首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
The local lymph node assay (LLNA) assesses the sensitizing activity of chemicals by measurement of primary lymphocyte proliferation in lymph nodes draining the site of application. In this final inter-laboratory study the consistency of LLNA results between laboratories and with guinea pig maximization test (GPMT) data was examined under 'field' conditions. Nine chemicals were evaluated independently by each laboratory according to guidelines for test concentration and vehicle selection developed during previous validation studies to ensure assay optimization. Equivalent predictions of sensitization potential were obtained by all laboratories for eight chemicals. Five of seven chemicals identified as sensitizers in the GPMT were correctly identified in the LLNA--four by all laboratories and 1 (4-chloroaniline) by one laboratory only--although in this latter case, two other laboratories obtained clear dose responses, suggestive of sensitization. The LLNA identified correctly those chemicals predicted to be extreme or strong sensitizers in the GPMT. The remaining two chemicals were non-sensitizers in the guinea pig and failed to elicit positive proliferative responses in the LLNA. These data demonstrate that sensitivity and reliability of the LLNA is retained when chemicals are evaluated independently, and that it provides a reliable pre-screen for the identification of chemicals with significant sensitization potential.  相似文献   

2.
Allergic contact dermatitis (ACD) is a common skin disease with a significant social and economic impact. In contrast to irritation, skin sensitization is a response of the adaptive immune system, in which there is a delayed T-cell-mediated allergic response to chemically modified skin proteins. The chemicals that can covalently modify the skin proteins and trigger an allergic reaction are referred to as haptens or sensitizers. Attempts have been made in many countries to reduce the problems of ACD by the implementation of legislations related to skin-sensitizing chemicals, as well as by the early detection and risk assessment of substances with sensitizing properties. For many years, the simple identification of sensitizing chemicals was performed in guinea pig tests. A murine test, the local lymph node assay (LLNA), has been validated as a replacement for the guinea pig tests. Despite the recent introduction of in vitro methods for the identification of sensitizing chemicals, the LLNA results (when coupled with good exposure data) can be used as the starting point for a quantitative risk assessment. The quantitative risk assessment is aimed to identify the safe use thresholds for any potential skin sensitizer.  相似文献   

3.
Allergic contact dermatitis is a serious health problem. Over the last decade, the murine local lymph node assay (LLNA) has been developed to detect chemical allergens, and international validation studies have been conducted. We have tried to establish an alternative non-radioisotopic endpoint for the LLNA by using 5-bromo-2'-deoxyuridine (BrdU) incorporation in place of radioisotopes, such as [3H]thymidine, employed in the standard method. BrdU was given as a single administration at 5 mg/animal 2 days following three consecutive daily applications of a test chemical. BrdU incorporation into draining lymph node cells was measured using an enzyme immunosorbent assay technique. In this study, p-benzoquinone(PBQ), trimellitic anhydride (TMA), citral(CT) and dextran (DEX) were used as pilot chemicals. PBQ, TMA and CT, which are classified as moderate to strong sensitizers in the guinea pig maximization test and were positive in the original LLNA, were also found to elicit positive responses in the alternative LLNA using BrdU incorporation. In contrast, DEX tested negative in the modified assay consistent with previous guinea pig and LLNA data. Consequently, the modified LLNA endpoint using BrdU incorporation may represent a useful alternative to the standard assay in situations, where there is a need to avoid the use of radioisotopes.  相似文献   

