首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
ABSTRACT

Introduction: During cancer progression, tumor cells develop several mechanisms to prevent killing and to shape the immune system into a tumor-promoting environment. One of such regulatory mechanism is the overexpression of sialic acid (Sia) on carbohydrates of proteins and lipids on tumor cells. Sia-containing glycans or sialoglycans were shown to inhibit immune effector functions of NK cells and T cells by engaging inhibitory Siglec receptors on the surface of these cells. They can also modulate the differentiation of myeloid cells into tumor-promoting M2 macrophages.

Areas covered: We review the role of sialoglycans in cancer and introduce the Siglecs, their expression on different immune cells and their interaction with cancer-associated sialoglycans. The targeting of this sialoglycan-Siglec glyco-immune checkpoint is discussed along with potential therapeutic approaches. Pubmed was searched for publications on Siglecs, sialic acid, and cancer.

Expert opinion: The targeting of sialoglycan-Siglec interactions has become a major focus in cancer research. New approaches have been developed that directly target sialic acids in tumor lesions. Targeted sialidases that cleave sialic acid specifically in the tumor, have already shown efficacy; efforts targeting the sialoglycan-Siglec pathway for improvement of CAR T cell therapy are ongoing. The sialoglycan-Siglec immune checkpoint is a promising new target for cancer immunotherapy.  相似文献   

2.
Objective: Glioblastoma multiforme (GBM) develops from a small subpopulation of stem-like cells, which are endowed with the ability to self-renew, proliferate and give rise to progeny of multiple neuroepithelial lineages. These cells are resistant to conventional chemo- and radiotherapy and are hence also responsible for tumor recurrence.

HMGA1 overexpression has been shown to correlate with proliferation, invasion, and angiogenesis of GBMs and to affect self-renewal of cancer stem cells from colon cancer. The role of HMGA1 in GBM tumor stem cells is not completely understood.

Research design and methods: We have investigated the role of HMGA1 in brain tumor stem cell (BTSC) self-renewal, stemness and resistance to temozolomide by shRNA- mediated HMGA1 silencing.

Results: We first report that HMGA1 is overexpressed in a subset of BTSC lines from human GBMs. Then, we show that HMGA1 knockdown reduces self-renewal, sphere forming efficiency and stemness, and sensitizes BTSCs to temozolomide. Interestingly, HMGA1 silencing also leads to reduced tumor initiation ability in vivo.

Conclusions: These results demonstrate a pivotal role of HMGA1 in cancer stem cell gliomagenesis and endorse HMGA1 as a suitable target for CSC-specific GBM therapy.  相似文献   

3.
Li YM  Hall WA 《Toxins》2010,2(11):2645-2662
Targeted toxins, also known as immunotoxins or cytotoxins, are recombinant molecules that specifically bind to cell surface receptors that are overexpressed in cancer and the toxin component kills the cell. These recombinant proteins consist of a specific antibody or ligand coupled to a protein toxin. The targeted toxins bind to a surface antigen or receptor overexpressed in tumors, such as the epidermal growth factor receptor or interleukin-13 receptor. The toxin part of the molecule in all clinically used toxins is modified from bacterial or plant toxins, fused to an antibody or carrier ligand. Targeted toxins are very effective against cancer cells resistant to radiation and chemotherapy. They are far more potent than any known chemotherapy drug. Targeted toxins have shown an acceptable profile of toxicity and safety in early clinical studies and have demonstrated evidence of a tumor response. Currently, clinical trials with some targeted toxins are complete and the final results are pending. This review summarizes the characteristics of targeted toxins and the key findings of the important clinical studies with targeted toxins in malignant brain tumor patients. Obstacles to successful treatment of malignant brain tumors include poor penetration into tumor masses, the immune response to the toxin component and cancer heterogeneity. Strategies to overcome these limitations are being pursued in the current generation of targeted toxins.  相似文献   

4.
Objective: The aim of this research was to develop a novel ALA fusion protein for target to the malignant cells surface with high uPAR expression and locally release of the scorpion toxin AGAP in an uPA-cleavable manner. It will provide an effective approach for controlled release of the peptide toxins to treat cancerous cells.

Methods: The ALA fusion proteins were expressed in pichia pastoris, and the recombinant proteins were purified by Ni-NTA affinity chromatography. The proteins were added to human breast cancer cells (MDA-MB-231) and human embryonic kidney cells (HEK-293) in order to investigate the characteristic of selective targeting and releasing of scorpion toxin AGAP in cancer cells with high uPAR expression. The inhibitory effect of ALA on MDA-MB-231, MCF7, LO2 and HEK-293 was evaluated by MTT assay. Moreover, the antiproliferation mechanism of ALA was determined by flow cytometric and western blot analysis.

