首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Freezing of protein solutions perturbs protein conformation, potentially leading to aggregate formation during long-term storage in the frozen state. Macroscopic protein concentration profiles in small cylindrical vessels were determined for a monoclonal antibody frozen in a trehalose-based formulation for various freezing protocols. Slow cooling rates led to concentration differences between outer edges of the tank and the center, up to twice the initial concentration. Fast cooling rates resulted in much smaller differences in protein distribution, likely due to the formation of dendritic ice, which traps solutes in micropockets, limiting their transport by convection and diffusion. Analysis of protein stability after more than 6 months storage at either ? 10°C or -20°C [above glass transition temperature (T′g)] or ? 80°C (below T′g) revealed that aggregation correlated with the cooling rate. Slow-cooled vessels stored above T′g exhibited increased aggregation with time. In contrast, fast-cooled vessels and those stored below T′g showed small to no increase in aggregation at any position. Rapid entrapment of protein in a solute matrix by fast freezing results in improved stability even when stored above T′g.  相似文献   

2.
The objective of this study was to determine whether a relationship exists between ice nucleation temperature and recovery of activity of a model protein, lactate dehydrogenase, after freeze drying. Aqueous buffer systems containing 50 µg/mL of protein were frozen in vials with externally mounted thermocouples on the shelf of a freeze dryer, then freeze dried. Various methods were used to establish a wide range of ice nucleation temperatures. An inverse relationship was found between the extent of supercooling during freezing and recovery of activity in the reconstituted solution. The data are consistent with a mechanism of inactivation resulting from adsorption of protein at the ice/freeze–concentrate interface during the freezing process. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:3495–3498, 2009  相似文献   

3.
Although bulk biotherapeutics are often frozen during fill finish and shipping to improve their stability, they can undergo degradation leading to losses in biological activity during sub-optimal freeze-thaw (F/T) process. Except for a few small-scale studies, the relative contribution of various F/T stresses to the instability of proteins has not been addressed. Thus, the objective of this study was to determine the individual contributions of freeze-concentration, ice surface area, and processing time to protein destabilization at a practical manufacturing-scale. Lactate dehydrogenase (LDH) in histidine buffer solutions were frozen in 1L containers. The frozen solutions were sliced into representative samples and assessed for the ice specific surface area (SSA) and extent of solutes freeze-concentration. For the first time to our knowledge, ice SSA was measured in dried samples from large-volume protein solutions using volumetric nitrogen adsorption isotherms. SSA measurements of the freeze-dried cakes showed that the ice surface area increased with an increase in the freezing rate. The ice SSA was also impacted by the position of the sample within the container: samples closer to the active cooled surface of the container exhibited smaller ice surface area compared to ice-cored samples from the center of the bottle. The freeze-concentrate composition was determined by measuring LDH concentration in the ice-cored samples. The protein distributed more evenly throughout the frozen solution after fast freezing which also correlated with enhanced protein stability compared to slow freezing conditions. Overall, better protein stability parameters correlated with higher ice SSA and lower freeze-concentration extent which was achieved at a faster freezing rate. Thus, extended residence time of the protein at the freeze-concentrated microenvironment is the critical destabilizing factor during freezing of LDH in bulk histidine buffer system. This study expands the understanding of the relative contributions of freezing stresses which, coupled with the knowledge of cryoprotection mechanisms, is imperative to the development of optimized processes and formulations aiming stable frozen protein solutions.  相似文献   

4.
Although proteins are often frozen during processing or freeze-dried after formulation to improve their stability, they can undergo degradation leading to losses in biological activity during the process. During freezing, the physical environment of a protein changes dramatically leading to the development of stresses that impact protein stability. Low temperature, freeze-concentration, and ice formation are the three chief stresses resulting during cooling and freezing. Because of the increase in solute concentrations, freeze-concentration could also facilitate second order reactions, crystallization of buffer or non-buffer components, phase separation, and redistribution of solutes. An understanding of these stresses is critical to the determination of when during freezing a protein suffers degradation and therefore important in the design of stabilizer systems. With the exception of a few studies, the relative contribution of various stresses to the instability of frozen proteins has not been addressed in the freeze-drying literature. The purpose of this review is to describe the various stages of freezing and examine the consequences of the various stresses developing during freezing on protein stability and to assess their relative contribution to the destabilization process. The ongoing debate on thermodynamic versus kinetic mechanisms of stabilization in frozen environments and the current state of knowledge concerning those mechanisms are also reviewed in this publication. An understanding of the relative contributions of freezing stresses coupled with the knowledge of cryoprotection mechanisms is central to the development of more rational formulation and process design of stable lyophilized proteins.  相似文献   

