首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and purpose:

Recent experiments using non-selective 5-hydroxytryptamine (5-HT)2C receptor agonists including WAY 161503 suggested that midbrain 5-HT neurones are under the inhibitory control of 5-HT2C receptors, acting via neighbouring gamma-aminobutyric acid (GABA) neurones. The present study extended this pharmacological characterization by comparing the actions of WAY 161503 with the 5-HT2C receptor agonists, Ro 60-0275 and 1-(3-chlorophenyl) piperazine (mCPP), as well as the non-selective 5-HT agonist lysergic acid diethylamide (LSD) and the 5-HT releasing agent 3,4-methylenedioxymethamphetamine (MDMA).

Experimental approach:

5-HT neuronal activity was measured in the dorsal raphe nucleus (DRN) using extracellular recordings in anaesthetized rats. The activity of DRN GABA neurones was assessed using double-label immunohistochemical measurements of Fos and glutamate decarboxylase (GAD).

Key results:

Ro 60-0175, like WAY 161503, inhibited 5-HT neurone firing, and the 5-HT2C antagonist SB 242084 reversed this effect. mCPP also inhibited 5-HT neurone firing (∼60% neurones) in a SB 242084-reversible manner. LSD inhibited 5-HT neurone firing; however, this effect was not altered by either SB 242084 or the 5-HT2A/C receptor antagonist ritanserin but was reversed by the 5-HT1A receptor antagonist WAY 100635. Similarly, MDMA inhibited 5-HT neurone firing in a manner reversible by WAY 100635, but not SB 242084 or ritanserin. Finally, both Ro 60-0275 and mCPP, like WAY 161503, increased Fos expression in GAD-positive DRN neurones.

Conclusions and implications:

These data strengthen the hypothesis that midbrain 5-HT neurones are under the inhibitory control of 5-HT2C receptors, and suggest that the 5-HT2C agonists Ro 60-0175, mCPP and WAY 161503, but not LSD or MDMA, are useful probes of the mechanism(s) involved.  相似文献   

2.
Rationale Global serotonin (5-HT) depletion increases the number of premature responses made on the five-choice serial reaction time task (5CSRT) in rats. In contrast, the 5-HT2A receptor antagonist M100907 decreases this measure of impulsivity. Mounting evidence suggests that 5-HT2A and 5-HT2C receptors have opposing effects on behaviour, and that the 5-HT2C receptor antagonist SB 242084 produces a pattern of behaviour similar to 5-HT depletion.Objectives To assess the effects of 5-HT2A and 5-HT2C receptor antagonists on performance of the 5CSRT, to directly compare the effects of these drugs with those of ICV 5,7-dihydroxytryptamine (5,7-DHT) lesions and to investigate whether 5-HT depletion affects the action of these agents.Methods The effects of M100907 (0, 0.01, 0.03, 0.1 mg/kg IP) and SB 242084 (0, 0.1, 0.25, 0.5 mg/kg IP) were investigated on performance of the 5CSRT in both ICV 5,7-DHT-lesioned and sham-operated rats.Results ICV 5,7-DHT lesions, which significantly decreased forebrain levels of 5-HT by around 90%, increased levels of premature responding, decreased omissions and the latency to respond correctly, yet did not affect performance accuracy. M100907 decreased premature responding in sham-operated controls but not in 5-HT-depleted rats. In contrast, SB 242084 increased premature responding in all animals, and also decreased the latency to make a correct response in sham-operated controls.Conclusions These data support the view that serotonergic regulation of impulsive behaviour through different members of the 5-HT2 receptor family is functionally heterogeneous. Although both 5-HT2A and 5-HT2C receptors participate in controlling this form of impulsive action, their relative contribution may depend on the endogenous state of the 5-HT system.  相似文献   

3.
BACKGROUND AND PURPOSE: Recent evidence suggests that 5-HT(2C) receptor activation may inhibit midbrain 5-HT neurones by activating neighbouring GABA neurones. This hypothesis was tested using the putative selective 5-HT(2C) receptor agonist, WAY 161503. EXPERIMENTAL APPROACH: The effect of WAY 161503 on 5-HT cell firing in the dorsal raphe nucleus (DRN) was investigated in anaesthetised rats using single unit extracellular recordings. The effect of WAY 161503 on DRN GABA neurones was investigated using double label immunohistochemical measurements of Fos, glutamate decarboxylase (GAD) and 5-HT(2C) receptors. Finally, drug occupancy at 5-HT(2A) receptors was investigated using rat positron emission tomography and ex vivo binding studies with the 5-HT(2A) receptor radioligand [(11)C]MDL 100907. KEY RESULTS: WAY 161503 caused a dose-related inhibition of 5-HT cell firing which was reversed by the 5-HT(2) receptor antagonist ritanserin and the 5-HT(2C) receptor antagonist SB 242084 but not by the 5-HT(1A) receptor antagonist WAY 100635. SB 242084 pretreatment also prevented the response to WAY 161503. The blocking effects of SB 242084 likely involved 5-HT(2C) receptors because the drug did not demonstrate 5-HT(2A) receptor occupancy in vivo or ex vivo. The inhibition of 5-HT cell firing induced by WAY 161503 was partially reversed by the GABA(A) receptor antagonist picrotoxin. Also, WAY 161503 increased Fos expression in GAD positive DRN neurones and DRN GAD positive neurones expressed 5-HT(2C) receptor immunoreactivity. CONCLUSIONS AND IMPLICATIONS: These findings indicate that WAY 161503 inhibits 5-HT cell firing in the DRN in vivo, and support a mechanism involving 5-HT(2C) receptor-mediated activation of DRN GABA neurones.  相似文献   

