首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calvarial bone healing is difficult and grafts comprising adipose-derived stem cells (ASCs) and PLGA (poly(lactic-co-glycolic acid)) scaffolds barely heal rabbit calvarial defects. Although calvarial bone forms via intramembranous ossification without cartilage templates, it was suggested that chondrocytes/cartilages promote calvarial healing, thus we hypothesized that inducing ASCs chondrogenesis and endochondral ossification involving cartilage formation can improve calvarial healing. To evaluate this hypothesis and selectively induce osteogenesis/chondrogenesis, rabbit ASCs were engineered to express the potent osteogenic (BMP2) or chondrogenic (TGF-β3) factor, seeded into either apatite-coated PLGA or gelatin sponge scaffolds, and allotransplanted into critical-size calvarial defects. Among the 4 ASCs/scaffold constructs, gelatin constructs elicited in vitro chondrogenesis, in vivo osteogenic metabolism and calvarial healing more effectively than apatite-coated PLGA, regardless of BMP2 or TGF-β3 expression. The BMP2-expressing ASCs/gelatin triggered better bone healing than TGF-β3-expressing ASCs/gelatin, filling ≈86% of the defect area and ≈61% of the volume at week 12. The healing proceeded via endochondral ossification, instead of intramembranous pathway, as evidenced by the formation of cartilage that underwent osteogenesis and hypertrophy. These data demonstrated ossification pathway switching and significantly augmented calvarial healing by the BMP2-expressing ASCs/gelatin constructs, and underscored the importance of growth factor/scaffold combinations on the healing efficacy and pathway.  相似文献   

2.
3.
Extracellular matrix (ECM) deposition in active demyelinating multiple sclerosis (MS) lesions may impede axonal regeneration and can modify immune reactions. Response gene to complement (RGC)-32 plays an important role in the mediation of TGF-β downstream effects, but its role in gliosis has not been investigated. To gain more insight into the role played by RGC-32 in gliosis, we investigated its involvement in TGF-β-induced ECM expression and the upregulation of the reactive astrocyte markers α-smooth muscle actin (α-SMA) and nestin. In cultured neonatal rat astrocytes, collagens I, IV, and V, fibronectin, α-SMA, and nestin were significantly induced by TGF-β stimulation, and RGC-32 silencing resulted in a significant reduction in their expression. Using astrocytes isolated from RGC-32 knock-out (KO) mice, we found that the expression of TGF-β-induced collagens I, IV, and V, fibronectin, and α-SMA was significantly reduced in RGC-32 KO mice when compared with wild-type (WT) mice. SIS3 inhibition of Smad3 phosphorylation was also associated with a significant reduction in RGC-32 nuclear translocation and TGF-β-induced collagen I expression. In addition, during experimental autoimmune encephalomyelitis (EAE), RGC-32 KO mouse astrocytes displayed an elongated, bipolar phenotype, resembling immature astrocytes and glial progenitors whereas those from WT mice had a reactive, hypertrophied phenotype. Taken together, our data demonstrate that RGC-32 plays an important role in mediating TGF-β-induced reactive astrogliosis in EAE. Therefore, RGC-32 may represent a new target for therapeutic intervention in MS.  相似文献   