5.
Although proteins are often frozen during processing or freeze-dried after formulation to improve their stability, they can undergo degradation leading to losses in biological activity during the process. During freezing, the physical environment of a protein changes dramatically leading to the development of stresses that impact protein stability. Low temperature, freeze-concentration, and ice formation are the three chief stresses resulting during cooling and freezing. Because of the increase in solute concentrations, freeze-concentration could also facilitate second order reactions, crystallization of buffer or non-buffer components, phase separation, and redistribution of solutes. An understanding of these stresses is critical to the determination of when during freezing a protein suffers degradation and therefore important in the design of stabilizer systems. With the exception of a few studies, the relative contribution of various stresses to the instability of frozen proteins has not been addressed in the freeze-drying literature. The purpose of this review is to describe the various stages of freezing and examine the consequences of the various stresses developing during freezing on protein stability and to assess their relative contribution to the destabilization process. The ongoing debate on thermodynamic versus kinetic mechanisms of stabilization in frozen environments and the current state of knowledge concerning those mechanisms are also reviewed in this publication. An understanding of the relative contributions of freezing stresses coupled with the knowledge of cryoprotection mechanisms is central to the development of more rational formulation and process design of stable lyophilized proteins.  相似文献   

6.
Most biomolecules, owing to their marginal stability in liquid state, susceptibility to microbial growth, and tendency to foam upon storage/shipment in the liquid state, often require an alternate method of long-term storage. Cryopreservation is preferred, as it addresses most of these issues associated with liquid storage. However, the stability of the protein in the frozen state depends on the methodology of freezing/thawing and physico-chemical characteristics of the protein. A systematic study was undertaken to understand and evaluate the impact of freezing/thawing method on the process performance and product quality attributes using two freezing methods-conventional freezing in walk-in freezers and thawing in cold rooms using carboys as an uncontrolled rate method, and Celsius/CryoFin? technologies as a controlled rate method. To assess the impact of freeze-thaw cycles on product quality, two types of proteins, a fusion protein and a peptibody (peptide fused to the Fc portion of the antibody), were used, employing appropriate stability-indicating assays. The results demonstrate superior process performance by the controlled rate freeze-thaw technology, both in terms of process times and cryoconcentration, compared to uncontrolled rate freeze thaw technology. Product impact studies indicate that the peptibody is sensitive to the method of freeze-thaw while the fusion protein is not and those that are sensitive to uncontrolled rate freeze-thaw processes can be effectively protected by controlled rate freeze-thaw technologies such as Celsius.  相似文献   

7.
The objective of this study was to determine the individual contributions of ice formation, solute concentration, temperature, and time, to irreversible protein denaturation during freezing. A temperature-step approach was used to study isothermal degradation of frozen lactate dehydrogenase (LDH). The freeze-concentrate composition was determined using differential scanning calorimetry to enable preparation of solutions, without ice, of the same concentration as the freeze-concentrate, and thereby determine the role of the freeze-concentrate composition on LDH degradation. Both stabilizers employed in the study, hydroxyethyl starch and sucrose, conferred cryoprotection on LDH. While LDH stability was lower at 1.50-3.25% w/v sucrose than in the absence of sucrose, cryoprotection was restored at higher sucrose concentrations. pH shift during freezing, degree of supercooling, and excipient impurities were ruled out as causes for unusual LDH stability behavior at lower sucrose concentrations. Specific surface area measurements of the freeze-dried cakes showed that the ice surface area increased with an increase in sucrose concentration. No LDH degradation occurred in concentrated solutions, without ice, at the same composition as the freeze-concentrate in frozen systems where massive degradation was documented. Thus, ice formation is the critical destabilizing factor during freezing of LDH in sucrose:citrate buffer systems.  相似文献   

