首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heterologous prime-boost vaccination schedules employing TA-HPV, a vaccinia virus encoding HPV 16/18 E6 and E7, in combination with TA-CIN, an HPV 16 L2E6E7 fusion protein, may offer advantages over the use of either agent alone for the immunotherapy of human papillomavirus (HPV) type 16-associated vulval intraepithelial neoplasia (VIN). In the present study, 10 women with HPV 16-positive high grade VIN, previously primed with TA-HPV, received three booster immunisations with TA-CIN. All but one demonstrated HPV 16-specific proliferative T-cell and/or serological responses following vaccination. Three patients additionally showed lesion shrinkage or symptom relief, but no direct correlation between clinical and immunological responses was seen.  相似文献   

2.
TA-CIN is a vaccine that comprises the human papillomavirus (HPV) type 16 L2, E6 and E7 as a single fusion protein. In a mouse model, TA-CIN effectively prevented outgrowth of HPV16-positive tumour cells. To assess the safety and immunogenicity of TA-CIN, a dose escalating (26, 128, 533 micro g), double blind and placebo-controlled phase I study was conducted in 40 healthy volunteers. TA-CIN was administered without adjuvant by intramuscular injection on weeks 0, 4 and 8. No serious adverse events of the vaccination were reported during the study. Both IgG antibodies and proliferative responses against TA-CIN were elicited at all three doses. More importantly, T-cell immunity against the HPV16 E6 and E7 oncoproteins was detected by IFN gamma ELISPOT in 8/11 evaluable subjects vaccinated with the 533 micro g dose.  相似文献   

3.
A vaccine comprising human papillomavirus type 16 (HPV16) L2, E6 and E7 in a single tandem fusion protein (termed TA-CIN) has the potential advantages of both broad cross-protection against HPV transmission through induction of L2 antibodies able to cross neutralize different HPV types and of therapy by stimulating T cell responses targeting HPV16 early proteins. However, patients vaccinated with TA-CIN alone develop weak HPV neutralizing antibody and E6/E7-specific T cell responses. Here we test TA-CIN formulated along with the adjuvant GPI-0100, a semi-synthetic quillaja saponin analog that was developed to promote both humoral and cellular immune responses. Subcutaneous administration to mice of TA-CIN (20 μg) with 50 μg GPI-0100, three times at biweekly intervals, elicited high titer HPV16 neutralizing serum antibody, robust neutralizing titers for other HPV16-related types, including HPV31 and HPV58, and neutralized to a lesser extent other genital mucosatropic papillomaviruses like HPV18, HPV45, HPV6 and HPV11. Notably, vaccination with TA-CIN in GPI-0100 protected mice from cutaneous HPV16 challenge as effectively as HPV16 L1 VLP without adjuvant. Formulation of TA-CIN with GPI-0100 enhanced the production of E7-specific, interferon γ producing CD8+ T cell precursors by 20-fold. Vaccination with TA-CIN in GPI-0100 also completely prevented tumor growth after challenge with 5 × 104 HPV16-transformed TC-1 tumor cells, whereas vaccination with TA-CIN alone delayed tumor growth. Furthermore, three monthly vaccinations with 125 μg of TA-CIN and 1000 μg GPI-0100 were well tolerated by pigtail macaques and induced both HPV16 E6/E7-specific T cell responses and serum antibodies that neutralized all HPV types tested.  相似文献   

4.
Adams M  Borysiewicz L  Fiander A  Man S  Jasani B  Navabi H  Lipetz C  Evans AS  Mason M 《Vaccine》2001,19(17-19):2549-2556
Cervical cancer is the second most common cause of cancer death in women worldwide. It is almost invariably associated with infection with human papilloma virus (HPV) particularly types 16 and 18. The ubiquitous expression of E6 and E7 oncogene products has been recognised as an attractive target for CTL-mediated immunotherapy. In-vivo expansion of an HPV oncogene product specific MHC class 1 restricted response has been demonstrated using intradermally administered live vaccinia virus HPV 16 and 18 E6/E7 gene construct (TA-HPV, Cantab Pharmaceuticals). Responses have been seen in 1/3 evaluable patients with advanced cervical cancer, and 3/12 CIN3 volunteers, and in 4/29 patients with early invasive cervical cancer (Rankin et al. Proceedings of 91st AACR Meeting, San Francisco, April 2000). In addition, the adoptive transfer of ex vivo HPV 16 or 18 positive autologous tumour lysate pulsed dendritic cells is currently being tested as an alternative means of expanding HPV specific CTL in advanced cervical cancer patients. So far an HLA-A*O201 restricted CD8 T cell response has been recorded in the single HLA-A*O201 patient whose tumour was shown to be HPV16 positive. It appears therefore feasible to induce HPV specific CTL responses in patients with cervical cancer using several vaccine strategies. However, further clinical trials are needed to determine the full anti-tumour potential of this vaccine based immunotherapy.  相似文献   