4.
Delta like-1 (Dlk1)/preadipocyte factor-1 (Pref-1)/fetal antigen-1 (FA1) is a novel surface marker for embryonic chondroprogenitor cells undergoing lineage progression from proliferation to prehypertrophic stages. However, mechanisms mediating control of its expression during chondrogenesis are not known. Thus, we examined the effect of a number of signaling molecules and their inhibitors on Dlk1 expression during in vitro chondrogenic differentiation in mouse embryonic limb bud mesenchymal micromass cultures and mouse embryonic fibroblast (MEF) pellet cultures. Dlk1/Pref-1 was initially expressed during mesenchymal condensation and chondrocyte proliferation, in parallel with expression of Sox9 and Col2a1, and was downregulated upon the expression of Col10a1 by hypertrophic chondrocytes. Among a number of molecules that affected chondrogenesis, transforming growth factor-β1 (TGF-β1)-induced proliferation of chondroprogenitors was associated with decreased Dlk1 expression. This effect was abolished by TGF-β signaling inhibitor SB431542, suggesting regulation of Dlk1/FA1 by TGF-β1 signaling in chondrogenesis. TGF-β1-induced Smad phosphorylation and chondrogenesis were significantly increased in Dlk1(-/-) MEF, while they were blocked in Dlk1 overexpressing MEF, in comparison with wild-type MEF. Furthermore, overexpression of Dlk1 or addition of its secreted form FA1 dramatically inhibited TGF-β1-induced Smad reporter activity. In conclusion, our data identified Dlk1/FA1 as a downstream target of TGF-β1 signaling molecule that mediates its function in embryonic chondrogenesis. The crosstalk between TGF-β1 and Dlk1/FA1 was shown to promote early chondrogenesis during the embryonic endochondral ossification process.  相似文献   

5.
ObjectivesThe aim of this study was to investigate the effect of Toll like receptor 4 (TLR4) on fracture healing.MethodsThe open tibial fracture models in TLR4 knockout (TLR4−/−) and wild type (WT) C57BL-6 J mice were established. The radiological examination, tartrate-resistant acid phosphatase (TRAP) staining, Micro-CT scan and biological torsion test were performed on 7, 14 and 21 days after operation. Enzyme Linked Immunosorbent Assay (ELISA) kit was used to detect the expression levels of tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1β) and interleukin 6 (IL-6). Western blotting was used to detect the expression of β-catenin, Wingless-type MMTV integration site family, member 4 and 5B (Wnt4 and Wnt5B), proliferating cell nuclear antigen (PCNA) and bone morphogenetic protein-2 (BMP-2) of the callus tissue obtained from mice.ResultsTLR4 knockout promoted fracture healing, reduced the number of osteoclasts, increased bone callus volume (BV) and callus mineralized volume fraction (BV/TV%) (P < 0.05), increased the maximum torque and torsional stiffness of callus (P < 0.05), reduced TNF-α, IL-1β and IL-6 expression (P < 0.01), and increased the expression levels of β-catenin, Wnt4, Wnt5B, PCNA and BMP-2 (P < 0.01).ConclusionTLR4 knockout reduced inflammatory and promoted fracture healing by activating Wnt/β-catenin signaling pathway.  相似文献   

6.
The aim of the study was to determine the effects of retinoic acid on lung alveolar repair in adult hyperoxic mice and to investigate the relationship between TGF-β1 and retinoic acid during the repair processes. Adult mice were divided into 4 groups. Two groups were given daily intraperitoneal injections of peanut oil/dimethylsulfoxide mixture and retinoic acid (50 mg/kg body weight, 50 μl of volume) dissolved in peanut oil/dimethylsulfoxide mixture for 12 days with a 2-day break on days 6 and 7. Following hyperoxia (100% oxygen) for 72 h the remaining two groups were treated in the same manner as already described: peanut oil/dimethylsulfoxide mixture and retinoic acid. Lung structure was investigated by light microscopy. TGF-β1 and Smad protein expressions in the lung were assayed by biochemical methods. Hyperoxic mice exhibited damage to the alveolar walls, increased cell proliferation and induced Smad3/TGF-β1 signaling. Smad2 and phospho-Smad2 protein expressions were unchanged in all groups. Retinoic acid administration improved the degenerative alterations caused by hyperoxia and helped in alveolar repair. This positive effect of retinoic acid resulted from the inhibition of Smad3/TGF-β1 signaling via reduced Smad4 mRNA and increased Smad7 protein expression. Retinoic acid also induced alveolarization and restricted Smad3/TGF-β1 signaling by decreasing Smad4 mRNA in healthy mice. Thus, retinoic acid helped repair Smad3/TGF-β1-induced lung damage in hyperoxic mice.  相似文献   

