首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three‐point Dixon methods have been investigated as a means to generate water and fat images without the effects of field inhomogeneities. Recently, an iterative algorithm (IDEAL, iterative decomposition of water and fat with echo asymmetry and least squares estimation) was combined with a gradient and spin‐echo acquisition strategy (IDEAL‐GRASE) to provide a time‐efficient method for lipid–water imaging with correction for the effects of field inhomogeneities. The method presented in this work combines IDEAL‐GRASE with radial data acquisition. Radial data sampling offers robustness to motion over Cartesian trajectories as well as the possibility of generating high‐resolution T2 maps in addition to the water and fat images. The radial IDEAL‐GRASE technique is demonstrated in phantoms and in vivo for various applications including abdominal, pelvic, and cardiac imaging. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.

Purpose:

To develop a robust 3D fast spin echo (FSE) T2‐weighted imaging method with uniform water and fat separation in a single acquisition, amenable to high‐quality multiplanar reformations.

Materials and Methods:

The Iterative Decomposition of water and fat with Echo Asymmetry and Least squares estimation (IDEAL) method was integrated with modulated refocusing flip angle 3D‐FSE. Echoes required for IDEAL processing were acquired by shifting the readout gradient with respect to the Carr‐Purcell‐Meiboom‐Gill echo. To reduce the scan time, an alternative data acquisition using two gradient echoes per repetition was implemented. Using the latter approach, a total of four gradient echoes were acquired in two repetitions and used in the modified IDEAL reconstruction.

Results:

3D‐FSE T2‐weighted images with uniform water–fat separation were successfully acquired in various anatomies including breast, abdomen, knee, and ankle in clinically feasible scan times, ranging from 5:30–8:30 minutes. Using water‐only and fat‐only images, in‐phase and out‐of‐phase images were reconstructed.

Conclusion:

3D‐FSE‐IDEAL provides volumetric T2‐weighted images with uniform water and fat separation in a single acquisition. High‐resolution images with multiple contrasts can be reformatted to any orientation from a single acquisition. This could potentially replace 2D‐FSE acquisitions with and without fat suppression and in multiple planes, thus improving overall imaging efficiency. J. Magn. Reson. Imaging 2010;32:745–751. © 2010 Wiley‐Liss, Inc.  相似文献   

3.

Purpose

To combine gradient‐echo (GRE) imaging with a multipoint water–fat separation method known as “iterative decomposition of water and fat with echo asymmetry and least squares estimation” (IDEAL) for uniform water–fat separation. Robust fat suppression is necessary for many GRE imaging applications; unfortunately, uniform fat suppression is challenging in the presence of B0 inhomogeneities. These challenges are addressed with the IDEAL technique.

Materials and Methods

Echo shifts for three‐point IDEAL were chosen to optimize noise performance of the water–fat estimation, which is dependent on the relative proportion of water and fat within a voxel. Phantom experiments were performed to validate theoretical SNR predictions. Theoretical echo combinations that maximize noise performance are discussed, and examples of clinical applications at 1.5T and 3.0T are shown.

Results

The measured SNR performance validated theoretical predictions and demonstrated improved image quality compared to unoptimized echo combinations. Clinical examples of the liver, breast, heart, knee, and ankle are shown, including the combination of IDEAL with parallel imaging. Excellent water–fat separation was achieved in all cases. The utility of recombining water and fat images into “in‐phase,” “out‐of‐phase,” and “fat signal fraction” images is also discussed.

Conclusion

IDEAL‐SPGR provides robust water–fat separation with optimized SNR performance at both 1.5T and 3.0T with multicoil acquisitions and parallel imaging in multiple regions of the body. J. Magn. Reson. Imaging 2007;25:644–652. © 2007 Wiley‐Liss, Inc.  相似文献   

4.
Chemical shift encoded techniques have received considerable attention recently because they can reliably separate water and fat in the presence of off‐resonance. The insensitivity to off‐resonance requires that data be acquired at multiple echo times, which increases the scan time as compared to a single echo acquisition. The increased scan time often requires that a compromise be made between the spatial resolution, the volume coverage, and the tolerance to artifacts from subject motion. This work describes a combined parallel imaging and compressed sensing approach for accelerated water–fat separation. In addition, the use of multiscale cubic B‐splines for B0 field map estimation is introduced. The water and fat images and the B0 field map are estimated via an alternating minimization. Coil sensitivity information is derived from a calculated k‐space convolution kernel and l1‐regularization is imposed on the coil‐combined water and fat image estimates. Uniform water–fat separation is demonstrated from retrospectively undersampled data in the liver, brachial plexus, ankle, and knee as well as from a prospectively undersampled acquisition of the knee at 8.6x acceleration. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.