5.
The E6 and E7 oncoproteins of the high-risk HPV type16 represent ideal targets for HPV vaccine development, they being consistently expressed in cervical cancer lesions. Since HPV-16 is primarily transmitted through genital mucosal route, mucosal immune responses constitute an essential feature for vaccination strategies against HPV-associated lesions. We present here evidence showing that mucosal immunization of mice by the intranasal route with a mixture of peptides E7(44-62) and E6(43-57) from the E7 and E6 oncoproteins of HPV-16, respectively, using a mutant cholera toxin adjuvant (CT-2*), primed strong antigen-specific cellular immune responses in systemic and mucosal tissues. Significant levels of IFN-gamma production by both CD4 and CD8 cells were observed along with CTL responses that were effective against both peptide-pulsed targets as well as syngeneic tumor cells (TC-1) expressing the cognate E6 and E7 proteins. Furthermore, mice immunized with the peptide mixture and CT-2* effectively resisted TC-1 tumor challenge. These results together with our earlier observations that T cell responses to these peptides correlate with recurrence-free survival in women after ablative treatment for HPV-associated cervical intraepithelial neoplasia, support the potential of these E6 and E7 peptides for inclusion in vaccine formulations.  相似文献   

6.
An effective vaccine for treating human papillomavirus (HPV)-associated malignancies such as cervical cancer should elicit strong T cell-mediated immunity (CMI) against the E6 and/or E7 proteins necessary for the malignant state. We have developed Venezuelan equine encephalitis (VEE) virus replicon particle (VRP) vaccines encoding the HPV16 E6 and E7 genes and tested their immunogenicity and antitumor efficacy. The E6 and E7 genes were fused to create one open reading frame and mutated at four or at five amino acid positions to inactivate their oncogenic potential. VRP encoding mutant or wild type E6 and E7 proteins elicited comparable cytotoxic T lymphocyte (CTL) responses to an immunodominant E7(49-57) epitope and generated comparable antitumor responses in several HPV16 E6(+)E7(+) tumor challenge models: protection from either C3 or TC-1 tumor challenge was observed in 100% of VRP-vaccinated mice. Eradication of C3 tumors was observed in approximately 90% of mice following therapeutic VRP vaccination. Eradication of HLF16 tumors lacking the E7(49-57) epitope was observed in 90% of human leukocyte antigen (HLA)-A(*)0201 transgenic mice following therapeutic VRP vaccination. Finally, the predicted inactivation of E6 and E7 oncogenic potential was confirmed by demonstrating normal levels of both p53 and retinoblastoma proteins in human mammary epithelial cells (MEC) infected with VRP expressing mutant E6 and E7 genes. These promising results support the continued development of mutant E6 and E7 VRP as safe and effective candidates for clinical evaluation against HPV-associated disease.  相似文献   

7.
Activation of antigen-specific CD4+ T cells is critical for vaccine design. We have advanced a novel technology for enhancing activation of antigen-specific CD4+ T helper cells whereby a fragment of the MHC class II-associated invariant chain (Ii-Key) is linked to an MHC class II epitope. An HLA-DR4-restricted HPV16 E7 epitope, HPV16 E7(8–22), was used to create a homologous series of Ii-Key/HPV16 E7 hybrids testing the influence of spacer length on in vivo enhancement of HPV16 E7(8–22)-specific CD4+ T lymphocyte responses. HLA-DR4-tg mice were immunized with Ii-Key/HPV16 E7(8–22) hybrids or the epitope-only peptide HPV16 E7(8–22). As measured by IFN-γ ELISPOT assay of splenocytes from immunized mice, one of the Ii-Key/HPV16 E7(8–22) hybrids enhanced epitope-specific CD4+ T cell activation 5-fold compared to the HPV16 E7(8–22) epitope-only peptide. We further demonstrated that enhanced CD4+ T cell activation augments the CTL activity of a H-2Db-restricted HPV16 E7(49–57) epitope in HLA-DR4+ mice using an in vivo CTL assay. Binding assays indicated that the Ii-Key/HPV16 hybrid has increased affinity to HLA-DR4+ cells relative to the epitope-only peptide, which may explain its increased potency. In summary, Ii-Key hybrid modification of the HLA-DR4-restricted HPV16 E7(8–22) MHC class II epitope generates a potent immunotherapeutic peptide vaccine that may have potential for treating HPV16+ cancers in HLA-DR4+ patients.  相似文献   