8.
The alkaline hydrolysis of the methyl, ethyl and n-propyl esters of 4-hydroxybenzoic acid was studied in the liquid and frozen states in sodium hydroxide solutions. The temperature range was −26 to 60°C. Significant acceleration of the reaction rate was evident in the frozen state compared with rates found at liquid state temperatures. The maximum reaction rate in the frozen state occurred in the temperature range −12 to −10°C. Methyl 4-hydroxybenzoate showed more than a 20-fold increased rate constant from 7.17 × 10−6 s−1 at 30°C to 1.53 × 10−4 s−1 at −9°C in a 1.00 × 10−2 M solution of sodium hydroxide. Rate constants in the liquid and frozen states followed pseudo first-order kinetics over 2–4 half-lives of reaction. Data were fitted to a theoretical model describing the reaction rate in the frozen state as dependent upon the increased concentration of solutes in liquid vesicles in the frozen state and the predicted reduction in the reaction rate constant with temperature decrease. Although the data exhibited similar trends to that predicted by the model, there was frequently a 50% difference in the rates observed compared with those predicted. This study has clearly demonstrated that there is a significantly increased rate of hydrolysis of these esters in the frozen state. This is a further indication that it cannot be assumed that drugs stored in solution will necessarily be stabilized, or their stability enhanced, on freezing. Storage under refrigeration conditions (4–8°C) results in enhanced shelf-lives compared with deep-freeze storage at −20°C under the conditions of this study.  相似文献   

9.
The development of nonviral vectors as commercial therapeutics will require formulations that are sufficiently stable to allow shipping and storage for prolonged periods. Given the well-known instability of these systems as aqueous suspensions, it would be desirable to develop lyophilized formulations that are resistant to shipping stress and can be stored for extended periods at ambient temperatures. Previous studies have shown that aggregation and structural changes resulting in reduced transfection rates can occur during the freezing step of lyophilization. While it has been clearly demonstrated that freezing-induced damage is promoted by vector crowding that results from the reduced volume of unfrozen solution, the precise mechanism of damage has yet to be fully elucidated, i.e., damage may occur due to ice formation and/or during incubation in the frozen state. In this study, we investigate the time- and temperature-dependence of damage during freezing and demonstrate that aggregation can occur while frozen vector suspensions are incubated at a constant temperature. Aggregation is not seen during incubation at temperatures below T(g)', and can also be avoided above the glass transition temperature under some conditions. Our data are consistent with a model describing the mobility of vectors in the unfrozen sucrose solution being sufficiently restricted such that inter-particle interactions are prevented in the frozen state. Furthermore, the protection achieved during freezing at temperatures above T(g)' is applicable to a complete lyophilization cycle (i.e., freezing and drying), and provides stabilization at higher primary drying temperatures.  相似文献   

10.
The broad objective of this research was to better understand the physical chemistry of freeze drying of the system glycine/water, with emphasis on the role of polymorphism of glycine on freezing and freeze-drying behavior. Frozen solutions of glycine were characterized by differential scanning calorimetry (DSC) and by freeze-dry microscopy. Cooling rates ranged from 0.1 degrees C/min to quench-cooling by immersing samples in liquid nitrogen. During slow cooling, only a beta-glycine/ice eutectic mixture is formed, melting at -3.60 degrees C. For quench-frozen solutions, the low-temperature thermal behavior is more complex. A complex glass transition region is observed on the DSC thermogram, with midpoint temperatures at about -73 degrees C and -60 degrees C, as well as two separate crystallization exotherms. Use of very low heating rates in the DSC experiment allows resolution of four separate endotherms in the temperature range just below the melting of ice. The experimental data support the conclusion that these endotherms arise from melting of the beta-glycine/ice eutectic mixture at -3.6 degrees C, dissolution of crystals of alpha-glycine at -2.85 degrees C, and melting of the gamma-glycine/ice eutectic mixture at -2.70 degrees C. One of the endotherms could not be characterized because of inadequate resolution from the beta-glycine/ice eutectic melting endotherm. Freeze-dried solids were characterized by X-ray powder diffraction after annealing under conditions established by the DSC and freeze-dry microscopy experiments. Annealing at controlled temperatures in the melting region prior to recooling the system was useful not only in interpreting the complex DSC thermogram, but also in controlling the glycine polymorph resulting from freeze drying.  相似文献   