Purpose:

To compare six new three‐dimensional (3D) magnetic resonance (MR) methods for evaluating knee cartilage at 3.0T.

Materials and Methods:

We compared: fast‐spin‐echo cube (FSE‐Cube), vastly undersampled isotropic projection reconstruction balanced steady‐state free precession (VIPR‐bSSFP), iterative decomposition of water and fat with echo asymmetry and least‐squares estimation combined with spoiled gradient echo (IDEAL‐SPGR) and gradient echo (IDEAL‐GRASS), multiecho in steady‐state acquisition (MENSA), and coherent oscillatory state acquisition for manipulation of image contrast (COSMIC). Five‐minute sequences were performed twice on 10 healthy volunteers and once on five osteoarthritis (OA) patients. Signal‐to‐noise ratio (SNR) and contrast‐to‐noise ratio (CNR) were measured from the volunteers. Images of the five volunteers and the five OA patients were ranked on tissue contrast, articular surface clarity, reformat quality, and lesion conspicuity. FSE‐Cube and VIPR‐bSSFP were compared to IDEAL‐SPGR for cartilage volume measurements.

Results:

FSE‐Cube had top rankings for lesion conspicuity, overall SNR, and CNR (P < 0.02). VIPR‐bSSFP had top rankings in tissue contrast and articular surface clarity. VIPR and FSE‐Cube tied for best in reformatting ability. FSE‐Cube and VIPR‐bSSFP compared favorably to IDEAL‐SPGR in accuracy and precision of cartilage volume measurements.

Conclusion:

FSE‐Cube and VIPR‐bSSFP produce high image quality with accurate volume measurement of knee cartilage. J. Magn. Reson. Imaging 2010;32:173–183. © 2010 Wiley‐Liss, Inc.  相似文献   

6.

Purpose:

To propose a new noncontrast‐enhanced flow‐independent angiography sequence based on balanced steady‐state free precession (bSSFP) that produces reliable vessel contrast despite the reduced blood flow in the extremities.

Materials and Methods:

The proposed technique addresses a variety of factors that can compromise the exam success including insufficient background suppression, field inhomogeneity, and large volumetric coverage requirements. A bSSFP sequence yields reduced signal from venous blood when long repetition times are used. Complex‐sum bSSFP acquisitions decrease the sensitivity to field inhomogeneity but retain phase information, so that data can be processed with the Iterative Decomposition of Water and Fat with Echo Asymmetry and Least‐Squares Estimation (IDEAL) method for robust fat suppression. Meanwhile, frequent magnetization preparation coupled with parallel imaging reduces the muscle and long‐T1 fluid signals without compromising scan efficiency.

Results:

In vivo flow‐independent peripheral angiograms with reliable background suppression and high spatial resolution are produced. Comparisons with phase‐sensitive bSSFP angiograms (that yield out‐of‐phase fat and water signals, and exploit this phase difference to suppress fat) demonstrate enhanced vessel depiction with the proposed technique due to reduced partial‐volume effects and improved venous suppression.

Conclusion:

Magnetization‐prepared complex‐sum bSSFP with IDEAL fat/water separation can create reliable flow‐independent angiographic contrast in the lower extremities. J. Magn. Reson. Imaging 2011;33:931–939. © 2011 Wiley‐Liss, Inc.  相似文献   

7.

Purpose

To evaluate and quantify improvements in the quality of fat suppression for fast spin‐echo imaging of the knee using multipeak fat spectral modeling and IDEAL fat‐water separation.

Materials and Methods

T1‐weighted and T2‐weighted fast spin‐echo sequences with IDEAL fat‐water separation and two frequency‐selective fat‐saturation methods (fat‐selective saturation and fat‐selective partial inversion) were performed on 10 knees of five asymptomatic volunteers. The IDEAL images were reconstructed using a conventional single‐peak method and precalibrated and self‐calibrated multipeak methods that more accurately model the NMR spectrum of fat. The signal‐to‐noise ratio (SNR) was measured in various tissues for all sequences. Student t‐tests were used to compare SNR values.