8.
Human papillomavirus (HPV)-induced cervical cancer is the second most common cancer among women worldwide with half a million new cases per year. Despite the encouraging development of a preventive vaccine for HPV, a therapeutic vaccine for cervical cancer or pre-cancerous lesions remains a high priority. The preclinical study reported here used VacciMax((R)) (VM) to deliver a peptide-based vaccine composed of an HPV 16 E7-derived cytotoxic T lymphocyte (CTL) epitope fused to the T helper epitope PADRE (FP) and combined with CpG or lipopeptide adjuvant. In the study, C57BL/6 mice received 0.5million HPV 16-expressing C3 tumor cells. Mice were inoculated post-tumor challenge with a single s.c. injection of FP-CpG-VM on either day 4, 5, 6, 9, or 14. All mice that received the FP-CpG-VM vaccine were tumor-free to day 130 when the experiment was terminated. In contrast, only a minority of mice that received a control vaccine were tumor-free on day 60. Cytotoxicity assays, ELISPOT and intracellular staining for interferon (IFN)-gamma showed the immune response was specific for the selected CTL epitope. All mice that received the FP-CpG-VM vaccine remained tumor-free when re-challenged with 6million C3 cells. Cytotoxicity assays 4 months post-challenge showed that only splenocytes from mice inoculated with the FP-CpG-VM vaccine had high lysis activity. These results indicate that VacciMax((R)) causes a rapid, robust, durable and therapeutic CTL response to HPV 16 E7 protein expressing tumors.  相似文献   

9.
Liu B  Ye D  Song X  Zhao X  Yi L  Song J  Zhang Z  Zhao Q 《Vaccine》2008,26(10):1387-1396
Human papillomaviruses (HPV), particularly HPV16, is considered a necessary cause of cervical and oral cancer. Thus, the development of a therapeutic vaccine against HPV is important for the control of cervical cancer. However, therapeutic vaccination has been limited by inadequate antigen-specific immune responses. Heat shock proteins (HSP), including calreticulin (CRT), HSP70 and gp96, have been shown to act as potent immunoadjuvant to enhance antigen-specific tumor immunity. Previous studies have shown that N domain CRT (NCRT) or C-terminal half of HSP70 (hsp) linked with HPV16 E7 are capable of inducing potent antigen-specific CTL activity in experimental animal models. Here we developed a recombinant NCRT/E7/hsp fusion protein to investigate the synergistic effects of NCRT and hsp for enhancing the potency of HPV16 E7 therapeutic vaccine and evaluated the immune responses induced by this fusion protein. Our results demonstrated that NCRT and hsp synergistically exhibited significant increases in E7-specific CD8(+) T cell responses and impressive antitumor effects against E7-expressing tumors. Furthermore, the NCRT/E7/hsp fusion protein also generates potent antiangiogenic effects. These results indicate that NCRT/E7/hsp fusion protein is a promising therapeutic vaccine for treatment of cervical cancer through a combination of antigen-specific immunotherapy and antiangiogenesis, with possible therapeutic potential in clinical settings.  相似文献   

10.
Although many clinical trials on human papillomavirus (HPV) therapeutic vaccines have been performed, clinical responses have not been consistent. We have addressed mucosal cytotoxic cellular immune responses to HPV16 E7 after oral immunization of mice with recombinant Lactobacillus casei expressing HPV16 E7 (LacE7). C57BL/6 mice were orally exposed to 0.1–100 mg/head of attenuated LacE7 or vehicle (Lac) vaccines at weeks 1, 2, 4, and 8. Responses to subcutaneous or intramuscular injection of an HPV16 E7 fusion protein using the same timing protocol were used for comparison. Oral immunization with LacE7 elicited E7-specific IFNγ-producing cells (T cells with E7-type1 immune responses) among integrin α4β7+ mucosal lymphocytes collected from gut mucosa. An induction of E7-specific granzyme B-producing cells (E7-CTL) exhibiting killer responses toward HPV16 E7-positive cells was also observed. The induction of T cells with specific mucosal E7-type1 immune responses was greater after oral immunization with LacE7 when compared to subcutaneous or intramuscular antigen delivery. Oral immunization with Lactobacillus-based vaccines was also able to induce mucosal cytotoxic cellular immune responses. This novel approach at a therapeutic HPV vaccine may achieve more effective clinical responses through its induction of mucosal E7-specific CTL.  相似文献   