11.
Freeze-drying using vacuum-induced surface freezing   总被引:4,自引:0,他引:4  
A method of freezing during freeze-drying, which avoids undercooling of a solution and allows growth of large, dendritic ice crystals, was investigated. Aqueous solutions of mannitol, sucrose, or glycine were placed under a chamber vacuum of approximately 1 mbar at a shelf temperature of +10 degrees C. Under these conditions, the solutions exhibit surface freezing to form an ice layer of approximately 1-3 mm thickness. On releasing the vacuum and lowering the shelf temperature to below the freezing point of the ice in the solution, crystal growth occurs to yield large, chimney-like ice crystals. The duration of primary drying of a frozen cake--as measured by using inverse comparative pressure measurement--was up to 20% shorter than when using a "moderate" freezing procedure (2 K shelf temperature per min). With mannitol, however, the residual moisture content of the final dried product was higher than with moderate freezing, and with sucrose and glycine there was no difference. These findings are related to the structures of the dried cakes formed during freezing, as examined by light microscopy and wide-angle X-ray diffraction. The introduction of an annealing step (4 h at a shelf temperature slightly above the onset melting point of the ice in the frozen cake) combined with the vacuum-induced surface freezing procedure maintains the rapid primary drying and produces a low residual moisture (0.2%) for the freeze-dried mannitol solution.  相似文献   

12.
This study investigated the effect of freezing and thawing on the biological, physical, and chemical properties of enoxaparin solution. Solutions were frozen and thawed under different conditions, in the presence or absence of dimethyl sulfoxide (DMSO) or 1,2-propanediol (1,2-PD), and the antifactor Xa (AFXa) activity was determined. Enoxaparin solution lost more than 60% of its AFXa activity when thawed rapidly after freezing at -196 degrees C. The loss of AFXa activity was less with higher freezing temperatures and increased with the number of freeze/thaw cycles, but was independent of the duration of freezing. Slow freezing to -196 degrees C with rapid thawing, or rapid freezing with slow thawing, resulted in negligible loss of AFXa activity. The loss of AFXa activity did not involve the loss of N-sulfate groups, the breakdown of glycosidic bonds or the glassy state transition. Controlling the freezing or thawing conditions, dilution with water or addition of a small percentage of DMSO ameliorated the loss of enoxaparin AFXa activity. The loss in AFXa activity was found by size exclusion chromatography to be primarily due to aggregation and was reversed by sonication in the presence of DMSO. These results may provide insight into solutions for the long-term storage of concentrated or diluted enoxaparin.  相似文献   

13.
A 300-mL stainless steel freeze container was constructed to enable QbD (Quality by Design)-compliant investigations and the optimization of freezing and thawing (F/T) processes of protein pharmaceuticals at moderate volumes. A characterization of the freezing performance was conducted with respect to freezing kinetics, temperature profiling, cryoconcentration, and stability of the frozen protein. Computational fluid dynamic (CFD) simulations of temperature and phase transition were established to facilitate process scaling and process analytics as well as customization of future freeze containers. Protein cryoconcentration was determined from ice-core samples using bovine serum albumin. Activity, aggregation, and structural perturbation were studied in frozen rabbit muscle L-lactic dehydrogenase (LDH) solution. CFD simulations provided good qualitative and quantitative agreement with highly resolved experimental measurements of temperature and phase transition, allowing also the estimation of spatial cryoconcentration patterns. LDH exhibited stability against freezing in the laboratory-scale system, suggesting a protective effect of cryoconcentration at certain conditions. The combination of the laboratory-scale freeze container with accurate CFD modeling will allow deeper investigations of F/T processes at advanced scale and thus represents an important step towards a better process understanding.  相似文献   

14.
Parenteral nutrient (PN) solutions were evaluated for growth of pathogenic organisms after refrigeration or freezing and then thawing. Sixteen bags of hypertonic dextrose and amino acid solutions were divided into two series (refrigerated and frozen), inoculated with Escherichia coli. Candida albicans, Staphylococcus aureus, or Streptococcus faecalis, and exposed to freezing or refrigeration. The inoculum concentration was greater than would likely occur with patient contamination of the solution. Microbial growth in the solutions was determined after warming to room temperature and at 17 or 18 hours after reaching room temperature. There was no increased growth of C. albicans in PN solutions that were frozen versus the refrigerated samples. Counts for all of the organisms in the frozen series, immediately after freezing and then thawing, decreased or stayed the same compared with baseline counts. Growth of E. coli, Staph. aureus, and Strep. faecalis increased in the frozen samples compared with the refrigerated samples after room-temperature storage, suggesting a possible increased risk of infectious complications if contaminated solutions are left at room temperature for extended periods. Since no increased risk of microbial growth is likely in frozen versus refrigerated PN solutions that are thawed and promptly infused, batch freezing may be an effective and convenient means of preparing PN solutions for home patients.  相似文献   