7.
We could recently report that erythropoietin (EPO) accelerates skin wound healing in mice. Now, we provide insight into the molecular mechanisms of this non-hematopoietic property of EPO analyzing the transforming growth factor (TGF)-β signaling pathway. EPO receptor was found expressed in both non-wounded and wounded skin tissue as well as in fibroblasts and keratinocytes. In saline-treated control animals, wounds exhibited a significant upregulation of TGF-β1 and of α-smooth muscle actin (α-SMA) compared with non-wounded skin. EPO treatment accelerated wound epithelialization and induced mRNA expression of TGF-β1 and α-SMA. In addition, EPO significantly enhanced phosphorylation of Smad2 and Smad3 in fibroblasts and also elevated phosphorylation of Smad3 in wound tissue. Blockade of TGF-β using a neutralizing anti-TGF-β antibody attenuated EPO-induced acceleration of wound epithelialization in vivo and markedly reversed EPO effects on mRNA expression of TGF-β1 and α-SMA. In conclusion, EPO caused activation of the Smad-dependent TGF-β signaling pathway, enhanced differentiation of myofibroblasts, and accelerated skin wound closure.  相似文献   

8.
Airway remodeling is characterized by airway wall thickening, subepithelial ?brosis, increased smooth muscle mass, angiogenesis and increased mucous glands, which can lead to a chronic and obstinate asthma with pulmonary function depression. In the present study, we investigated whether the astragalus extract inhibits airway remodeling in a mouse asthma model and observed the effects of astragalus extract on the transforming growth factor-β1 (TGF-β1)/Smad signaling pathway in ovalbumin-sensitized mice. Mice were sensitized and challenged by ovalbumin to establish a model of asthma. Treatments included the astragalus extract and budesonide. Lung tissues were obtained for hematoxylin and eosin staining and Periodic acid-Schiff staining after the ?nal ovalbumin challenge. Levels of TGF-β1 were assessed by immunohistology and ELISA, levels of TGF-β1 mRNA were measured by RT-PCR, and levels of P-Smad2/3 and T-Smad2/3 were assessed by western blotting. Astragalus extract and budesonide reduced allergen-induced increases in the thickness of bronchial airway and mucous gland hypertrophy, goblet cell hyperplasia and collagen deposition. Levels of lung TGF-β1, TGF-β1 mRNA and P-Smad2/3 were signi?cantly reduced in mice treated with astragalus extract and budesonide. Astragalus extract improved asthma airway remodeling by inhibiting the expression of the TGF-β1/Smad signaling pathway, and may be a potential drug for the treatment of patients with a severe asthma airway.  相似文献   

9.
Transforming growth factor-beta (TGF-beta) plays a central role in the pathogenesis of inflammatory and fibrotic diseases, including radiation-induced fibrosis. We previously reported that mice null for Smad3, a key downstream mediator of TGF-beta, show accelerated healing of cutaneous incisional wounds with reduced inflammation and accumulation of matrix. To determine if loss of Smad3 decreases radiation-induced injury, skin of Smad3+/+ [wild-type (WT)] and -/- [knockout (KO)] mice was exposed to a single dose of 30 to 50 Gy of gamma-irradiation. Six weeks later, skin from KO mice showed significantly less epidermal acanthosis and dermal influx of mast cells, macrophages, and neutrophils than skin from WT littermates. Skin from irradiated KO mice exhibited less immunoreactive TGF-beta and fewer myofibroblasts, suggesting that these mice will have a significantly reduced fibrotic response. Although irradiation induced no change in the immunohistochemical expression of the TGF-beta type I receptor, the epidermal expression of the type II receptor was lost after irradiation whereas its dermal expression remained high. Primary keratinocytes and dermal fibroblasts prepared from WT and KO mice showed similar survival when irradiated, as did mice exposed to whole-body irradiation. These results suggest that inhibition of Smad3 might decrease tissue damage and reduce fibrosis after exposure to ionizing irradiation.  相似文献   