11.
《Vaccine》2022,40(52):7693-7702
Human papilloma virus type 16 (HPV16) is the most prevalent etiologic agent associated with cervical cancer, and its early proteins E5, E6 and E7 play important roles in cervical epithelium transformation to cervical intraepithelial neoplasia and even cervical cancer. Hence, these oncoproteins are ideal target antigens for developing immunotherapeutic vaccines against HPV-associated infection and cervical cancer. Currently, multi-epitope vaccines have been a promising strategy for immunotherapy for viral infection or cancers. In this study, the E5aa28-46, E6aa37-57 and E7aa26-57 peptides were selected and linked to form a novel multi-epitopes vaccine (E765m), which was inserted into the major immune dominant region (MIR) of hepatitis B virus core antigen (HBc) to construct a HBc-E765m chimeric virus-like particles (cVLPs). The immunogenicity and immunotherapeutic effect of the cVLPs vaccine was evaluated in immunized mice and a tumor-bearing mouse model. The results showed that HBc-E765m cVLPs elicited high E5-, E6- and E7- specific CTL and serum IgG antibody responses, and also relatively high levels of the cytokines IFN-γ, IL-4 and IL-5. More importantly, the cVLPs vaccine significant suppressed tumor growth in mice bearing E5-TC-1 tumors. Our findings provide strong evidence that this novel HBc-E765m cVLPs vaccine could be a candidate vaccine for specific immunotherapy in HPV16-associated cervical intraepithelial neoplasia or cervical cancer.  相似文献   

12.
Human Papillomavirus type 16 (HPV16) E6 and E7 oncoproteins are associated with cervical cancer development and progression and can therefore be used as target antigens for cancer immunotherapy. In this study we evaluated the immunogenicity in mice, of different vaccine formulations using recombinant HPV16 derived E6E7 or E7GST fusion proteins. When co-administered with ISCOMATRIX adjuvant, these E6E7 proteins consistently induced E7 specific CTL, in vivo tumor protection, antibody and DTH responses. ISCOMATRIX adjuvant has been developed for use in the formulation of novel human vaccines and has been evaluated for safety and toxicity in human trials. A formulation containing aluminum hydroxide (Al(OH)3) gave a lesser degree of E7 specific antibody, and no local E7 specific CTL response but similar DTH and tumor protection. These findings demonstrate the potential of ISCOMATRIX adjuvant to stimulate both cellular and humoral immune responses to endogenously processed target antigens, and hence is the preferred adjuvant when CTL responses are desirable.  相似文献   

13.
Persistent infection with high-risk human papillomaviruses (hrHPV) can result in the formation of anogenital cancers. As hrHPV proteins E6 and E7 are required for cancer initiation and maintenance, they are ideal targets for immunotherapeutic interventions. Previously, we have described the development of DNA vaccines for the induction of HPV16 E6 and E7 specific T cell immunity. These vaccines consist of 'gene-shuffled' (SH) versions of HPV16 E6 and E7 that were fused to Tetanus Toxin Fragment C domain 1 (TTFC) and were named TTFC-E6SH and TTFC-E7SH. Gene-shuffling was performed to avoid the risk of inducing malignant transformation at the vaccination site. Here, we describe the preclinical safety evaluation of these candidate vaccines by analysis of their transforming capacity in vitro using established murine fibroblasts (NIH 3T3 cells) and primary human foreskin keratinocytes (HFKs). We demonstrate that neither ectopic expression of TTFC-E6SH and TTFC-E7SH alone or in combination enabled NIH 3T3 cells to form colonies in soft agar. In contrast, expression of HPV16 E6WT and E7WT alone or in combination resulted in effective transformation. Similarly, retroviral transduction of HFKs from three independent donors with both TTFC-E6SH and TTFC-E7SH alone or in combination did not show any signs of immortalization. In contrast, the combined expression of E6WT and E7WT induced immortalization in HFKs from all donors. Based on these results we consider it justified to proceed to clinical evaluation of DNA vaccines encoding TTFC-E6SH and TTFC-E7SH in patients with HPV16 associated (pre)malignancies.  相似文献   