Results

Precalibrated and self‐calibrated multipeak IDEAL had significantly greater suppression of signal (P < 0.05) within subcutaneous fat and bone marrow than fat‐selective saturation, fat‐selective partial inversion, and single‐peak IDEAL for both T1‐weighted and T2‐weighted fast spin‐echo sequences. For T1‐weighted fast spin‐echo sequences, the improvement in the suppression of signal within subcutaneous fat and bone marrow for multipeak IDEAL ranged between 65% when compared to fat‐selective partial inversion to 86% when compared to fat‐selectivesaturation. For T2‐weighted fast spin‐echo sequences, the improvement for multipeak IDEAL ranged between 21% when compared to fat‐selective partial inversion to 81% when compared to fat‐selective saturation.

Conclusion

Multipeak IDEAL fat‐water separation provides improved fat suppression for T1‐weighted and T2‐weighted fast spin‐echo imaging of the knee when compared to single‐peak IDEAL and two widely used frequency‐selected fat‐saturation methods. J. Magn. Reson. Imaging 2009;29:436–442. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Chemical shift based methods are often used to achieve uniform water–fat separation that is insensitive to Bo inhomogeneities. Many spin‐echo (SE) or fast SE (FSE) approaches acquire three echoes shifted symmetrically about the SE, creating time‐dependent phase shifts caused by water–fat chemical shift. This work demonstrates that symmetrically acquired echoes cause artifacts that degrade image quality. According to theory, the noise performance of any water–fat separation method is dependent on the proportion of water and fat within a voxel, and the position of echoes relative to the SE. To address this problem, we propose a method termed “iterative decomposition of water and fat with echo asymmetric and least‐squares estimation” (IDEAL). This technique combines asymmetrically acquired echoes with an iterative least‐squares decomposition algorithm to maximize noise performance. Theoretical calculations predict that the optimal echo combination occurs when the relative phase of the echoes is separated by 2π/3, with the middle echo centered at π/2+πk (k = any integer), i.e., (–π/6+πk, π/2+πk, 7π/6+πk). Only with these echo combinations can noise performance reach the maximum possible and be independent of the proportion of water and fat. Close agreement between theoretical and experimental results obtained from an oil–water phantom was observed, demonstrating that the iterative least‐squares decomposition method is an efficient estimator. Magn Reson Med, 2005. © 2005 Wiley‐Liss, Inc.  相似文献   

9.
Institutional review board approval and informed consent were obtained for this HIPAA-compliant study. In this study, iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) balanced steady-state free precession (bSSFP), fat-suppressed bSSFP, and fat-suppressed spoiled gradient-echo (GRE) sequences for 3.0-T magnetic resonance (MR) imaging of articular knee cartilage were prospectively compared in five healthy volunteers. Cartilage and fluid signal-to-noise ratio (SNR), cartilage-fluid contrast-to-noise ratio (CNR), SNR efficiency, CNR efficiency, image quality, and fat suppression were compared. Fat-suppressed bSSFP and IDEAL bSSFP had higher SNR efficiency of cartilage (P < .01) than did GRE. IDEAL bSSFP had higher cartilage-fluid CNR efficiency than did fat-suppressed bSSFP or GRE (P < .01). Fat-suppressed bSSFP and IDEAL bSSFP had higher image quality than did GRE (P < .01). GRE and IDEAL bSSFP had significantly better fat-water separation or fat saturation than did fat-suppressed bSSFP (P < .05). IDEAL bSSFP is a promising method for imaging articular knee cartilage.  相似文献   

10.

Purpose

To assess a 3D radial balanced steady‐state free precession (SSFP) technique that provides submillimeter isotropic resolution and inherently registered fat and water image volumes in comparison to conventional T2‐weighted RARE imaging for lesion characterization in breast magnetic resonance imaging (MRI).

Materials and Methods

3D projection SSFP (3DPR‐SSFP) combines a dual half‐echo radial k‐space trajectory with a linear combination fat/water separation technique (linear combination SSFP). A pilot study was performed in 20 patients to assess fat suppression and depiction of lesion morphology using 3DPR‐SSFP. For all patients fat suppression was measured for the 3DPR‐SSFP image volumes and depiction of lesion morphology was compared against corresponding T2‐weighted fast spin echo (FSE) datasets for 15 lesions in 11 patients.

