首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleic acid-based therapeutics have gained a lot of interest for the treatment of diverse ophthalmic pathologies. The first to enter in clinic has been an oligonucleotide, Vitravene® for the treatment of cytomegalovirus infection. More recently, research on aptamers for the treatment of age related macular degeneration has led to the development of Macugen®. Despite intense potential, effective ocular delivery of nucleic acids is a major challenge since therapeutic targets for nucleic acid-based drugs are mainly located in the posterior eye segment, requiring repeated invasive administration. Of late, nanotechnology-based nano-vectors have been developed in order to overcome the drawbacks of viral and other non-viral vectors. The diversity of nano-vectors allows for ease of use, flexibility in application, low-cost of production, higher transfection efficiency and enhanced genomic safety. Using nano-vector strategies, nucleic acids can be delivered either encapsulated or complexed with cationic lipids, polymers or peptides forming sustained release systems, which can be tailored according to the ocular tissue being targeted. The present review focuses on developments and advances in various nano-vectors for the ocular delivery of nucleic acid-based therapeutics, the barriers that such delivery systems face and methods to overcome them.  相似文献   

2.
Non-viral (synthetic) nucleic acid delivery systems have the potential to provide for the practical application of nucleic acid-based therapeutics. We have designed and prepared a tunable, non-viral nucleic acid delivery system that self-assembles with nucleic acids and centers around a new class of polymeric materials; namely, linear, water-soluble cyclodextrin-containing polymers. The relationships between polymer structure and gene delivery are illustrated, and the roles of the cyclodextrin moieties for minimizing toxicity and forming inclusion complexes in the self-assembly processes are highlighted. This vehicle is the first example of a polymer-based gene delivery system formed entirely by self-assembly.  相似文献   

3.
4.
While the systemic route of administration enables therapeutic genes to spread through the bloodstream and access target cells, it is a challenge to achieve this. Several studies demonstrate that systemic administration of therapeutic genes or other nucleic acid-based constructs such as siRNA to solid tumors as well as cancer metastases are better with nanoparticulate systems compared to administration of free (uncomplexed) nucleic acids. Nanoparticle-based nucleic acid delivery systems might be more pertinent, due to the several privileges in terms of enhanced tissue penetrability, improved cellular uptake and to a lesser extent, targeted gene delivery to the cells of interest provided targeting ligands are used. Systemic delivery of nanoplexes has already been reported with different nanoparticles containing DNA via various routes of administration. The goal of the present article is to review the current state of intravenous delivery of nanoparticles for gene therapy of cancer.  相似文献   

5.
Despite significant advances that have been made in recent years, there is still an urgent need for novel, more effective and less toxic therapeutics for human cancer. Among many new molecular therapeutics being explored for cancer therapy, antisense oligonucleotides are a promising nucleic acid-based approach, with numerous antisense agents being evaluated in preclinical studies and several anticancer antisense drugs in clinical trials. Although there are still a few problems facing the development of antisense strategies for cancer therapy, with progress made in chemical modifications, target selection and drug delivery systems, antisense oligonucleotides are emerging as a novel approach to cancer therapy used alone or in combination with conventional treatments such as chemotherapy and radiation therapy.  相似文献   

6.
Despite significant advances that have been made in recent years, there is still an urgent need for novel, more effective and less toxic therapeutics for human cancer. Among many new molecular therapeutics being explored for cancer therapy, antisense oligonucleotides are a promising nucleic acid-based approach, with numerous antisense agents being evaluated in preclinical studies and several anticancer antisense drugs in clinical trials. Although there are still a few problems facing the development of antisense strategies for cancer therapy, with progress made in chemical modifications, target selection and drug delivery systems, antisense oligonucleotides are emerging as a novel approach to cancer therapy used alone or in combination with conventional treatments such as chemotherapy and radiation therapy.  相似文献   