14.
Immunization with a codon-optimized HPV 16 E7 gene was shown to yield higher levels of E7-specific cytotoxic T cells [Liu WJ, Gao F, Zhao KN, Zhao W, Fernando GJ, Thomas R, et al. Codon modified human papillomavirus type 16 E7 DNA vaccine enhances cytotoxic T-lymphocyte induction and anti-tumour activity. Virology 2002;301:43]. Here, we sought to verify the hypothesis that there is a direct correlation between the level of protein expression and immunogenicity in mice. We generated HPV 16 E7 expression plasmids where the genes were inserted either as authentic sequence (wt) or after optimizing the codons for use in mammalian cells (opt). For enhancement of translation of the E7 gene a 5' Kozak sequence (K) was added. Transfection experiments revealed the strength of expression in the order of E7opt+K, E7opt-K, E7wt+K and E7wt-K. After immunization of C57/B6 mice we observed an equally strong CD8+T-cell response with the E7opt plasmids (+ or -K), followed by the E7wt+K and E7wt-K DNAs. The same difference in efficiency was obtained in tumor protection experiments. Regression of pre-existing tumors and CTL activity was observed only with the E7opt+K plasmid. From these data, we conclude that the level of protein expression correlates with the efficiency of CTL response and hence testing by transfection of cells in culture may allow a pre-selection of expression plasmids prior to DNA immunization.  相似文献   

15.
PURPOSE: Persistent infection of cervical epithelium with "high risk" human papillomavirus (HPV) results in cervical intraepithelial neoplasia (CIN) from which squamous cancer of the cervix can arise. A study was undertaken to evaluate the safety and immunogenicity of an HPV16 immunotherapeutic consisting of a mixture of HPV16 E6E7 fusion protein and ISCOMATRIX adjuvant (HPV16 Immunotherapeutic) for patients with CIN. EXPERIMENTAL DESIGN: Patients with CIN (n = 31) were recruited to a randomised blinded placebo controlled dose ranging study of immunotherapy. RESULTS: Immunotherapy was well tolerated. Immunised subjects developed HPV16 E6E7 specific immunity. Antibody, delayed type hypersensitivity, in vitro cytokine release, and CD8 T cell responses to E6 and E7 proteins were each significantly greater in the immunised subjects than in placebo recipients. Loss of HPV16 DNA from the cervix was observed in some vaccine and placebo recipients. CONCLUSIONS: The HPV16 Immunotherapeutic comprising HPV16E6E7 fusion protein and ISCOMATRIX adjuvant is safe and induces vaccine antigen specific cell mediated immunity.  相似文献   

16.
Previously, we described the efficacy of immunisation with recombinant Semliki Forest virus (SFV), expressing the human papillomavirus 16 (HPV) oncoproteins E6 and E7, in inducing HPV-specific CTLs and anti-tumour responses. Recently, we developed a novel recombinant SFV construct encoding a relatively stable fusion protein of HPV16 E6 and E7 under control of a translational enhancer derived from the SFV capsid protein. In the present study we demonstrate that immunisation of tumour-bearing mice with this improved vector results in the regression and complete elimination of established tumours. We furthermore demonstrate that a long-term high level of CTL activity, up to 340 days, accompanies the anti-tumour response. Thus, immunisation with recombinant SFV particles encoding increased levels of a fusion protein of HPV16 E6 and E7 efficiently induces CTL activity and CTL memory resulting in a potent therapeutic anti-tumour effect.  相似文献   

17.
We have examined the induction of anti-tumour immunity in a murine model using a gene vaccine approach to deliver a well defined tumour antigen. The vaccines expressed the human papilloma virus type 16 (HPV 16) E7 oncoprotein, and protection was measured against HPV 16-expressing C3R tumour cell line in vivo. In control mice injected with saline, C3R cells initially formed tumours but then regressed completely. As expected, animals injected with a peptide that represents the D(b)-presented CTL epitope from E7 (RAHYNIVTF) were completely protected from tumour growth. Contrary to expectation, however, we consistently saw enhanced tumour growth, delayed regression, or tumour outgrowth in mice vaccinated with two different E7-expressing DNA vaccines. We found no evidence for loss of D(b) or K(b) class I MHC molecules from C3R cells recovered from outgrown tumours, and fluorescent MHC/peptide tetramer staining revealed E7 gene vaccination did not delete RAHYNIVTF-specific CD8(+) T cells. However, we did observe an effect on cytokine production. Splenocytes from E7 gene vaccinated animals responded to re-stimulation in vitro with C3R cells by producing IL-4 but background levels of IFN-gamma. We also observed that cytokine production and E7 peptide-specific CTL were only detectable in vaccinated animals after C3R challenge, but not after DNA priming alone. We conclude that 'prime-boosting' is necessary to observe tumour-specific T cell responses with the gene vaccine approach, but that boosting with tumour cells causes skewing of the primed cells in a T2 direction that is incompatible with protective anti-tumour immunity.  相似文献   