Results

The isotropic 0.63 mm resolution of the 3DPR‐SSFP sequence demonstrated improved depiction of lesion morphology in comparison to FSE. The 3DPR‐SSFP fat and water datasets were available in a 5‐minute scan time while average fat suppression with 3DPR‐SSFP was 71% across all 20 patients.

Conclusion

3DPR‐SSFP has the potential to improve the lesion characterization information available in breast MRI, particularly in comparison to conventional FSE. A larger study is warranted to quantify the effect of 3DPR‐SSFP on specificity. J. Magn. Reson. Imaging 2009;30:135–144. © 2009 Wiley‐Liss, Inc.  相似文献   

11.

Purpose:

To demonstrate the feasibility of combining a chemical shift‐based water‐fat separation method (IDEAL) with a 2D ultrashort echo time (UTE) sequence for imaging and quantification of the short T2 tissues with robust fat suppression.

Materials and Methods:

A 2D multislice UTE data acquisition scheme was combined with IDEAL processing, including T2* estimation, chemical shift artifacts correction, and multifrequency modeling of the fat spectrum to image short T2 tissues such as the Achilles tendon and meniscus both in vitro and in vivo. The integration of an advanced field map estimation technique into this combined method, such as region growing (RG), is also investigated.

Results:

The combination of IDEAL with UTE imaging is feasible and excellent water‐fat separation can be achieved for the Achilles tendon and meniscus with simultaneous T2* estimation and chemical shift artifact correction. Multifrequency modeling of the fat spectrum yields more complete water‐fat separation with more accurate correction for chemical shift artifacts. The RG scheme helps to avoid water‐fat swapping.

Conclusion:

The combination of UTE data acquisition with IDEAL has potential applications in imaging and quantifying short T2 tissues, eliminating the necessity for fat suppression pulses that may directly suppress the short T2 signals. J. Magn. Reson. Imaging 2010;31:1027–1034. ©2010 Wiley‐Liss, Inc.  相似文献   

12.
Water–fat separation techniques play an important role in a variety of clinical and research applications. In particular, multiecho separation methods remain a topic of great interest due to their ability to resolve water and fat images in the presence of B0‐field inhomogeneity. However, these methods are inherently slow as they require multiple measurements. An accelerated technique with reduced k‐space sampling is desirable to decrease the scan time. This work presents a new method for water–fat separation from accelerated multiecho acquisitions. The proposed approach does not require the region‐growing or region‐merging schemes that are typically used for field map estimation. Instead, the water, fat, and field map signals are estimated directly from the undersampled k‐space measurements. In this work, up to 2.5×‐acceleration is demonstrated in a water–fat phantom, ankle, knee, and liver. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

13.
Whole‐heart coronary magnetic resonance angiography is a promising method for detecting coronary artery disease. However, the imaging time is relatively long (typically 10–15 min). The goal of this study was to implement a radial echo planar imaging sequence for contrast‐enhanced whole‐heart coronary magnetic resonance angiography, with the aim of combining the scan efficiency of echo planar imaging with the motion insensitivity of radial k‐space sampling. A self‐calibrating phase correction technique was used to correct for off‐resonance effects, trajectory measurement was used to correct for k‐space trajectory errors, and variable density sampling was used in the partition direction to reduce streaking artifacts. Seven healthy volunteers and two patients were scanned with the proposed radial echo planar imaging sequence, and the images were compared with a traditional gradient echo and X‐ray angiography techniques, respectively. Whole‐heart images with the radial EPI technique were acquired with a resolution of 1.0 × 1.0 × 2.0 mm3 in a scan time of 5 min. In healthy volunteers, the average image quality scores and visualized vessel lengths of the RCA and LAD were similar for the radial EPI and gradient echo techniques (P value > 0.05 for all). Anecdotal patient studies showed excellent agreement of the radial EPI technique with X‐ray angiography. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

14.
Multi echo chemical shift‐based water–fat separation methods allow for uniform fat suppression in the presence of main field inhomogeneities. However, these methods require additional scan time for chemical shift encoding. This work presents a method for water–fat separation from undersampled data (CS‐WF), which combines compressed sensing and chemical shift‐based water–fat separation. Undersampling was applied in the k‐space and in the chemical shift encoding dimension to reduce the total scanning time. The method can reconstruct high quality water and fat images in 2D and 3D applications from undersampled data. As an extension, multipeak fat spectral models were incorporated into the CS‐WF reconstruction to improve the water–fat separation quality. In 3D MRI, reduction factors of above three can be achieved, thus fully compensating the additional time needed in three‐echo water–fat imaging. The method is demonstrated on knee and abdominal in vivo data. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.