7.
INTRODUCTION: Different gene therapy approaches have gained extensive interest lately and, after many initial hurdles, several promising approaches have reached to the clinics. Successful implementation of gene therapy is heavily relying on finding efficient measures to deliver genetic material to cells. Recently, non-viral delivery of nucleic acids and their analogs has gained significant interest. Among non-viral vectors, cell-penetrating peptides (CPPs) have been extensively used for the delivery of nucleic acids both in vitro and in vivo. AREAS COVERED: In this review we will discuss recent advances of CPP-mediated delivery of nucleic acid-based cargo, concentrating on the delivery of plasmid DNA, splice-correcting ONs, and small-interfering RNAs. EXPERT OPINION: CPPs have proved their potential as carriers for nucleic acids. However, similarly to other non-viral vectors, CPPs require further development, as efficient systemic delivery is still seldom achieved. To achieve this, CPPs should be modified with entities that would allow better endosomal escape, targeting of specific tissues and cells, and shielding agents that increase the half-life of the vehicles. Finally, to understand the clinical potential of CPPs, they require more thorough investigations in clinically relevant disease models and in pre-clinical and clinical studies.  相似文献   

8.
RNA engineering for nanotechnology and medical applications is an exciting emerging research field. RNA has intrinsically defined features on the nanometre scale and is a particularly interesting candidate for such applications due to its amazing diversity, flexibility and versatility in structure and function. Specifically, the current use of siRNA to silence target genes involved in disease has generated much excitement in the scientific community. The intrinsic ability to sequence-specifically downregulate gene expression in a temporally- and spatially controlled fashion has led to heightened interest and rapid development of siRNA-based therapeutics. Although methods for gene silencing have been achieved with high efficacy and specificity in vitro, the effective delivery of nucleic acids to specific cells in vivo has been a hurdle for RNA therapeutics. This article covers different RNA-based approaches for diagnosis, prevention and treatment of human disease, with a focus on the latest developments of non-viral carriers of siRNA for delivery in vivo. The applications and challenges of siRNA therapy, as well as potential solutions to these problems, the approaches for using phi29 pRNA-based vectors as polyvalent vehicles for specific delivery of siRNA, ribozymes, drugs or other therapeutic agents to specific cells for therapy will also be addressed.  相似文献   

9.
The delivery of therapeutic nucleic acids to neurons has the potential to treat neurological disease and spinal cord injury. While select viral vectors have shown promise as gene carriers to neurons, their potential as therapeutic agents is limited by their toxicity and immunogenicity, their broad tropism, and the cost of large-scale formulation. Nonviral vectors are an attractive alternative in that they offer improved safety profiles compared to viruses, are less expensive to produce, and can be targeted to specific neuronal subpopulations. However, most nonviral vectors suffer from significantly lower transfection efficiencies than neurotropic viruses, severely limiting their utility in neuron-targeted delivery applications. To realize the potential of nonviral delivery technology in neurons, vectors must be designed to overcome a series of extra- and intracellular barriers. In this article, we describe the challenges preventing successful nonviral delivery of nucleic acids to neurons and review strategies aimed at overcoming these challenges.  相似文献   

10.
A wide range of organic and inorganic materials have been used in the development of nano-scale self-assembling gene delivery systems to improve the therapeutic efficacy of nucleic acid drugs. Small interfering RNA (siRNA) has recently been recognized as a promising and potent nucleic acid medicine for the treatment of incurable genetic disorders including cancer; however, siRNA-based therapeutics suffer from the same delivery problems as conventional nucleic acid drugs such as plasmid DNA and antisense oligonucleotides. Many of the delivery strategies developed for nucleic acid drugs have been applied to siRNA therapeutics, but they have not produced satisfactory in vivo gene silencing efficiencies to warrant clinical trials. This review discusses recent progress in the development of self-assembled and nanostructured delivery systems for efficient siRNA-induced gene silencing and their potential application in clinical settings.  相似文献   