Results: The results showed that ALA could target MDA-MB-231 cells and the scorpion toxin AGAP could be released with high efficiency and selectivity. ALA inhibited the growth and invasion of breast cancer cells MDA-MB231. Also, cell apoptosis pathway was found to be associated with the inhibition mechanism of ALA according to the data of flow cytometric and western blot analysis. Therefore, ALA could be a novel antitumor candidate for targeting treatment of malignant cell.

Conclusions: This study successfully demonstrated that fusion of biotoxins with tumor target domain could provide a simple yet effective way to delivery of peptide or protein drugs.  相似文献   


5.
Introduction: The sonic hedgehog (Shh) pathway is a regulatory network involved in development and cancer. Proteins like Ptch, SMO, and Gli are central to the Shh pathway. Other proteins like HHIP, SUFU, Bmi-1, Cyclin D2, Plakoglobin, PAX6, Nkx2.2, and SFRP1 are not so well understood in Shh regulation as Gli-1 downstream target genes.

Areas covered: In this review we try to explain the Shh pathway components and their role in development and cancer, mainly of the brain. A summary of each of the proteins is presented together with an overview of their involvement in cancer.

Expert opinion: Genetic alterations of the Shh pathway have been detected in cancer stem cells, a subgroup of tumor cells implicated in the origin and maintenance of tumors, being responsible for cancer recurrence and chemotherapy resistance. Cancer stem cells constitute a novel target for biomedical researchers. Specifically, the Shh pathway is being explored as a new opportunity for targeted therapies against tumors. Therefore, a better knowledge of every of the regulators of the Shh pathway is needed.  相似文献   

6.
Introduction: Cancer stem cells (CSCs) are a high profile drug target for cancer therapeutics due to their indispensable role in cancer progression, maintenance and therapeutic resistance. Restoring wild-type (WT) p53 function is an attractive new therapeutic approach for the treatment of cancer due to the well-described powerful tumor suppressor function of p53. As emerging evidence intimately links p53 and stem cell biology, this approach also provides an opportunity to target CSCs.

Areas covered: This review covers the therapeutic approaches to restore the function of WT p53, cancer and normal stem cell biology in relation to p53 and the downstream effects of p53 on CSCs.

Expert opinion: The restoration of WT p53 function by targeting p53 directly, its interacting proteins or its family members holds promise as a new class of cancer therapies. This review examines the impact that such therapies may have on normal and CSCs based on the current evidence linking p53 signaling with these populations.  相似文献   

7.
The association of colitis with colorectal cancer has become increasingly clear with mast cells being identified as important inflammatory cells in the process. In view of the relationship between mast cells and cancer, we studied the effect and mechanisms of mast cells in the development of colon cancer. Functional and mechanistic insights were gained from ex vivo and in vivo studies of cell interactions between mast cells and CT26 cells. Further evidence was reversely obtained in studies of mast cell targeted Fcε-PE40 chimeric toxin. Experiments revealed mast cells could induce colon tumor cell proliferation and invasion. Cancer progression was found to be related to the density of mast cells in colonic submucosa. The activation of MAPK, Rho-GTPase, and STAT pathways in colon cancer cells was triggered by mast cells during cell-to-cell interaction. Lastly, using an Fcε-PE40 chimeric toxin we constructed, we confirmed the promoting effect of mast cells in development of colon cancer. Mast cells are a promoting factor of colon cancer and thus also a potential therapeutic target. The Fcε-PE40 chimeric toxin targeting mast cells could effectively prevent colon cancer in vitro and in vivo. Consequently, these data may demonstrate a novel immunotherapeutic approach for the treatment of tumors.  相似文献   

8.
Introduction: Cancer initiating or stem cells (CSCs) are a small population of cells in the tumor mass, which have been reported to be present in different types of cancers. CSCs usually reside within the tumor and are responsible for reoccurrence of cancer. The imprecise, inaccessible nature and increased efflux of conventional therapeutic drugs make these cells resistant to drugs. We discuss the specific markers for identification of these cells, role of CSCs in chemotherapy resistance and use of different therapeutic means to target them, including elucidation of specific cell markers, exploitation of different signaling pathways and use of nanotechnology.