18.
《Vaccine》2005,23(2):172-181
Purpose: Persistent infection of cervical epithelium with “high risk” human papillomavirus (HPV) results in cervical intraepithelial neoplasia (CIN) from which squamous cancer of the cervix can arise. A study was undertaken to evaluate the safety and immunogenicity of an HPV16 immunotherapeutic consisting of a mixture of HPV16 E6E7 fusion protein and ISCOMATRIX™ adjuvant (HPV16 Immunotherapeutic) for patients with CIN.Experimental design: Patients with CIN (n = 31) were recruited to a randomised blinded placebo controlled dose ranging study of immunotherapy.Results: Immunotherapy was well tolerated. Immunised subjects developed HPV16 E6E7 specific immunity. Antibody, delayed type hypersensitivity, in vitro cytokine release, and CD8 T cell responses to E6 and E7 proteins were each significantly greater in the immunised subjects than in placebo recipients. Loss of HPV16 DNA from the cervix was observed in some vaccine and placebo recipients.Conclusions: The HPV16 Immunotherapeutic comprising HPV16E6E7 fusion protein and ISCOMATRIX™ adjuvant is safe and induces vaccine antigen specific cell mediated immunity.  相似文献   

19.
《Vaccine》2017,35(47):6459-6467
The development of cervical cancer is mainly caused by infection with high risk genotypes of human papillomavirus, particularly type 16 (HPV16), which accounts for more than 50% of cervical cancer. The two early viral oncogenes, E6 and E7, are continuously expressed in cervical cancer cells and are necessary to maintain the malignant cellular phenotype, thus providing ideal targets for immunotherapy of cervical cancer. In this study, a novel vaccine strategy was developed based on a rationally shuffled HPV16 E6/E7 fusion protein, the addition of Fms-like tyrosine kinase-3 ligand (Flt3L) or the N domain of calreticulin (NCRT), and the usage of a CpG adjuvant. Four recombinant proteins were constructed: m16E6E7 (mutant E6/E7 fusion protein), rm16E6E7 (rearranged mutant HPV16 E6/E7 fusion protein), Flt3L-RM16 (Flt3L fused to rm16E6E7), and NCRT-RM16 (NCRT fused to rm16E6E7). Our results suggest that Flt3L-RM16 was the most potent of these proteins in terms of inducing E6- and E7-specific CD8+ T cell responses. Additionally, Flt3L-RM16 significantly induced regression of established E6/E7-expressing TC-1 tumors. Higher doses of Flt3L-RM16 trended toward higher levels of antitumor activity, but these differences did not reach statistical significance. In summary, this study found that Flt3L-RM16 fusion protein is a promising therapeutic vaccine for immunotherapy of HPV16-associated cervical cancer.  相似文献   

20.
Recombinant bacille Calmette-Guerin (BCG) based vaccine delivery systems could potentially share the safety and effectiveness of BCG. We therefore prepared recombinant BCG vaccines which expressed the L1 late protein of the human papillomavirus (HPV) 6b or the E7 early protein of the HPV 16. The two recombinants were evaluated as immunogens in C57BL/6J and BALB/c mice, and compared with a conventional protein/adjuvant system using E7 or L1 mixed with Quil-A adjuvant. rBCG6bL1 and rBCG16E7 primed specific immune responses, represented by DTH, T-proliferation and antibody, and rBCG16E7 induced cytotoxic immune response to E7 protein. The magnitude of the observed responses were less than those elicited by protein/adjuvant vaccine. As recombinant BCG vaccines expressing HPV6bL1 or HPV16E7 persist at low levels in the immunised host, they may be beneficial to prime or retain memory responses to antigens, but are unlikely to be useful as a single component vaccine strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号