11.
Recent progress in the design of cationic lipids and polymers has successfully translated nucleic acid drugs into clinical applications, such as the treatment of liver diseases and the prevention of virus infection. Small or large libraries of delivery molecules have been used to find the key chemical structures to protect nucleic acids from nucleases in the extracellular milieu and to facilitate the endosomal escape after endocytosis. This review introduces three essential design parameters (i.e., acid dissociation constant, hydrophobicity, and biodegradability) to develop synthetic molecules for nucleic acid delivery. The significance and mechanism of each parameter are described based on the results obtained from in vitro and in vivo evaluations. Other design parameters were then discussed to create the next generation of delivery molecules for future nucleic acid therapeutics.  相似文献   

12.
The liver is a key organ for numerous metabolic pathways and involves many inherited diseases that, although being different in their pathology, are often caused by lack or overproduction of a critical gene product in the diseased cells. In principle, a straightforward method to fix such problem is to introduce into these cells with a gene-coding sequence to provide the missing gene product or with the nucleic acid sequence to inhibit production of the excessive gene product. Practically, however, success of nucleic acid-based pharmaceutics is dependent on the availability of a method capable of delivering nucleic acid sequence in the form of DNA or RNA to liver cells. In this review, we will summarize the progress toward the development of physical methods for nucleic acid delivery to the liver. Emphasis is placed on the mechanism of action, pros, and cons of each method developed so far. We hope the information provided will encourage new endeavor to improve the current methodologies or develop new strategies that will lead to safe and effective delivery of nucleic acids to the liver.  相似文献   

13.
Dendrimers in gene delivery   总被引:13,自引:0,他引:13  
Dendrimers have unique molecular architectures and properties that make them attractive materials for the development of nanomedicines. Key properties such as defined architecture and a high ratio of multivalent surface moieties to molecular volume also make these nanoscaled materials highly interesting for the development of synthetic (non-viral) vectors for therapeutic nucleic acids. Rational development of such vectors requires the link to be made between dendrimer structure and the morphology and physicochemistry of the respective nucleic acid complexes and, furthermore, to the biological performance of these systems at the cellular and systemic level. The review focuses on the current understanding of the role of dendrimers in those aspects of synthetic vector development. Dendrimer-based transfection agents have become routine tools for many molecular and cell biologists but therapeutic delivery of nucleic acids remains a challenge.  相似文献   

14.
Nanomedical applications of biodegradable poly(DL-lactide-co-glycolide) (PLGA) nanoparticles (NPs) developed are discussed in this review. A surface-functionalized PLGA NP platform for drug delivery was established to encapsulate a number of macromolecular drugs such as peptides and nucleic acids as well as low-molecular-weight drugs by the emulsion solvent diffusion method. The interaction of PLGA NPs with cells and tissues could be controlled by changing the surface properties of NPs, suggesting their potential utility for the intracellular drug delivery of nucleic acid-based drugs. Furthermore, orally administered NF-κB decoy oligonucleotide-loaded CS-PLGA NPs are also useful in treating experimental colitis. These approaches using surface-modified PLGA NPs could be able to open new possibilities for nucleic acid-based drug delivery via noninvasive administration method.  相似文献   

15.
Over the last two decades, small interfering RNA (siRNA)-mediated gene silencing has quickly become one of the most powerful techniques used to study gene function in vitro and a promising area for new therapeutics. Delivery remains a significant impediment to realizing the therapeutic potential of siRNA, a problem that is also tied to immunogenicity and toxicity. Numerous delivery vehicles have been developed, including some that can be categorized as pseudovirions: these are vectors that are directly derived from viruses but whose viral coding sequences have been eliminated, preventing their classification as viral vectors. Characteristics of the pseudovirions discussed in this review, namely phagemids, HSV amplicons, SV40 in vitro-packaged vectors, influenza virosomes, and HVJ-Envelope vectors, make them attractive for the delivery of siRNA-based therapeutics. Pseudovirions were shown to deliver siRNA effector molecules and bring about RNA interference (RNAi) in various cell types in vitro, and in vivo using immune-deficient and immune-competent mouse models. Levels of silencing were not always determined directly, but the duration of siRNA-induced knockdown lasted at least 3 days. We present examples of the use of pseudovirions for the delivery of synthetic siRNA as well as the delivery and expression of DNA-directed siRNA.  相似文献   