15.
In an accompanying article we have described parameters that influence vial breakage in freeze-thaw operations when using crystalizable mannitol formulations, and further provided a practical approach to minimize the breakage in manufacturing settings. Using two diagnostic tools-thermal mechanical analysis (TMA) and strain gage, we investigated the mechanism of mannitol vial breakage and concluded that the breakage is related to sudden volume expansions in the frozen plug due to crystallization events. Glass vial breakage has also been observed with a number of frozen protein formulations consisting of only amorphous ingredients. Therefore, in this study, we applied the methodologies and learnings from the prior investigation to further explore the mechanism of vial breakage during freeze-thaw of amorphous protein products. It was found that temperature is a critical factor, as breakage typically occurred when the products were frozen to -70 degrees C, while freezing only to -30 degrees C resulted in negligible breakage. When freezing to -70 degrees C, increased protein concentration and higher fill volume induced more vial breakage, and the breakage occurred mostly during freezing. In contrast to the previous findings for crystallizable formulations, an intermediate staging step at -30 degrees C did not reduce breakage for amorphous protein formulations, and even slightly increased the breakage rate. The TMA profiles revealed substantially higher thermal contraction of frozen protein formulations when freezing below -30 degrees C, as compared to glass. Such thermal contraction of frozen protein formulations caused inward deformation of glass and subsequent rapid movement of glass when the frozen plug separates from the vial. Increasing protein concentration caused more significant inward glass deformation, and therefore a higher level of potential energy was released during the separation between the glass and frozen formulation, causing higher breakage rates. The thermal expansion during thawing generated moderate positive strain on glass and explained the thaw breakage occasionally observed. The mechanism of vial breakage during freeze-thaw of amorphous protein formulations is different compared to crystallizable formulations, and accordingly requires different approaches to reduce vial breakage in manufacturing. Storing and shipping at no lower than -30 degrees C effectively prevents breakage of amorphous protein solutions. If lower temperature such as -70 degrees C is unavoidable, the risk of breakage can be reduced by lowering fill volume.  相似文献   

16.

Purpose

The physical state of excipients in freeze-dried formulations directly affects the stability of the active pharmaceutical ingredient (API). Crystallization of trehalose and mannitol in frozen solutions has been shown to be a function of composition. However, to date a detailed study of the effect of concentrations of the API and other excipients on the crystallinity of mannitol and trehalose in frozen solutions has not been reported.

Methods

The crystallinity of mannitol and trehalose in frozen solutions was characterized by Differential Scanning Calorimetry, X-ray diffractometry, and FTIR spectroscopy. The secondary structure of BSA was probed by FTIR, and Circular Dichroism spectroscopy in frozen and thawed solutions, respectively.

Results

Trehalose crystallization was accompanied by unfolding of BSA. BSA delayed and reduced the extent of mannitol and trehalose crystallization. Similar effects were observed upon adding D2O (≥5% w/w) and low concentrations of polysorbate 20 (≤0.2% w/w) with retention of BSA in its native conformation. At high BSA to trehalose mass ratio, the protein could stabilize itself in the frozen state, but unfolded upon thawing.

Conclusions

The API and other excipients, in a concentration-dependent manner, influenced the physical state of the freeze concentrate as well as the stability of the API.
  相似文献   

17.
The goal of this research was to use infrared spectroscopy in combination with a freeze drying stage to gain a better understanding of the mechanism of loss of protein integrity due to the stresses associated with freezing. Infrared spectra were collected in triplicate for the interstitial space between ice crystals and through ice crystals in a partially frozen system. Spectra were collected for lactate dehydrogenase (LDH) and human immune globulin (IgG) both in the presence and absence of an added surfactant (polysorbate 80). Spectra collected in the interstitial space, distant from the surface of ice crystals, were very similar to spectra collected from the initial solution regardless of the presence of a surfactant. Spectra collected through ice crystals, without added surfactant, were significantly different than spectra collected from the initial solution. An increase in bands characteristic of intermolecular β-sheet structures (main component of aggregates) were present in these spectra. The presence of surfactant in both protein formulations resulted in a decrease in intermolecular β-sheet signals in spectra of the proteins on the ice crystal surface. Additionally, much of the native state structure of LDH initially lost on the surface of ice crystals returned when surfactant was added to the formulation prior to freezing. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:3239–3246, 2009  相似文献   

