首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Slice-by-slice B(1) (+) shimming at 7 T   总被引:1,自引:0,他引:1  
Parallel transmission has been used to reduce the inevitable inhomogeneous radiofrequency fields produced in human high‐field MRI greater than 3 T. Further improvements in the transmit homogeneity and efficiency are possible by leveraging the additional degree of freedom permitted by multislice acquisitions. Compared to simple scaling of the flip angle to compensate for B1+ falloff along the radiofrequency coil, calculation of B1+ shim solutions on a slice‐by‐slice basis can markedly improve homogeneity and/or reduce transmitted power and global SAR. Performance measures were acquired at 7 T with a 15‐channel head‐only transceive array featuring elements distributed over all three logical axes, facilitating B1+ shimming over arbitrary orientations. Compared to a circularly polarized volume mode of the same coil, shimming to maximize excitation efficiency on a slice‐by‐slice basis yielded improvements in mean B1+ by 12.8 ± 2.4% and a reduction in standard deviation of B1+ of 16.3 ± 6.8%, while reducing relative SAR by 6.2 ± 3.1%. When shimming for greater uniformity, the mean and standard deviation of B1+ were further improved by 15.9 ± 2.6% and 26.2 ± 10.4%, respectively, at the expense of a 135 ± 8% increase in global SAR. Robust multislice‐shim solutions are demonstrated that can be quickly calculated, applied in real time, and reliably improve on volume coil modes. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
3.
The electric properties of biological tissue provide important diagnostic information within radio and microwave frequencies, and also play an important role in specific absorption rate calculation which is a major safety concern at ultrahigh field. The recently proposed electrical properties tomography (EPT) technique aims to reconstruct electric properties in biological tissues based on B1 measurement. However, for individual coil element in multichannel transceiver coil which is increasingly utilized at ultrahigh field, current B1‐mapping techniques could not provide adequate information (magnitude and absolute phase) of complex transmit and receive B1 which are essential for electrical properties tomography, electric field, and quantitative specific absorption rate assessment. In this study, using a 16‐channel transceiver coil at 7T, based on hybrid B1‐mapping techniques within the human brain, a complex B1‐mapping method has been developed, and in vivo electric properties imaging of the human brain has been demonstrated by applying a logarithm‐based inverse algorithm. Computer simulation studies as well as phantom and human experiments have been conducted at 7T. The average bias and standard deviation for reconstructed conductivity in vivo were 28% and 67%, and 10% and 43% for relative permittivity, respectively. The present results suggest the feasibility and reliability of proposed complex B1‐mapping technique and electric properties reconstruction method. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
High-quality prostate images were obtained with transceiver arrays at 7T after performing subject-dependent local transmit B(1) (B(1) (+)) shimming to minimize B(1) (+) losses resulting from destructive interferences. B(1) (+) shimming was performed by altering the input phase of individual RF channels based on relative B(1) (+) phase maps rapidly obtained in vivo for each channel of an eight-element stripline coil. The relative transmit phases needed to maximize B(1) (+) coherence within a limited region around the prostate greatly differed from those dictated by coil geometry and were highly subject-dependent. A set of transmit phases determined by B(1) (+) shimming provided a gain in transmit efficiency of 4.2 +/- 2.7 in the prostate when compared to the standard transmit phases determined by coil geometry. This increased efficiency resulted in large reductions in required RF power for a given flip angle in the prostate which, when accounted for in modeling studies, resulted in significant reductions of local specific absorption rates. Additionally, B(1) (+) shimming decreased B(1) (+) nonuniformity within the prostate from (24 +/- 9%) to (5 +/- 4%). This study demonstrates the tremendous impact of fast local B(1) (+) phase shimming on ultrahigh magnetic field body imaging.  相似文献   

