non-coding RNAs such as microRNAs (miRNAs), the concept that a target of genetic instability must be a protein-encoding gene is no longer tenable. Over the years, we have conducted several studies comparing the location of miRNA genes to positions of genetic instability, principally retroviral integration sites and chromosomal translocations in the mouse as a means of identifying miRNAs of importance in carcinogenesis. In this current study, we have used the most recent annotation of the mouse miRome (miRBase, release 16.0), and several datasets reporting the sites of integration of different retroviral vectors in a variety of mouse strains and mouse models of cancer, including for the first time a model that shows a propensity to form solid tumors, as a means to further identify or define, candidate oncogenic miRNAs. Several miRNA genes and miRNA gene clusters stand out as interesting new candidate oncogenes due to their close proximity to common retroviral integration sites including miR-29a/b/c and miR106a~363. We also discussed some recently identified miRNAs including miR-1965, miR-1900, miR-1945, miR-1931, miR-1894, and miR-1936 that are close to common retroviral integration sites and are therefore likely to have some role in cell homeostasis.  相似文献   

2.
Lung cancer is known as the top cancer killer in most developed countries. Epidermal growth factor receptor (EGFR) is frequently found to be activated by mutation or amplification in lung cancer. MicroRNA (miRNA) is a new class of small molecules that has emerged as important markers of lung cancer development and therapeutic target. There are queries on which miRNAs can regulate EGFR and it is important to predict the candidate miRNAs that target EGFR by bioinformatics and to investigate on the availability of these candidate miRNA regulators in lung cancer. Systematic and rigorous searches for miRNAs targeting EGFR were performed on 10 representative databases. The identified miRNAs that target EGFR were formulated into a conditional regulation matrix and then hierarchical clustering algorithm was applied for the analysis. The systematic search came up with 138 miRNAs that potentially target EGFR. Among them, 11 miRNAs including miR-7 and miR-128b were confirmed by published experimental data or literatures. There were 14 candidate miRNAs predicted by at least 3 prediction pipelines in this study which have never been previously reported to target EGFR. Further studies of these novel identified miRNAs may provide insight on the regulation of EGFR in lung cancer. To the best of our knowledge, this is the first bioinformatic study applying genomic sequence analysis for the prediction of miRNAs that target EGFR in lung cancer. This new strategy that integrates computational and published data approaches provides a fast and effective prediction of miRNAs in specific target genes involved in various diseases.  相似文献   

3.
4.
5.
6.
7.
Recently, microRNAs (miRNAs) have been implicated in regulating neuroinflammatory and demyelinative responses in multiple sclerosis (MS) and its mouse model of experimental autoimmune encephalomyelitis (EAE). miRNAs have also been studied as biomarkers of disease pathology and drug-response in MS. However, no complete miRNA profiling at various stages of EAE disease has been examined, especially in the urine. We carried out a systematic analysis of miRNAs in the urine exosomes as well as in the plasma and spinal cord at pre-onset, onset and peak stages of EAE established in the chronic B6 mice model. For the first time, we provide evidence that urine exosomes can be a specific and sensitive source of miRNA biomarkers for all 3 stages of EAE disease. In a significant observation, we observed that miR-155-5p expression increased in urine exosomes, plasma and spinal cord 6 days before the onset of disease, suggesting its early involvement in the pathology of EAE disease. We also analyzed the effect of Glatiramer acetate (GA; copaxone) treatment, an approved treatment for MS patients, in modulating miRNA expression at the peak of EAE disease. We identified miR-155-5p, miR-27a-3p, miR-9-5p and miR-350-5p as putative GA-treatment responsive miRNA biomarkers. Since, EAE is a mainly CD4 cells mediated disease, we also examined the above set of miRNAs and found to be significantly altered in T cells polarized to Th1 and Th17 phenotype, similar to urine exosomes. Thus, urine exosome miRNAs hold the potential to be defined as novel accessible stage-specific biomarkers of EAE (MS) disease as well as treatment response.  相似文献   