16.
The future of nucleic acid-based therapeutics is dependent on achieving successful delivery. Recently, there has been an increasing interest in delivery via the gastrointestinal tract. Gene therapy via this route has many advantages, including non-invasive access and the versatility to treat local diseases, such as inflammatory bowel disease, as well as systemic diseases, such as haemophilia. However, the intestine presents several distinct barriers and, therefore, the design of robust non-viral delivery systems is key to future success. Several non-viral delivery strategies have provided evidence of activity in vivo. To facilitate the design of more efficient and safe gene medicines, more physiologically relevant models, at both the in vitro and in vivo levels, are essential.  相似文献   

17.
Polyplexes sensitive to redox potential gradients represent a promising class of vectors for delivery of nucleic acids. This review focuses on the recent advances in the development of these vectors. The biological rationale for the design of redox-sensitive polyplexes is discussed together with the basic synthetic approaches for introducing reducible disulfide bonds into the structure of the polyplexes. The biological properties of the redox-sensitive polyplexes of plasmid DNA, mRNA, antisense oligonucleotides and siRNA are reviewed with emphasis on in vitro cellular delivery, cytotoxicity and in vivo activity. Overall, redox-sensitive polyplexes represent a promising platform for further development as vectors for delivery of a wide variety of therapeutic nucleic acids.  相似文献   

18.
Introduction: Different gene therapy approaches have gained extensive interest lately and, after many initial hurdles, several promising approaches have reached to the clinics. Successful implementation of gene therapy is heavily relying on finding efficient measures to deliver genetic material to cells. Recently, non-viral delivery of nucleic acids and their analogs has gained significant interest. Among non-viral vectors, cell-penetrating peptides (CPPs) have been extensively used for the delivery of nucleic acids both in vitro and in vivo.

Areas covered: In this review we will discuss recent advances of CPP-mediated delivery of nucleic acid-based cargo, concentrating on the delivery of plasmid DNA, splice-correcting ONs, and small-interfering RNAs.

Expert opinion: CPPs have proved their potential as carriers for nucleic acids. However, similarly to other non-viral vectors, CPPs require further development, as efficient systemic delivery is still seldom achieved. To achieve this, CPPs should be modified with entities that would allow better endosomal escape, targeting of specific tissues and cells, and shielding agents that increase the half-life of the vehicles. Finally, to understand the clinical potential of CPPs, they require more thorough investigations in clinically relevant disease models and in pre-clinical and clinical studies.  相似文献   

19.
Polyplexes sensitive to redox potential gradients represent a promising class of vectors for delivery of nucleic acids. This review focuses on the recent advances in the development of these vectors. The biological rationale for the design of redox-sensitive polyplexes is discussed together with the basic synthetic approaches for introducing reducible disulfide bonds into the structure of the polyplexes. The biological properties of the redox-sensitive polyplexes of plasmid DNA, mRNA, antisense oligonucleotides and siRNA are reviewed with emphasis on in vitro cellular delivery, cytotoxicity and in vivo activity. Overall, redox-sensitive polyplexes represent a promising platform for further development as vectors for delivery of a wide variety of therapeutic nucleic acids.  相似文献   

20.
Nucleic acid based therapeutics offer the possibility of tailor-made treatment of malignant diseases. For recurrent glioblastoma multiforme (GBM), the most aggressive type of brain tumor, no accepted treatment exists, making therapeutically active nucleic acids a viable option. In this review, current preclinical and clinical studies harnessing the potential of antitumoral nucleic acids for GBM treatment will be considered. These include gene therapy to over-express antitumoral gene products, RNA interference to knock down components that promote tumor progression, and the tumor-targeted delivery of antitumoral double stranded RNA. Vectors applied in GBM for the delivery of nucleic acids will be discussed. These include non-replicating and replicating (oncolytic) viruses, as well as non-viral delivery vectors based on polycations or cationic lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号