5.
6.
7.
8.
9.
RF behavior in the human head becomes complex at ultrahigh magnetic fields. A bright center and a weak periphery are observed in images obtained with volume coils, while surface coils provide strong signal in the periphery. Intensity patterns reported with volume coils are often loosely referred to as "dielectric resonances," while modeling studies ascribe them to superposition of traveling waves greatly dampened in lossy brain tissues, raising questions regarding the usage of this term. Here we address this question experimentally, taking full advantage of a transceiver coil array that was used in volume transmit mode, multiple receiver mode, or single transmit surface coil mode. We demonstrate with an appropriately conductive sphere phantom that destructive interferences are responsible for a weak B(1) in the periphery, without a significant standing wave pattern. The relative spatial phase of receive and transmit B(1) proved remarkably similar for the different coil elements, although with opposite rotational direction. Additional simulation data closely matched our phantom results. In the human brain the phase patterns were more complex but still exhibited similarities between coil elements. Our results suggest that measuring spatial B(1) phase could help, within an MR session, to perform RF shimming in order to obtain more homogeneous B(1) in user-defined areas of the brain.  相似文献   

10.
11.
12.
13.
When volume coils are used for 1H imaging of the human head at 7T, wavelength effects in tissue cause a variation in intensity, that is typically brighter at the center of the head and darker in the periphery. Much of this image nonuniformity can be attributed to variation in the effective transmit B1 field, which falls by ~ 50% to the left and right of center at mid‐elevation in the brain. Because most of this B1 loss occurs in the periphery of the brain, we have explored use of actively controlled, off‐resonant loop elements to locally enhance the transmit B1 field in these regions. When tuned to frequencies above the NMR frequency, these elements provide strong local enhancement of the B1 field of the transmit coil. Because they are tuned off‐resonance, some volume coil detuning results, but resistive loading of the coil mode remains dominated by the sample. By digitally controlling their frequency offsets, the field enhancement of each inner element can be placed under active control. Using an array of eight digitally controlled elements placed around a custom‐built head phantom, we demonstrate the feasibility of improving the B1 homogeneity of a transmit/receive volume coil without the need for multiple radio frequency transmit channels. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

14.
The purpose of this study was to detail a strategy for performing non‐contrast enhanced renal magnetic resonance angiography studies at 7.0 T. It is demonstrated that with proper B management, these studies can be successfully performed at ultrahigh field within local specific absorption rate constraints. An inversion prepared gradient echo acquisition, standard for non‐contrast renal magnetic resonance angiography studies, required radiofrequency pulse specific B shimming solutions to be dynamically applied to address the field dependent increases in both B0 and B inhomogeneity as well as to accommodate limitation in available power. By using more efficient B shimming solutions for the inversion preparation and more homogeneous solutions for the excitation, high quality images of the renal arteries were obtained without venous and background signal artifacts while working within hardware and safety constraints. Finite difference time domain simulations confirmed in vivo measurements with respect to B distributions and homogeneity for the range of shimming strategies used and allowed the calculation of peak local specific absorption rate values normalized by input power and B. Increasing B homogeneity was accompanied by decreasing local specific absorption rate per Watt and increasing maximum local specific absorption rate per [B]2, which must be considered, along with body size and respiratory rate, when finalizing acquisition parameters for a given individual. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
16.
Proton MR spectroscopic imaging of the human brain at ultra-high field (≥7 T) is challenging due to increased radio frequency power deposition, increased magnetic field B(0) inhomogeneity, and increased radio frequency magnetic field inhomogeneity. In addition, especially for multislice sequences, these effects directly inhibit the potential gains of higher magnetic field and can even cause a reduction in data quality. However, recent developments in dynamic B(0) magnetic field shimming and dynamic multitransmit radio frequency control allow for new acquisition strategies. Therefore, in this work, slice-by-slice B(0) and B(1) shimming was developed to optimize both B(0) magnetic field homogeneity and nutation angle over a large portion of the brain. Together with a low-power water and lipid suppression sequence and pulse-acquire spectroscopic imaging, a multislice MR spectroscopic imaging sequence is shown to be feasible at 7 T. This now allows for multislice metabolic imaging of the human brain with high sensitivity and high chemical shift resolution at ultra-high field.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号