18.
Previous studies have established that the selective precipitation of a less soluble buffer component during freezing can induce a significant pH shift in the freeze concentrate. During freezing of sodium phosphate solutions, crystallization of the disodium salt can produce a pH decrease as great as 3 pH units which can dramatically affect protein stability. The objective of our study was to determine how the presence of glycine (0-500 mM), a commonly used bulking agent in pharmaceutical protein formulations, affects the pH changes normally observed during freezing in sodium phosphate buffer solutions and to determine whether these pH changes contribute to instability of model proteins in glycine/phosphate formulations. During freezing in sodium phosphate buffers, the presence of glycine significantly influenced the pH. Glycine at the lower concentrations (< or = 50 mM) suppressed the pH decrease normally observed during freezing in 10 and 100 mM sodium phosphate buffer, possibly by reducing the nucleation rate of salt and thereby decreasing the extent of buffer salt crystallization. The presence of glycine at higher concentration (> 100 mM) in the sodium phosphate buffer resulted in a more complete crystallization of the disodium salt as indicated by the frozen pH values closer to the equilibrium value (pH 3.6). Although high concentrations of glycine can facilitate more buffer salt crystallization and these pH shifts may prove to be potentially damaging to the protein, glycine, in its amorphous state, can also act to stabilize a protein via the preferential exclusion mechanism.  相似文献   

19.
The aim of the study was to comprehensively investigate the influence of the freezing step during lyophilization on the stability of gene-delivery particles in order to better understand particle stabilization during freezing. Particle size of plasmid/linear polyethylenimine (LPEI) polyplexes at two DNA concentrations and at increasing sucrose-DNA ratios was investigated separately as a function of freezing procedure, ice-nucleation temperature, residence time of the particles in a partially frozen state, or incomplete freezing. Using a numerical model, the increase in sucrose concentration and system viscosity and corresponding bimolecular reaction rates were theoretically estimated. Freezing with a temperature-hold step after ice nucleation negatively influenced particle stability. Ice-nucleation temperature had an impact only at low DNA concentrations. Particle stability was highly reduced during the early part of freezing (<?3°C), especially at low shelf-ramp rates. In this phase, bimolecular reaction rates increase greatly at still low system viscosity. Below a critical temperature (≤~? 18°C) and at high system viscosity, no further particle aggregation occurred. In conclusion, the initial sample viscosity rather than the unfrozen volume and the residence time of particles in the low-viscosity state are the predominant factors in particle stabilization, which likely apply to aggregation in any system. © 2012 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:929–946, 2013  相似文献   

20.
The purpose of this study was to elucidate the effect of heat treatment on the miscibility of multiple concentrated solutes that mimic biopharmaceutical formulations in frozen solutions. The first heating thermal analysis of frozen solutions containing either a low-molecular-weight saccharide (e.g., sucrose, trehalose, and glucose) or a polymer (e.g., polyvinylpyrrolidone and dextran) and their mixtures from -70°C showed a single transition at glass transition temperature of maximally freeze-concentrated solution (T(g) ') that indicated mixing of the freeze-concentrated multiple solutes. The heat treatment of single-solute and various polymer-rich mixture frozen solutions at temperatures far above their T(g) ' induced additional ice crystallization that shifted the transitions upward in the following scan. Contrarily, the heat treatment of frozen disaccharide-rich solutions induced two-step heat flow changes (T(g) ' splitting) that suggested separation of the solutes into multiple concentrated noncrystalline phases, different in the solute compositions. The extent of the T(g) ' splitting depended on the heat treatment temperature and time. Two-step glass transition was observed in some sucrose and dextran mixture solids, lyophilized after the heat treatment. Increasing mobility of solute molecules during the heat treatment should allow spatial reordering of some concentrated solute mixtures into thermodynamically favorable multiple phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号