8.
9.
MicroRNAs (miRNAs) are 21-23 nucleotide RNAs that regulate more than 60% of mammalian protein coding genes. miRNAs play critical roles in hematopoiesis and megakaryocyte function and development. Platelets, in addition to possessing functional miRNA processing machinery, have miRNA levels that have been correlated with platelet reactivity, and these miRNAs have been shown to target mRNAs that encode proteins that alter platelet function. There are potential uses of platelet miRNA as biomarkers and therapeutic agents. Due to the ability of platelets to release miRNA-containing microparticles at sites of activation, including angiogenic regions, tumors, and atherosclerotic plaques, there is the possibility of engineering platelets to deliver miRNA-based therapies to these sites. Cellpreferential expression of miRNAs could be exploited to restrict transgene expression in hematopoietic stem cell gene therapy to the desired lineage, including megakaryocytes and platelets. Finally, manipulation of gene expression in stored platelets may allow more effective platelet storage. Although much work remains to be done, there is great potential in miRNA-based platelet therapies.  相似文献   

10.
11.
MicroRNAs (miRNA), a class of ~22-nucleotide RNA molecules, are important gene regulators that bind to the target sites of mRNAs to inhibit the gene expressions either through translational inhibition or mRNA destabilization. There are growing evidences that miRNAs have played several regulatory roles in opioid pharmacology. Like other research fields such as cancer biology, the area where numerous miRNAs are found to be involved in gene regulation, we assume that in opioid studies including research fields of drug additions and opioid receptor regulation, there may be more miRNAs waiting to be discovered. This review will summarize our current knowledge of miRNA functions on opioids biology and briefly describe future research directions of miRNAs related to opioids.  相似文献   

12.
13.
MicroRNAs (miRNAs) are a class of small, conserved, tissue-specific regulatory non-coding RNAs that modulate a variety of biological processes and play a fundamental role in the pathogenesis of major human diseases, including nonalcoholic fatty liver disease (NAFLD). However, the association between inter-individual differences in susceptibility to NAFLD and altered miRNA expression is largely unknown. In view of this, the goals of the present study were (i) to determine whether or not individual differences in the extent of NAFLD-induced liver injury are associated with altered miRNA expression, and (ii) assess if circulating blood miRNAs may be used as potential biomarkers for the noninvasive evaluation of the severity of NAFLD. A panel of seven genetically diverse strains of inbred male mice (A/J, C57BL/6J, C3H/HeJ, 129S/SvImJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ) were fed a choline- and folate-deficient (CFD) diet for 12 weeks. This diet induced liver injury in all mouse strains; however, the extent of NAFLD-associated pathomorphological changes in the livers was strain-specific, with A/J, C57BL/6J, and C3H/HeJ mice being the least sensitive and WSB/EiJ mice being the most sensitive. The morphological changes in the livers were accompanied by differences in the levels of hepatic and plasma miRNAs. The levels of circulating miR-34a, miR-122, miR-181a, miR-192, and miR-200b miRNAs were significantly correlated with a severity of NAFLD-specific liver pathomorphological features, with the strongest correlation occurring with miR-34a. These observations suggest that the plasma levels of miRNAs may be used as biomarkers for noninvasive monitoring the extent of NAFLD-associated liver injury and susceptibility to NAFLD.  相似文献   

14.
BackgroundMicroRNAs (miRNAs) have been widely regarded as crucial regulators in various biological processes involved in carcinogenesis. However, the comprehensive miRNA profiles of Chinese follicular lymphoma (FL) remains completely unknown.MethodsThe Exiqon miRCURY LNA™ microRNA Array (v.18.0) was used to detect the miRNA expression profiles of three Chinese FL samples, and compared to three reactive lymphatic nodes (RLN). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to confirm the selected miRNAs in different series. Three databases (miRAnda, miRBase and TargetScan) were used to predict the putative target genes. Bioinformatic analysis (gene ontology analysis and pathway analysis) was performed for further evaluation.ResultsThe microarray assay demonstrated that 1643 miRNAs were expressed; in which 103 miRNAs were upregulated and 68 miRNAs were downregulated, according to P-value (< 0.05) and fold change (FC > 2-fold). Furthermore, qRT-PCR was used to confirm that miR-17-5p, miR-20a-5p and miR-19a-3p were upregulated, and miR-3615 was downregulated (P < 0.05). Bioinformatic analysis (gene ontology analysis and pathway analysis) was used for further evaluation. Pathway analysis indicated that 25 pathways corresponded to differentially expressed miRNAs (P-value cut-off is 0.05). Furthermore, miR-17-5p, miR-20a-5p and miR-19a-3p were validated by qRT-PCR in an independent series including five FL3a and five RLN cases. Data analysis revealed that the changing trend of miR-19a-3p and miR-17-5p expression in the independent series was basically identical with that of the microarray data.ConclusionsOur results are the first to reveal the miRNA expression profiling of Chinese FL and three upregulated miRNAs. Furthermore, the expression of miR-19a-3p and miR-17-5p were found to be significantly upregulated in FL3a. Further study needs to be urgently performed to reveal its potential role in the pathogenesis of FL in the near future.  相似文献   