Purpose:

To develop a robust T2‐weighted volumetric imaging technique with uniform water‐silicone separation and simultaneous fat suppression for rapid assessment of breast implants in a single acquisition.

Materials and Methods:

A three‐dimensional (3D) fast spin echo sequence that uses variable refocusing flip angles was combined with a three‐point chemical‐shift technique (IDEAL) and short tau inversion recovery (STIR). Phase shifts of ?π/6, +π/2, and +7π/6 between water and silicone were used for IDEAL processing. For comparison, two‐dimensional images using 2D‐FSE‐IDEAL with STIR were also acquired in axial, coronal, and sagittal orientations.

Results:

Near‐isotropic (true spatial resolution—0.9 × 1.3 × 2.0 mm3) volumetric breast images with uniform water‐silicone separation and simultaneous fat suppression were acquired successfully in clinically feasible scan times (7:00–10:00 min). The 2D images were acquired with the same in‐plane resolution (0.9 × 1.3 mm2), but the slice thickness was increased to 6 mm with a slice gap of 1 mm for complete coverage of the implants in a reasonable scan time, which varied between 18:00 and 22:30 min.

Conclusion:

The single volumetric acquisition with uniform water and silicone separation enables images to be reformatted into any orientation. This allows comprehensive assessment of breast implant integrity in less than 10 min of total examination time. J. Magn. Reson. Imaging 2012;35:1216‐1221. © 2012 Wiley Periodicals, Inc.
  相似文献   

16.

Purpose:

To assess the feasibility of combining three‐dimensional fast spin echo (3D‐FSE) and Iterative‐decomposition‐of water‐and‐fat‐with‐echo asymmetry‐and‐least‐squares‐estimation (IDEAL) at 1.5 Tesla (T), generating a high‐resolution 3D isotropic proton density‐weighted image set with and without “fat‐suppression” (FS) in a single acquisition, and to compare with 2D‐FSE and 3D‐FSE (without IDEAL).

Materials and Methods:

Ten asymptomatic volunteers prospectively underwent sagittal 3D‐FSE‐IDEAL, 3D‐FSE, and 2D‐FSE sequences at 1.5T (slice thickness [ST]: 0.8 mm, 0.8 mm, and 3.5 mm, respectively). 3D‐FSE and 2D‐FSE were repeated with frequency‐selective FS. Fluid, cartilage, and muscle signal‐to‐noise ratio (SNR) and fluid‐cartilage contrast‐to‐noise ratio (CNR) were compared among sequences. Three blinded reviewers independently scored quality of menisci/cartilage depiction for all sequences. “Fat‐suppression” was qualitatively scored and compared among sequences.

Results:

3D‐FSE‐IDEAL fluid‐cartilage CNR was higher than in 2D‐FSE (P < 0.05), not different from 3D‐FSE (P = 0.31). There was no significant difference in fluid SNR among sequences. 2D‐FSE cartilage SNR was higher than in 3D FSE‐IDEAL (P < 0.05), not different to 3D‐FSE (P = 0.059). 2D‐FSE muscle SNR was higher than in 3D‐FSE‐IDEAL (P < 0.05) and 3D‐FSE (P < 0.05). Good or excellent depiction of menisci/cartilage was achieved using 3D‐FSE‐IDEAL in the acquired sagittal and reformatted planes. Excellent, homogeneous “fat‐suppression” was achieved using 3D‐FSE‐IDEAL, superior to FS‐3D‐FSE and FS‐2D‐FSE (P < 0.05).

Conclusion:

3D FSE‐IDEAL is a feasible approach to acquire multiplanar images of diagnostic quality, both with and without homogeneous “fat‐suppression” from a single acquisition. J. Magn. Reson. Imaging 2012;361‐369. © 2011 Wiley Periodicals, Inc.  相似文献   

17.

Purpose

To implement IDEAL (iterative decomposition of water and fat using echo asymmetry and least squares estimation) water‐fat separation with 3D time‐of‐flight (TOF) magnetic resonance angiography (MRA) of intracranial vessels for improved background suppression by providing uniform and robust separation of fat signal that appears bright on conventional TOF‐MRA.