4.
The advent of the local lymph node assay (LLNA), and efforts to develop in vitro alternatives for the identification of skin sensitizing chemicals has focused attention on the issue of false positive and false negative results. In essence, the question becomes ‘what is the gold standard?’ In this context, attention has focused primarily on the LLNA as this is now the preferred assay for skin sensitization testing. However, for many years prior to introduction of the LLNA, the guinea pig maximization test and the occluded patch test of Buehler were the methods of choice. In order to encourage a more informed dialogue about the relative performance, accuracy and applicability of the LLNA and guinea pig tests, we have here considered the extent to which guinea pig methods were themselves subject to false positives and negative results. We describe and discuss here well‐characterized examples of instances where both false negatives (including abietic acid and eugenol) or false positives (including vanillin and sulfanilic acid) have been recorded in guinea pig tests. These and other examples are discussed with particular reference to the fabrication of a gold standard dataset that is required for the validation of in vitro alternatives. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The validation status of the murine local lymph node assay (LLNA), a method for assessing the allergic contact dermatitis potential of chemicals, was evaluated by an independent peer review panel (Panel) convened by the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM). The LLNA measures lymphocyte proliferation using incorporation of radioactive thymidine or iododeoxyuridine into cells of the draining lymph nodes of mice topically exposed to a test article. The Panel concluded that the assay performed as well as currently accepted guinea pig methods [guinea pig maximization test (GPMT)/Buehler assay (BA)] for the hazard identification of strong to moderate chemical sensitizing agents, but that it might not correctly identify all weak sensitizers or metals (potential false negative response) or all strong irritants (potential false positive response). The Panel concluded also that the LLNA involves less pain and distress than conventional guinea pig methods. The Panel unanimously recommended the LLNA as a stand-alone alternative for contact sensitization hazard assessment, provided that certain protocol modifications were made. These included collection of individual, rather than pooled, animal response data; the inclusion of a concurrent positive control; and consideration of dose-response information and statistical analyses. A standardized LLNA protocol is provided.  相似文献   

6.
The validation status of the murine local lymph node assay (LLNA), a method for assessing the allergic contact dermatitis potential of chemicals, was evaluated by an independent peer review panel (Panel) convened by the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM). The LLNA measures lymphocyte proliferation using incorporation of radioactive thymidine or iododeoxyuridine into cells of the draining lymph nodes of mice topically exposed to a test article. The Panel concluded that the assay performed as well as currently accepted guinea pig methods [guinea pig maximization test (GPMT)/Buehler assay (BA)] for the hazard identification of strong to moderate chemical sensitizing agents, but that it might not correctly identify all weak sensitizers or metals (potential false negative response) or all strong irritants (potential false positive response). The Panel concluded also that the LLNA involves less pain and distress than conventional guinea pig methods. The Panel unanimously recommended the LLNA as a stand-alone alternative for contact sensitization hazard assessment, provided that certain protocol modifications were made. These included collection of individual, rather than pooled, animal response data; the inclusion of a concurrent positive control; and consideration of dose–response information and statistical analyses. A standardized LLNA protocol is provided.  相似文献   

7.
Effective risk assessment and management of allergic contact dermatitis require three key factors: adequate hazard identification, measurement of the relative potency of identified hazards and an understanding of the nature, extent and duration of exposure. Suitable methods for hazard identification, such as the murine local lymph node assay (LLNA) and the guinea-pig maximization test, are well established and conditions of human exposure normally can be well anticipated. Thus, the need is for a robust and quantitative method for the estimation of relative skin sensitizing potency. One possible approach is via the analysis of LLNA dose-response data. In the LLNA, contact allergens are defined currently as those chemicals that cause a threefold or greater increase in lymph node cell proliferative activity compared with concurrent vehicle-treated controls. It is possible to estimate the concentration of a sensitizer required to generate a threefold stimulation of proliferation in draining lymph nodes; such a concentration is known as the EC3 value. Using a variety of statistical approaches to derive EC3 values from LLNA dose-response data for 10 chemicals, it has been demonstrated that simple linear interpolation between the values either side of the threefold stimulation index provides a robust assessment of the EC3 value without the need for recourse to more sophisticated statistical techniques. Provided that the appropriate concentrations of test chemical have been selected, EC3 values obtained in this way are reproducible both within and between laboratories and form the basis for examination of the utility of this approach for the estimation of relative skin sensitizing potency.  相似文献   