10.
Smads are cytoplasmic signal transducers of transforming growth factor-beta (TGF-beta) and bone morphogenetic proteins (BMPs). Their relation to fracture healing is unknown. This study examined the temporal protein expression of Smads, together with TGF-beta and BMPs, using immunohistochemistry in a rodent fracture model. Over-expression of TGF-beta, BMPs-2, 4, and 7, common-mediator Smad (Smad4), and receptor-regulated Smads (Smads1, 2, 3, and 5) versus lower levels of inhibitory Smad (Smad6), were detected at day 3 in osteogenic cells in the thickened periosteum and bone marrow at the fracture sites. At day 10, Smad6 increased dramatically, Smad2, Smad3, and Smad4 remained elevated while Smad1 and Smad5 decreased in the fracture callus. Smad7 was expressed only in vascular endothelial cells. By day 28, when new bone had replaced the fracture callus, all the protein regulators decreased, approaching control levels. During fracture healing, the expression patterns of Smads1 and 5 were similar to that of BMPs-2 and 7 whereas the expression of Smads2 and 3 was parallel with that of TGF-beta. The Smad family, associated with BMPs and TGF-beta, may play an important role in the early stage of rat fracture healing.  相似文献   

11.
 摘要:目的 探讨实验性肝纤维化小鼠肝组织中TGFβ1,CTGF信号转导通路的变化及意义。方法30只C57BL6/J小鼠随机分为正常对照组、肝纤维化模型组,采用10%的CCL4橄榄油腹腔注射诱导小鼠肝纤维化模型,对照组给予生理盐水灌胃,共造模8周。观察血清ALT、HA水平,HE染色、Masson染色观察肝组织炎症及纤维化程度,免疫组化法和RT-PCR法对肝组织α-SMA、TGFβ1、TGFβRⅡ、Smad3,Smad7,CTGF蛋白和mRNA水平进行检测,并与对照组肝组织进行比较。结果 模型组小鼠血清ALT及HA水平明显高于对照组;模型组小鼠肝组织α-SMA、TGFβ1、TGFβRII、Smad3、CTGF蛋白表达和TGFβ1、Smad3、CTGF mRNA表达明显高于对照组,而模型组肝组织Smad7蛋白和Smad7 mRNA表达较对照组小鼠显著降低。结论 TGFβ1和CTGF信号转导通路过度活化,Smad7表达和负调节TGFβ、CTGF信号转导通路的功能被抑制可能与肝纤维化的发生和发展密切相关。  相似文献   

12.
Animal cornea is an avascular transparent tissue that is suitable for research on wound healing-related scarring and neovascularization. Here we show that loss of tumor necrosis factor alpha (TNFalpha) potentiates the undesirable, pathogenic response of wound healing in an alkali-burned cornea in mice. Excessive invasion of macrophages and subsequent formation of a vascularized scar tissue were much more marked in TNFalpha-null knockout (KO) mice than in wild-type mice. Such an unfavorable outcome in KO mice was abolished by Smad7 gene introduction, indicating the involvement of transforming growth factor beta or activin/Smad signaling. Bone marrow transplantation from wild-type mice normalized healing of the KO mice, suggesting the involvement of bone marrow-derived inflammatory cells in this phenomenon. Co-culture experiments showed that loss of TNFalpha in macrophages, but not in fibroblasts, augmented the fibroblast activation as determined by detection of alpha-smooth muscle actin, the hallmark of myofibroblast generation, mRNA expression of collagen Ialpha2 and connective tissue growth factor, and detection of collagen protein. TNFalpha in macrophages may be required to suppress undesirable excessive inflammation and scarring, both of which are promoted by transforming growth factor beta, and for restoration of tissue architecture in a healing alkali-burned cornea in mice.  相似文献   