Materials and Methods

IDEAL TOF‐MRA and conventional TOF‐MRA were performed in volunteers and patients undergoing routine brain MRI/MRA on a 3T magnet. Images were reviewed by two radiologists and graded based on vessel visibility and image quality.

Results

IDEAL TOF‐MRA demonstrated statistically significant improvement in vessel visibility when compared to conventional TOF‐MRA in both volunteer and clinical patients using an image quality grading system. Overall image quality was 3.87 (out of 4) for IDEAL versus 3.55 for conventional TOF imaging (P = 0.02). Visualization of the ophthalmic artery was 3.53 for IDEAL versus 1.97 for conventional TOF imaging (P < 0.00005) and visualization of the superficial temporal artery was 3.92 for IDEAL imaging versus 1.97 for conventional TOF imaging (P < 0.00005).

Conclusion

By providing uniform suppression of fat, IDEAL TOF‐MRA provides improved background suppression with improved image quality when compared to conventional TOF‐MRA methods. J. Magn. Reson. Imaging 2009;29:1367–1374. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
A method was developed for separation of water and fat MR images in a single scan with correction of static field inhomogeneity. The imaging sequence uses a single radiofrequency (RF) echo that is ?sandwiched”? between two gradient echoes. The gradient echoes are used to determine the Bo distribution and to produce out-of-phase images after phase correction using the field map. An algorithm was developed to unwrap the phase images for quantitating the Bo inhomogeneity. To account for differences in geometric distortion between the RF echo image and the gradient echo images due to the reversal of the read gradients, methods were developed to correct the images before the calculation of the final water and fat images. The proposed technique was implemented at .35 T. Both phantom and human images were acquired using the method. It is shown that water- and fat-separated images can be obtained in a single scan using the ?sandwich”? echoes in the presence of a relatively large Bo inhomogeneity.  相似文献   

19.
Multicomponent‐driven equilibrium single‐component observation of T1 and T2 offers a new approach to multiple component relaxation time and myelin water analysis. The method derives two‐component relaxation information from spoiled and fully balanced steady‐state (SPGR and bSSFP) imaging data acquired over multiple flip angles. Although these steady‐state imaging techniques afford rapid acquisition times and high signal‐to‐noise ratio efficiency, they are also sensitive to main (B0) and transmit (B1) magnetic field inhomogeneities. These effects alter the measured signal from their theoretical values and lead to substantive errors in the derived myelin volume fraction estimates. Here, we incorporate correction techniques to mitigate these effects. DESPOT1‐HIFI is used to first calibrate the transmitted flip angles; and B0 affects are removed through the inclusion of an additional parameter in the multicomponent‐driven equilibrium single‐component observation of T1 and T2 fitting, coupled with the acquisition of multiple phase‐cycled bSSFP data. The performance of these correction techniques was evaluated using numerical simulations, demonstrating effective removal of B0 and B1‐induced errors in the derived myelin fraction relaxation parameters. The approach was also successfully demonstrated in vivo, with near artifact‐free whole‐brain, high spatial resolution (1.7 mm × 1.7 mm × 1.7 mm isotropic voxels) myelin water fraction maps acquired in a clinically feasible 16 min. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
MRI imaging of hepatic iron overload can be achieved by estimating T2* values using multiple‐echo sequences. The purpose of this work is to develop and clinically evaluate a weighted least squares algorithm based on T2* Iterative Decomposition of water and fat with Echo Asymmetry and Least‐squares estimation (IDEAL) technique for volumetric estimation of hepatic T2* in the setting of iron overload. The weighted least squares T2* IDEAL technique improves T2* estimation by automatically decreasing the impact of later, noise‐dominated echoes. The technique was evaluated in 37 patients with iron overload. Each patient underwent (i) a standard 2D multiple‐echo gradient echo sequence for T2* assessment with nonlinear exponential fitting, and (ii) a 3D T2* IDEAL technique, with and without a weighted least squares fit. Regression and Bland–Altman analysis demonstrated strong correlation between conventional 2D and T2* IDEAL estimation. In cases of severe iron overload, T2* IDEAL without weighted least squares reconstruction resulted in a relative overestimation of T2* compared with weighted least squares. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号