8.
It is clear that contact allergens vary substantially with regard to the relative potency with which they are able to induce skin sensitisation. Considerations of potency will in the future become a significant factor in the classification of skin sensitising chemicals. It is therefore appropriate to establish what is known of potency and thresholds in the induction of skin sensitisation and the elicitation of allergic contact dermatitis, and to identify approaches that might be available for assessment of relative potency for the purposes of categorising chemical allergens. This paper was prepared by an ECETOC (European Centre for Ecotoxicology and Toxicology) Task Force that had the objective of recommending approaches for the measurement of potency and definition of thresholds for both the induction and elicitation of contact sensitisation. The deliberations recorded here build upon recommendations made previously by an ECETOC Task Force that considered the conduct of standard skin sensitisation test methods for the purposes of hazard identification and risk assessment (ECETOC, Monograph No. 29, Brussels, 2000). The emphasis in this present paper is also on standard and accepted methods for the assessment of skin sensitisation, and for which OECD guidelines are available: the local lymph node assay (LLNA), the guinea pig maximisation test and the occluded patch test of Buehler. For various reasons, discussed in detail herein, attention focused primarily upon consideration of categorisation of chemical allergens and the identification of thresholds with respect to the induction of skin sensitisation, rather than the elicitation of allergic contact dermatitis. It is concluded that although the LLNA is the method of choice for the determination of skin sensitisation potency for the purposes of categorisation, if data are already available from appropriate guinea pig tests then their judicious interpretation may provide information of value in determinations of potency and categorisation. Included here are detailed and specific recommendations for how best the results of the three test methods considered can be used for the categorisation of chemical allergens as a function of skin sensitisation potency.  相似文献   

9.
To evaluate the reliability of the murine local lymph node assay (LLNA), a test for allergic contact dermatitis activity, the inter- and intralaboratory consistency statistics (h and k, respectively) were calculated for validation studies testing multiple chemicals. The analysis indicated the absence of excessive variability in the dose calculated to induce a threefold or greater increase in the stimulation index (SI). To assess the appropriateness of using an SI of 3 as the decision criteria for identifying a sensitizing compound, LLNA results based on SI values of 2.0, 2.5, 3.0, 3.5, and 4.0 were compared with guinea pig or human results. The results supported the use of an SI of 3 as the decision criteria. Assay performance was determined by comparing LLNA results to results obtained for guinea pigs or humans. The accuracy of the LLNA was 89% when compared with results from the guinea pig maximization test (GPMT)/Buehler assay (BA). The performance of the LLNA and the GPMT/BA was similar when each was compared to human maximization test results plus substances included as human patch test allergens. The LLNA offered advantages over the GPMT in respect to both the time required to conduct the test and the assay cost.  相似文献   

10.
Various methodological aspects of skin sensitisation testing have been explored, particularly in the context of animal welfare considerations and reliability and sensitivity of test methods. Recommendations are made for the conduct of current and proposed OECD skin sensitisation tests with respect to appropriate test configurations for the purposes of hazard identification and labelling, and the requirement for positive controls. Specifically, the following aspects of guinea pig sensitisation test methods have been addressed: (1) the number of test and control animals required; (2) the option of using joint positive controls between independent laboratories; (3) the choice of positive control chemicals; (4) the optimal conduct and interpretation of rechallenge; and (5) the requirement for pretreatment with sodium lauryl sulfate. In addition, the use of the murine local lymph node assay (LLNA) has been considered. A number of conclusions have been drawn and recommendations made as follows: In many instances, particularly with the conduct of the guinea pig maximisation test, it is acceptable to halve the number of test and control animals used. An optional scheme for the conduct of joint positive control studies within a co-ordinated group of laboratories is appropriate. Only one positive control chemical (alpha-hexyl cinnamic aldehyde) is necessary for the routine assessment of assay sensitivity. The proper conduct and interpretation of rechallenge can provide valuable information and confirmation of results in guinea pig sensitisation tests. Sodium lauryl sulfate should no longer be used as a pretreatment in the guinea pig maximisation test. The LLNA is a viable and complete alternative to traditional guinea pig test methods for the purposes of skin sensitisation hazard identification. These recommendations provide the opportunity for both animal welfare benefits and improved hazard identification.  相似文献   

11.
To evaluate the reliability of the murine local lymph node assay (LLNA), a test for allergic contact dermatitis activity, the inter- and intralaboratory consistency statistics (h and k, respectively) were calculated for validation studies testing multiple chemicals. The analysis indicated the absence of excessive variability in the dose calculated to induce a threefold or greater increase in the stimulation index (SI). To assess the appropriateness of using an SI of 3 as the decision criteria for identifying a sensitizing compound, LLNA results based on SI values of 2.0, 2.5, 3.0, 3.5, and 4.0 were compared with guinea pig or human results. The results supported the use of an SI of 3 as the decision criteria. Assay performance was determined by comparing LLNA results to results obtained for guinea pigs or humans. The accuracy of the LLNA was 89% when compared with results from the guinea pig maximization test (GPMT)/Buehler assay (BA). The performance of the LLNA and the GPMT/BA was similar when each was compared to human maximization test results plus substances included as human patch test allergens. The LLNA offered advantages over the GPMT in respect to both the time required to conduct the test and the assay cost.  相似文献   