Area covered: This review covers cancer stem cell signaling which are used by these cells to maintain their quiescence, stemness and resistant phenotype, distinct cell surface markers, contribution of these cells in drug resistance, inevitability to cure cancer and use of nanotechnology to overcome this hurdle.

Expert opinion: Cancer stem cells are the main culprit of our failure to cure cancer. In order to cure cancer along with other cells types in cancer, cancer stem cells need to be targeted in the tumor bed. Nanotechnology solutions can facilitate clinical translation of the therapeutics along with other emerging technologies to cure cancer.  相似文献   


9.
Trastuzumab (Herceptin®) is a monoclonal antibody (mAb) for specific ablation of HER2‐overexpressing malignant breast cancer cells. Intensification of antiproliferative activity of trastuzumab through construction of immunotoxins and nano‐immunoconjugates is a promising approach for treatment of cancer. In this study, trastuzumab was directly conjugated to diphtheria toxin (DT). Also, conjugates of trastuzumab and multiwalled carbon nanotubes (MWCNT) were constructed by covalent immobilization of trastuzumab onto MWCNTs. Then, antiproliferative activity of the fusion constructs against HER2‐overexpressing SK‐BR‐3 and also HER2‐negative MCF‐7 cancer cell lines were examined. Cells treated with trastuzumab‐MWCNT conjugates were irradiated with near‐infrared (NIR) light. Efficient absorption of NIR radiation and its conversion to heat by MWCNTs can be resulted to thermal ablation of cancerous cells. Our results strongly showed that both trastuzumab‐MWCNT and trastuzumab‐DT conjugates were significantly efficient in the specific killing of SK‐BR‐3 cells. Targeting of MWCNTs to cancerous cells using trastuzumab followed by exposure of cells to NIR radiation was more efficient in repression of cell proliferation than treatment for cancer cells with trastuzumab‐DT. Our results also showed that conjugation linkers can significantly affect the cytotoxicity of MWCNT‐immunoconjugates. In conclusion, our data demonstrated that trastuzumab‐MWCNT is a promising nano‐immunoconjugate for killing of HER2‐overexpressing cancerous cells.  相似文献   

10.
Importance of the field: Axl and/or Mer expression correlates with poor prognosis in several cancers. Until recently, the role of these receptor tyrosine kinases (RTKs) in development and progression of cancer remained unexplained. Studies demonstrating that Axl and Mer contribute to cell survival, migration, invasion, metastasis and chemosensitivity justify further investigation of Axl and Mer as novel therapeutic targets in cancer.

Areas covered in this review: Axl and Mer signaling pathways in cancer cells are summarized and evidence validating these RTKs as therapeutic targets in glioblastoma multiforme, NSCLC, and breast cancer is examined. A discussion of Axl and/or Mer inhibitors in development is provided.

What the reader will gain: Potential toxicities associated with Axl or Mer inhibition are addressed. We propose that the probable action of Mer and Axl inhibitors on cells within the tumor microenvironment will provide a therapeutic opportunity to target both tumor cells and the stromal components that facilitate disease progression.

Take home message: Axl and Mer mediate multiple oncogenic phenotypes and activation of these RTKs constitutes a mechanism of chemoresistance in a variety of solid tumors. Targeted inhibition of these RTKs may be effective as anti-tumor and/or anti-metastatic therapy, particularly if combined with standard cytotoxic therapies.  相似文献   

11.
Abstract

Scorpionism (scorpion sting) is a major public health issue in many regions of the world. Globally, 1.2 million scorpion stings happen annually, specifically in the tropical regions. Mortality due to these venomous stings is serious health problem in absence of suitable medication. Awareness of this problem is fundamental for preventive measures. Scorpion venom is composed of water, mucosa, enzymes, free amino acids, biogenic amines, neurotoxins, low molecular weight peptides, and proteins having maximum molecular activities. Neurotoxins are potent and are highly selective ligands for voltage-gated sodium, potassium, chloride, and calcium ion channels. Therefore, they depict interesting compounds for the development of novel drugs, for example, drugs for cancer, neurological disorders, cardiovascular diseases, and analgesics. Scorpion venom has apoptogenic, cytotoxic, immunosuppressive, and antiproliferative effects. Therefore, scorpion venom can be utilized against various cancers like glioma, leukemia, human neuroblastoma, brain tumor, melanoma, prostate cancer, and breast cancer. This review explains the details of toxin receptor interactions and provides details about opportunities for the development of peptide-based therapeutics.  相似文献   