15.
16.
Four different types of small RNAs functionally associated with gene silencing have been discovered in animals including small interfering RNAs (siRNAs), microRNAs (miRNAs), and Piwi-interacting RNAs (piRNAs). Experimental evidence suggests that miRNAs regulate the expression of more than 30% of protein-coding genes. These molecules can also act as oncogenes or tumor suppressors. Expression profiling has revealed characteristic miRNA signatures not only in human cancers but also in serum and blood cells of cancer patients. Numerous human miRNA genes map to chromosomal regions which are susceptible to amplification, deletion or translocation in the process of tumor development. Despite the pivotal role of miRNA in cancer precise mechanisms of action are yet to be elucidated. This review is focused on recent findings related to the emerging field of miRNA serving as novel potential biomarkers in cancer diagnosis, prognosis and possibly, therapies.  相似文献   

17.
Introduction: Many RNA species have been identified as important players in the development of chronic diseases including cancer. Certain classes of regulatory RNAs such as microRNAs (miRNAs) have been investigated in such detail that bona fide tumor suppressive and oncogenic miRNAs have been identified. Because of this, there has been a major effort to therapeutically target these small RNAs. One in particular, a liposomal formulation of miR-34a (MRX34), has entered Phase I trials.

Areas covered: This review aims to summarize miRNA biology, its regulation within normal versus disease states and how it can be targeted therapeutically, with a particular emphasis on miR-34a. Understanding the complexity of a single miRNA will aid in the development of future RNA-based therapeutics for a broader range of chronic diseases.

Expert opinion: The potential of miRNAs to be developed into anti-cancer therapeutics has become an increasingly important area of research. miR-34a is a tumor suppressive miRNA across many tumor types through its ability to inhibit cellular proliferation, invasion and tumor sphere formation. miR-34a also shows promise within certain in vivo solid tumor models. Finally, as miR-34a moves into clinical trials it will be important to determine if it can further sensitize tumors to certain chemotherapeutic agents.  相似文献   

18.
19.
Attention deficit-hyperactivity disorder (ADHD) is a neuropsychiatric disorder characterized by inappropriate and impaired levels of hyperactivity, impulsivity and inattention. Around 75% of adults with ADHD show comorbidity with other psychiatric disorders such as disruptive behavior disorders or substance use disorders (SUDs). Recently, there has been growing interest in studying the role of microRNAs (miRNAs) in the susceptibility to complex disorders. Interestingly, converging evidence suggests that single nucleotide polymorphisms (SNPs) within miRNAs or miRNA target sites may modulate the miRNA-mediated regulation of gene expression through the alteration of the miRNA maturation, structure or expression pattern as well as the silencing mechanisms of target genes. Genetic studies and animal models support the involvement of the serotonin receptor (HTR1B) in ADHD. We evaluated the contribution of one SNP in the miR-96 target site at HTR1B and eight tagSNPs within the genomic region containing this miRNA in 695 adults with ADHD (266 and 396 subjects with and without comorbid SUD, respectively), 403 subjects with SUD without life-time diagnosis of ADHD and 485 sex-matched controls from Spain. Single and multiple marker analyses revealed association between two SNPs located at the 3′ region of miR-96 (rs2402959 and rs6965643) and ADHD without SUD. Our results provide preliminary evidence for the contribution of two sequence variants at the miR-183–96–182 cluster to ADHD without comorbid SUD, and emphasize the need to take comorbidities into account in genetic studies to minimize the effect of heterogeneity and to clarify these complex phenotypes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号