12.
The local lymph node assay is a novel predictive test for the identification of contact allergens. The collaborative study reported here was performed to evaluate the reliability of the method when performed in independent laboratories. Eight chemicals were examined in each of 4 participating laboratories and results compared with predictions of skin-sensitizing activity made from concurrent Magnusson and Kligman guinea-pig maximization tests performed in a single laboratory. The local lymph node assay has as its theoretical basis the fact that contact allergens induce T-lymphocyte proliferative responses. In practice, predictions of contact-sensitizing potential are made following measurement of proliferation in lymph nodes draining the site of exposure to chemical, and derivation of a stimulation index using control values as the comparator. Although in the present study there was some variation between laboratories with respect to the absolute stimulation indices recorded, it was found that with all chemicals each laboratory made the same predictions of sensitizing activity. Six chemicals (2,4-dinitrochlorobenzene, formalin, eugenol, isoeugenol, p-phenylenediamine and potassium dichromate) yielded positive responses, and two (methyl salicylate and benzocaine) were negative, in each laboratory. Furthermore, with 7 of the 8 chemicals tested there was no significant difference between laboratories in terms of the characteristics of the dose-response relationships recorded. With the exception of one chemical (benzocaine), predictions made with the local lymph node assay were in accord with those derived from guinea-pig maximization tests. These inter-laboratory comparisons demonstrate that the local lymph node assay is a robust and reliable method for the identification of at least moderate and strong contact allergens.  相似文献   

13.
The local lymph node assay (LLNA) is being used increasingly in the identification of skin sensitizing chemicals for regulatory purposes. In the context of new chemicals legislation (REACH) in Europe, it is the preferred assay. The rationale for this is that the LLNA quantitative and objective approach to skin sensitization testing allied with the important animal welfare benefits that the method offers. However, as with certain guinea pig sensitization tests before it, this increasing use also brings experience with an increasingly wide range of industrial and other chemicals where the outcome of the assay does not always necessarily meet with the expectations of those conducting it. Sometimes, the result appears to be a false negative, but rather more commonly, the complaint is that the chemical represents a false positive. Against this background we have here reviewed a number of instances where false positive and false negative results have been described and have sought to reconcile science with expectation. Based on these analyses, it is our conclusion that false positives and false negatives do occur in the LLNA, as they do with any other skin sensitization assay (and indeed with all tests used for hazard identification), and that this occurs for a number of reasons. We further conclude, however, that false positive results in the LLNA, as with the guinea pig maximization test, arise most commonly via failure to distinguish what is scientifically correct from that which is unpalatable. The consequences of this confusion are discussed in the article, particularly in relation to the need to integrate both potency measurement and risk assessments into classification and labelling schemes that aim to manage potential risks to human health.  相似文献   

14.
The murine local lymph node assay (LLNA) is a method for the predictive identification of chemicals that have a potential to cause skin sensitization. Activity is measured as a function of lymph node cell (LNC) proliferative responses stimulated by topical application of test chemicals. Those chemicals that induce a threefold or greater increase in LNC proliferation compared with concurrent vehicle controls are classified as skin sensitizers. In the present investigations we have evaluated further the reliability and accuracy of the LLNA. In the context of an international interlaboratory trial the sensitization potentials of six materials with a history of use in topical medicaments have been evaluated: benzoyl peroxide, hydroquinone, penicillin G, streptomycin sulfate, ethylenediamine dihydrochloride, and methyl salicylate. Each chemical was analyzed in the LLNA by all five laboratories. Either the standard LLNA protocol or minor modifications of it were used. Benzoyl peroxide and hydroquinone, both human contact allergens, elicited strong LLNA responses in each laboratory. Penicillin G, another material shown previously to cause allergic contact dermatitis in humans, was also positive in all laboratories. Streptomycin sulfate induced equivocal responses, in that this material provoked a positive LLNA response in only one of the five laboratories, and then only at the highest concentration tested. Ethylenediamine dihydrochloride dissolved in a 3:1 mixture of acetone with water, or in 4:1 acetone:olive oil (one laboratory), was uniformly negative. However, limited further testing with the free base of ethylene diamine yielded a positive LLNA response when applied in acetone:olive oil (AOO). Finally, methyl salicylate, a nonsensitizing skin irritant, was negative at all test concentrations in each laboratory. Collectively these data serve to confirm that the local lymph node assay is sufficiently robust to yield equivalent results when performed independently in separate laboratories and indicate also that the LLNA is of value in assessing the skin sensitization potential of topical medicaments.  相似文献   