12.
In this work, a novel ferrocenyl complex (ansa-FcdiOH) was assessed for brain tumor therapy through stealth lipid nanocapsules (LNCs). Stealth LNCs, prepared according to a one-step process, showed rapid uptake by cancer cells and extended blood circulation time. The ferrocenyl complex was successfully encapsulated into these LNCs measuring 40 nm with a high loading capacity (6.4%). In vitro studies showed a potent anticancer effect of ansa-FcdiOH on 9L cells with a low IC50 value (0.1 μM) associated with an oxidative stress and a dose-dependent alteration of the cell cycle. Repeated intravenous injections of stealth ansa-FcdiOH LNCs in ectopic glioma bearing rats induced a significant tumor growth inhibition, supported by a reduced number of proliferative cells in tumors compared to control group. Additionally, no liver damage was observed in treated animals. These results indicated that stealth ansa-FcdiOH LNCs might be considered as a potential new approach for cancer chemotherapy.From the Clinical EditorIn this study, a novel ferrocenyl complex was assessed for brain tumor therapy through stealth lipid nanocapsules, demonstrating no liver damage, and superior tumor volume reduction compared to saline and stealth lipid nanocapsules alone in an ectopic glioma model.  相似文献   

13.
Novelty: A recombinant vaccine, composed of an in vitro protein fusion between a bacterial toxin and a protein to raise an immune response, is described. This single protein can carry several domains which will allow the correct processing and presentation to T lymphocytes and thus elicit a strong immune response.

Biology: The structure of the Pseudomonas exotoxin A contains several domains. One of these enables the toxin to be internalised into cells through endocytosis via receptors on the cell surface then translocate out of the resultant endosome into the cellular compartment where endogenous proteins are processed for presentation by Class I MHC proteins. The ADP-ribosylation domain of the toxin is deleted to prevent it killing the cells and the protein coding region of the protein of interest is fused to the translocation domains. In this example the protein is fused to residues 57 to 68 of the matrix protein of influenza A, an epitope known to bind to MHC HLA2. Other antigenic epitopes from HIV, papilloma virus, cytomegalovirus, Epstein-Barr virus, rotavirus, respiratory syncytial virus, tumours and parasites can be presented to T cells in this way.  相似文献   

14.
We previously found that snake venom toxin inhibits nuclear factor kappa B (NF-κB) activity in several cancer cells. NF-κB is implicated in cancer cell growth and chemoresistance. In our present study, we investigated whether snake venom toxin (SVT) inhibits NF-κB, thereby preventing human cervical cancer cell growth (Ca Ski and C33A). SVT (0–12 μg/ml) inhibited the growth of cervical cancer cells by the induction of apoptotic cell death. These inhibitory effects were associated with the inhibition of NF-κB activity. However, SVT dose dependently increased the expression of death receptors (DRs): DR3, DR5 and DR downstream pro-apoptotic proteins. Exploration of NF-κB inhibitor (Phenylarsine oxide, 0.1 μM) synergistically further increased SVT-induced DR3 and DR5 expressions accompanied with further inhibition of cancer cells growth. Moreover, deletion of DR3 and DR5 by small interfering RNA significantly abolished SVT-induced cell growth inhibitory effects, as well as NF-κB inactivation. Using TNF-related apoptosis-inducing ligand resistance cancer cells (A549 and MCF-7), we also found that SVT enhanced the susceptibility of chemoresistance of these cancer cells through down-regulation of NF-κB, but up-regulation of DR3 and DR5. In vivo study also showed that SVT (0.5 and 1 mg/kg) inhibited tumor growth accompanied with inactivation of NF-κB. Thus, our present study indicates that SVT could be applicable as an anticancer agent for cervical cancer, or as an adjuvant agent for chemoresistant cancer cells.  相似文献   

15.
Background: Targeted toxins require multiple treatments and therefore must be deimmunized. We report a method of protein deimmunization based on the point mutation of highly hydrophilic R, K, D, E, and Q amino acids on the molecular surface of truncated diphtheria-toxin (DT390). Methods: Based on their surface position derived from an X-ray-crystallographic model, residues were chosen for point mutation that were located in prominent positions on the molecular surface and away from the catalytic site. Mice were immunized with a targeted toxin containing either a mutated DT390 containing seven critical point mutations or the non-mutated parental toxin form. Results: Serum analysis revealed a significant 90% reduction in anti-toxin antibodies in mice immunized with the mutant, but not the parental drug form despite multiple immunizations. The experiment was repeated in a second strain of mice with a different MHC-haplotype to address whether point mutation removed T or B cell epitopes. Findings were identical indicating that B cell epitopes were eliminated from DT. The mutant drug form lost only minimal activity in vitro as well as in vivo. Conclusion: These findings indicate that this method may be effective for deimmunizing of other proteins and that discovery of a deimmunized form of DT may lead to the development of more effective targeted toxin.  相似文献   