13.
14.
15.
16.
It is known that angiotensin (Ang)-converting enzyme (ACE) 2 catalyzes Ang II to Ang 1-7 to prevent the detrimental effect of Ang II on blood pressure, renal fibrosis, and inflammation. However, mechanisms of renoprotective role of Ace2 remain largely unclear. The present study tested the hypothesis that deficiency of Ace2 may accelerate intrarenal Ang II-mediated fibrosis and inflammation independent of blood pressure in a model of unilateral ureteral obstructive (UUO) nephropathy induced in Ace2(+/y) and Ace2(-/y) mice. Results showed that both Ace2(+/y) and Ace2(-/y) mice had normal levels of blood pressure and plasma Ang II/Ang 1-7. In contrast, deletion of ACE2 resulted in a fourfold increase in the ratio of intrarenal Ang II/Ang 1-7 in the UUO nephropathy. These changes were associated with the development of more intensive tubulointerstitial fibrosis (α-SMA, collagen I) and inflammation (TNF-α, IL-1β, MCP-1, F4/80(+) cells, and CD3(+)T cells) in Ace2(-/y) mice at day 3 (all P<0.05) after UUO, becoming more profound at day 7 (all P<0.01). Enhanced renal fibrosis and inflammation in the UUO kidney of Ace2(-/y) mice were largely attributed to a marked increase in the intrarenal Ang II signaling (AT1-ERK1/2 mitogen-activated protein kinase), TGF-β/Smad2/3, and NF-κB signaling pathways. Further studies revealed that enhanced TGF-β/Smad and NF-κB signaling in the UUO kidney of Ace2(-/y) mice was associated with upregulation of an E3 ligase Smurf2 and a loss of renal Smad7. In conclusion, enhanced Ang II-mediated TGF-β/Smad and NF-κB signaling may be the mechanisms by which loss of Ace2 enhances renal fibrosis and inflammation. Smad7 ubiquitin degradation mediated by Smurf2 may be a central mechanism by which Ace2(-/y) mice promote TGF-β/Smad2/3-mediated renal fibrosis and NF-κB-driven renal inflammation in a mouse model of UUO nephropathy.  相似文献   

17.
Transforming growth factor (TGF)-β and fibroblast growth factor (FGF)-2 both promote repair in valve interstitial cell (VIC) injury models; however, the relationship between TGF-β and FGF-2 in wound repair are not well understood. VIC confluent monolayers were wounded by mechanical injury and incubated separately or in combination with FGF-2, neutralizing antibody to FGF-2, neutralizing antibody to TGF-β, and betaglycan antibody for 24 hours after wounding. Phosphorylated Smad2/3 (pSmad2/3) was localized at the wound edge (WE) and at the monolayer away from the WE. Down-regulation of pSmad2/3 protein expression via small-interfering RNA transfection was performed. The extent of wound closure was monitored for up to 96 hours. FGF-2 incubation resulted in a significant increase in nuclear pSmad2/3 staining at the WE. Neutralizing antibody to TGF-β alone or with FGF-2 present resulted in a similar significant decrease in pSmad2/3. Neutralizing antibody to FGF-2 alone or with FGF-2 present showed a similar significant decrease in pSmad2/3; however, significantly more staining was observed than treatment with neutralizing antibody to TGF-β. Incubation with betaglycan antibody inhibited FGF-2-mediated pSmad2/3 signaling. Wound closure corresponded with pSmad2/3 staining at the WE. Down-regulation of pSmad2/3 via small-interfering RNA transfection significantly reduced the extent to which FGF-2 promoted wound closure. Fibroblast growth factor-2 promotes in vitro VIC wound repair, at least in part, through the TGF-β/Smad2/3 signaling pathway.  相似文献   