15.
A murine local lymph node assay has been developed for the identification of contact sensitizing chemicals. In the present study, the performance of the local lymph node assay has been evaluated with twenty-four coded chemicals of previously unknown skin sensitizing potential and the results compared with predictions made from concurrent occluded patch tests (Buehler tests) in guinea pigs. The data presented demonstrate that the local lymph node assay successfully identified those chemicals that were classified as moderate or strong skin sensitizers in the Buehler test. In the present series of experiments, chemicals predicted to be mild sensitizers in the Buehler test were classified as 'not strong sensitizers' in the local lymph node assay. In the majority of instances, the Buehler test and local lymph node assay were in agreement with regard to the identification of non-sensitizing chemicals. However, two chemicals that were classified as non-sensitizers in the guinea pig test exhibited positive responses in the local lymph node assay and were predicted to be sensitizers. Some coloured chemicals resulted in obscured Buehler readings and, here, assessment was based upon histological examination of the challenge site. These compounds were examined also in the local lymph node assay and similar predictions of sensitizing potential were made. Taken together, the data reveal close, but not absolute, concordance between the local lymph node assay and the Buehler test. The relative merits of these predictive test methods are discussed.  相似文献   

16.
17.
McGarry HF 《Toxicology》2007,238(2-3):71-89
From June 2007, new chemicals legislation on the registration, evaluation, authorization and restriction of chemicals (REACH) will come into force across the European Union. This will require the submission of data on human health effects of chemicals, including chemical safety assessments which will require measurements of potency. For skin sensitization hazard identification, REACH states that the first-choice in vivo assay is the local lymph node assay (LLNA). This test has also been the UK competent authority's preferred test for skin sensitization since 2002, and has now replaced guinea pig tests in dossiers submitted to it under the Notification of New Substances Regulations. Advantages of the LLNA over guinea pig tests include improvements in animal welfare, a more scientific approach to hazard identification, and the inclusion of a dose-response element in the endpoint, which enables an estimation of potency. However, notifiers to the UK competent authority have sometimes been reluctant to use the assay because of concerns over false-positive reactions. Across Europe, these concerns have been heightened in the lead-up to the introduction of REACH, since the use of in vivo alternatives to the LLNA will require scientific justification. This review will address some of these concerns from a regulatory perspective.  相似文献   

18.
The purpose of this article is to review, and make recommendations for, the use of relevant skin sensitization test methods, for the purposes of determination of relative potency and the threshold dose necessary for the induction of skin sensitization, and for risk assessment. In addressing the first area, the utility of three guinea pig tests (the guinea pig maximization test, the occluded patch test, and the open epicutaneous test) of the local lymph node assay (LLNA) and of human volunteer testing for the assessment of relative potency and identification of thresholds for sensitization were considered. The following conclusions were drawn. (1) Although attempts have been made to modify the guinea pig maximization test for the purposes of deriving dose-response relationships, this method is usually unsuitable for determination of relative sensitizing potency. (2) Guinea pig methods that do not require the use of adjuvant and which employ a relevant route of exposure (the occluded patch test and the open epicutaneous test) are more appropriate for the assessment of relative skin-sensitizing potency. (3) The LLNA is suitable for the determination of relative skin sensitizing potency, and the adaptation of this method for derivation of comparative criteria such as EC3 values (the estimated concentration of test chemical required to induce a stimulation index of 3 in the LLNA) provides an effective and quantitative basis for such measurements. (4) For all the methods identified above, potency is assessed relative to other chemical allergens of known skin sensitizing potential. The estimation of likely threshold concentrations is dependent upon the availability of suitable benchmark chemicals of known potency for human sensitization. (5) Human testing (and specifically, the Human Repeat Insult Patch Test) can provide information of value in confirming the absence of skin sensitizing activity of formulations and products under specific conditions of use and exposure. Based on the above, the following recommendations are made. (1) If results are already available from suitable guinea pig tests, then judicious interpretation of the data may provide information of value in assessing relative skin sensitizing potency. This option should be explored before other analyses are conducted. (2) The LLNA is the recommended method for new assessments of relative potency, and/or for the investigation of the influence of vehicle or formulation on skin sensitizing potency. (3) Whenever available, human skin sensitization data should be incorporated into an assessment of relative potency. With respect to risk assessment, the conclusion drawn is that all the available data on skin-sensitizing activity in animals and man should be integrated into the risk-assessment process. Appropriate interpretation of existing data from suitable guinea pig studies can provide valuable information with respect to potency, as the first step in the development of a risk assessment. However, for de novo investigations, the LLNA is the method favored for providing quantitative estimations of skin-sensitizing potency that are best suited to the risk assessment process. Finally, human testing is of value in the risk assessment process, but is performed only for the purposes of confirming product safety.  相似文献   