16.
Introduction: Biological fluids of cancer patients contain increased levels of kinins. Activation of kinin B1 and B2 receptors expressed on cancer cells produce an increase in cell proliferation, migration of tumor cells and release of MMPs, which are cellular and molecular events of primary importance for tumor growth. The effects of kinins on tumor cells may be amplified by stimulation of kinin receptors expressed on other cells, within the tumor microenvironment, which may in turn increase tumor growth.

Areas covered: This review provides a comprehensive discourse on kinins and their receptors in human neoplasia. Concepts that view kinin receptors as targets for human cancer are explored, whilst the molecular basis by which the new dimerized kinin receptor antagonists produce arrest of cell proliferation and apoptosis of cancer cells is also examined. Finally, the role of kinin receptor antagonists as therapeutic tools against human neoplasia is analyzed.

Expert opinion: At the present time the available potent, dimerized kinin peptide antagonists, are either specific for B1 or B2 receptors, or are effective on both receptor types. The novel approach of using kinin receptor antagonists either alone or in combination therapy will play a definitive role in the treatment of cancer.  相似文献   

17.
Introduction: Betulinic acid (BA) is a triterpenoid that can be obtained from renewable resources. BA is cytotoxic to many human tumor cell lines mainly by apoptosis but cell death might also be triggered by nonapoptotic pathways. Many derivatives have been synthesized to improve the very weak solubility of parent BA and to increase its cytotoxicity as well as its selectivity toward tumor cells.

Areas covered: A brief introduction into cancer is given reflecting the different pathways this disease might be treated using chemotherapy using natural product analogs especially triterpenes. The different ways of action of BA in cancer cells are discussed. Finally, this review describes the main synthetic modifications that have been performed and discusses, in short, the structure–activity relationships of these analogs, investigated between 2008 and 2013 including some important publications from early 2014.

Expert opinion: A number of patents on BA analogs for the chemotherapy of cancer have been reported between 2008 and 2013. Most of these patents deal with modifications at positions C-3, C-20 and C-28. There are only a few compounds meeting the needs of a sufficient hydrosolubility, while retaining high cytotoxicity and selectivity toward tumor cells. Thus, one might expect that there will be some efforts in developing molecules of improved solubility and to find new and more efficient forms of administration (liposomes, transdermal application and nanoemulsions). An important sideline might be the treatment of the age-dependent degeneration of the macula, a possible caveat of which might be a certain degree of CNS toxicity associated with several derivatives of BA.  相似文献   

18.
19.
20.
Binary toxin (Bin toxin), BinA and BinB, produced by Lysinibacillus sphaericus has been used as a mosquito-control agent due to its high toxicity against the mosquito larvae. The crystal structures of Bin toxin and non-insecticidal but cytotoxic parasporin-2 toxin share some common structural features with those of the aerolysin-like toxin family, thus suggesting a common mechanism of pore formation of these toxins. Here we explored the possible cytotoxicity of Bin proteins (BinA, BinB and BinA + BinB) against Hs68 and HepG2 cell lines. The cytotoxicity of Bin proteins was evaluated using the trypan blue exclusion assay, MTT assay, morphological analysis and LDH efflux assay. The intracellular localization of Bin toxin in HepG2 cells was assessed by confocal laser scanning microscope. HepG2 cells treated with BinA and BinB (50 µg/mL) showed modified cell morphological features and reduced cell viability. Bin toxin showed no toxicity against Hs68 cells. The EC50 values against HepG2 at 24 h were 24 ng/mL for PS2 and 46.56 and 39.72 µg/mL for BinA and BinB, respectively. The induction of apoptosis in treated HepG2 cells was confirmed by upregulation of caspase levels. The results indicated that BinB mediates the translocation of BinA in HepG2 cells and subsequently associates with mitochondria. The study supports the possible development of Bin toxin as either an anticancer agent or a selective delivery vehicle of anticancer agents to target mitochondria of human cancer cells in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号