18.
We previously reported that osteopontin (OPN), a matrix structural glycophosphoprotein, is upregulated in the injured mouse lens prior to the epithelial-mesenchymal transition (EMT). Here, we investigated the role of this protein in EMT of the lens epithelium during wound healing. The crystalline lens was injured by needle puncture in OPN-null (KO, n=40) and wild-type (WT, n=40) mice. The animals were killed at day 1, 2, 5, and 10 postinjury. Immunohistochemistry was employed to detect alpha-smooth muscle action (alphaSMA), a marker of EMT, collagen type I, transforming growth factor beta1 (TGFbeta1), TGFbeta2, and phospho-Smad2/3. Cell proliferation was assayed by examining uptake of bromodeoxyuridine (BrdU). The results showed that injury-induced EMT of mouse lens epithelium, as evaluated by histology, expression pattern of alphaSMA and collagen I, was altered in the absence of OPN with reduced phospho-Smad2/3 signaling. Upregulation of TGFbeta1 and TGFbeta2 in the epithelium was also inhibited. Cell proliferation was more active in KO mice as compared with WT mice at day 1 and 2, but not at day 5 and 10. An in vitro experiment shows OPN facilitates cell adhesion of lens epithelial cell line. OPN is required for activation of Smad2/3 signal in an injured lens epithelium and lens cell EMT.  相似文献   

19.
目的:探究miR-224-3P 及转化生长因子-β(TGF-β)/Smads 信号通路相关分子在慢性盆腔炎模型大鼠子 宫组织中的表达水平及其与子宫组织炎症的相关性。方法: 将大鼠分为对照组和实验组,实验组通过机械损伤及 接种混合菌构建大鼠慢性盆腔炎模型,H-E 染色检测大鼠子宫组织病理特性,ELISA 检测大鼠外周血肿瘤坏死因 子α(TNF-α)、核因子κB(NF-κB)水平的变化,qPCR 检测子宫组织miR-224-3P、TGF-β 和Smad3 mRNA 表达 水平,并进行相关性分析,免疫印迹检测子宫组织TNF-α,NF-κB,TGF-β 和Smad3 蛋白表达水平。结果:H-E 染色结果表明,与对照组相比,实验组大鼠出现明显慢性盆腔炎变化。ELISA 结果表明外周血 TNF-α、NF-κB水 平显著高于对照组。qPCR 结果显示,实验组miR-224-3P 显著上调, TGF-β 和Smad3 mRNA 显著上调,且miR- 224-3P 与TGF-β 和Smad3 mRNA 呈正相关。免疫印迹结果表明实验组子宫组织TGF-β、Smad3 和p-Smad3 蛋白 表达水平显著升高。结论: 慢性盆腔炎模型大鼠子宫组织中miR-224-3P 表达与TGF-β、Smad3 呈显著正相关, 可能与转化生长因子-β/Smad3 信号通路的磷酸化相关。  相似文献   

20.
Tumor necrosis factor like cytokine 1A (TL1A) is a member of the TNF superfamily. Accumulating evidence demonstrated the importance of TL1A in the pathogenesis of inflammatory bowel disease (IBD) and suggested a potential role of TL1A blocking in IBD therapy. Here we aimed to explore whether the anti-TL1A antibody could ameliorate intestinal inflammation and fibrosis in IBD. A T cell transfer model of chronic colitis was induced by intraperitoneal injection of CD4+CD45RBhigh naive T cells isolated from either C57BL/6 wild type (WT) mice or LCK-CD2-Tl1a-GFP transgenic (L-Tg) mice into recombinase activating gene-1-deficient (RAG?/?) mice. The colitis model mice were treated prophylactically or therapeutically with anti-Tl1a antibody or IgG isotype control. Haematoxylin and eosin staining (H&E staining), Masson's trichrome staining (MT staining) and sirius red staining were used to detect histopathological changes in colonic tissue; immunohistochemical staining was used to detect the expressions of collagen I, collagen III, TIMP1, vimentin, α-SMA and TGF-β1/Smad3. Results showed that anti-Tl1a antibody could reduce intestinal inflammation and fibrosis by inhibiting the activation of intestinal fibroblasts and reducing the collagen synthesis in the T cell transfer model of chronic colitis. The mechanism may be related to the inhibition of TGF-1/Smad3 signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号