19.
The murine local lymph node assay (LLNA) is currently recognized as a stand-alone sensitization test for determining the sensitizing potential of chemicals, and it has the advantage of yielding a quantitative endpoint that can be used to predict the sensitization potency of chemicals. The EC3 has been proposed as a parameter for classifying chemicals according to the sensitization potency. We previously developed a non-radioisotopic endpoint for the LLNA based on 5-bromo-2'-deoxyuridine (BrdU) incorporation (non-RI LLNA), and we are proposing a new procedure to predict the sensitization potency of chemicals based on comparisons with known human contact allergens. Nine chemicals (i.e. diphencyclopropenone, p-phenylenediamine, glutaraldehyde, cinnamicaldehyde, citral, eugenol, isopropyl myristate, propyleneglycol and hexane) categorized as human contact allergen classes 1-5 were tested by the non-RI LLNA with the following reference allergens: 2,4-dinitrochlorobenzene (DNCB) as a class 1 human contact allergen, isoeugenol as a class 2 human contact allergen and alpha-hexylcinnamic aldehyde (HCA) as a class 3 human contact allergen. Consequently, nine test chemicals were almost assigned to their correct allergen class. The results suggested that the new procedure for non-RI LLNA can provide correct sensitization potency data. Sensitization potency data are useful for evaluating the sensitization risk to humans of exposure to new chemical products. Accordingly, this approach would be an effective modification of LLNA with regard to its experimental design. Moreover, this procedure can be applied also to the standard LLNA with radioisotopes and to other modifications of the LLNA.  相似文献   

20.
T Maurer  I Kimber 《Toxicology》1991,69(2):209-218
The local lymph node assay in the mouse is a novel predictive test for the identification of contact sensitizing chemicals. The purpose of the studies described was to determine whether a similar local lymph node assay could be performed successfully in guinea pigs; currently the species of choice for assessment of sensitizing potential for regulatory purposes. Ten sensitizing chemicals (oxazolone, picryl chloride, 2,4-dinitrofluorobenzene, benzocaine, cinnamic aldehyde, 2,4,-dinitrothiocyanobenzene, p-nitrosodimethylaniline, formaldehyde, p-phenylenediamine and cyanuric chloride) and equal concentrations of sodium lauryl sulphate were examined in a guinea pig local lymph node assay. Animals received three consecutive daily applications of various concentrations of the test chemical on the dorsum of both ears. Control animals were untreated. Five days following the initiation of exposure, draining auricular lymph nodes were excised and weighed. Suspensions of lymph node cells (LNC) were prepared and cultured for 24 or 48 h and proliferation measured by incorporation of [3H]thymidine. Exposure to at least one concentration of all sensitizing chemicals, other than benzocaine, induced proliferation by draining LNC. Responses were higher at 24 h rather than 48 h. Evidence is presented that guinea pig LNC proliferation may be enhanced or maintained by addition to culture of an exogenous source of the T cell growth factor interleukin 2 (IL-2). Draining lymph node weight was increased following exposure to some sensitizing chemicals but, compared with LNC proliferation, provided a less sensitive correlate of lymph node activation. Exposure to sodium lauryl sulphate failed to induce changes in either lymph node weight of LNC proliferation. Data are compared with three-day murine local lymph node assays performed concurrently. The available information indicates that the local lymph node assay may be performed in guinea pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号