4.
This study characterizes the relaxant response to 5-hydroxytryptamine (5-HT) in prostaglandin F2 (PGF2)-precontracted pulmonary arteries of weaned pigs. In arterial rings with intact endothelium, the relaxation to 5-HT was biphasic. The high affinity component of relaxation to 5-HT (0.1–10 nM) was abolished by mechanical removal of the endothelium or after the addition of l-NAME (200 M), and was inhibited by the 5-HT2B/2C receptor antagonist SB 206553 (1 M), but not the 5-HT2C receptor antagonist SB 242084 (0.1 M). Endothelium-intact arteries were also relaxed by the selective 5-HT2B receptor agonist BW 723C86 (pD2 7.7). The relaxant response to BW 723C86 was inhibited by 1 M SB 206553 (pKB 6.8). The low affinity component of relaxation to 5-HT (30 nM) remained unaffected after mechanical removal of the endothelium or the addition of l-NAME. In endothelium-denuded arterial rings, 5-HT, 5-carboxamidotryptamine (5-CT), 5-methoxytryptamine (5-MeOT), and frovatriptan produced monophasic relaxations with pD2 values of 6.5, 7.5, 5.9, and 4.7 respectively. Relaxant responses to the agonists were antagonized by the selective 5-HT7 receptor antagonist SB 269970 (pKB 8.2–8.9). The relaxant response to the potent 5-HT7 receptor agonist 5-CT was also antagonized by methiothepin (pKB 9.6), pimozide (pKB 8.2), mesulergine (pKB 7.7), methysergide (pKB 7.4), clozapine (pKB 7.6), and spiperone (pKB 7.4). The estimated pKB values argue in favor of an involvement of 5-HT7 receptors in the direct vasorelaxant action of 5-HT in the pulmonary arteries of weaned pigs. The relaxant response to 5-CT was associated with an increase in cAMP that was surmountably antagonized by SB 269970 (pKB 8.6). The present in vitro bioassay can be used to characterize new drugs with potential agonist or antagonist properties at functional 5-HT7 receptors.  相似文献   

5.
  1. In the human temporal artery both 5-HT1-like and 5-HT2A receptors mediate the contractile effects of 5-hydroxytryptamine (5-HT) and we have suggested that the 5-HT1-like receptors resemble more closely recombinant 5-HT1B than 5-HT1D receptors. To investigate further which subtype is involved, we investigated the blockade of 5-HT-induced contractions by the 5-HT1B-selective antagonist SB-224289 (2,3,6,7-tetrahydro-1′-methyl-5-{2-methyl-4′[(5-methyl-1,2,4-oxadiazole-3-yl) biphenyl-4-yl] carbonyl} furo[2,3-f]indole-3-spiro-4′-piperidine oxalate) and the 5-HT1D-selective antagonist BRL-15572 (1-phenyl-3[4-3-chlorophenyl piperazin-1-yl] phenylpropan-2-ol). We also used RT-PCR to search for the mRNA of 5-HT1B, 5-HT1D and other 5-HT receptors.
  2. The contractile effects of 5-HT in temporal artery rings were partially antagonized by SB-224289 (20, 200 nM) (apparent KB=1 nM) and ketanserin (1 μM) but not by BRL-15572 (500 nM).
  3. Sumatriptan evoked contractions (EC50, 170 nM) that were resistant to blockade by BRL-15572 (500 nM) but antagonized by SB-224289 (20, 200 nM).
  4. The potency of 5-HT (EC50) was estimated to be 94 nM for the ketanserin-sensitive receptor and 34 nM for the SB-224289-sensitive receptor. The fraction of maximal 5-HT response mediated through SB-224289-sensitive receptors was 0.20–0.67, the remainder being mediated through ketanserin-sensitive receptors.
  5. We detected arterial receptor mRNA for the following receptors (incidence): 5-HT1B (8/8), 5-HT1D (2/8), 5-HT1F (0/4), 5-HT2A (0/8), 5-HT2B (0/8), 5-HT2C (0/8), 5-HT4 (4/8) and 5-HT7 (4/8).
  6. We conclude that the ketanserin-resistant fraction of the 5-HT effects and the effects of sumatriptan are mediated by 5-HT1B receptors. The lack of antagonism by BRL-15572 rules out 5-HT1D receptors as mediators of the contractile effects of 5-HT and sumatriptan.
  相似文献   

6.
The serotonin (5-HT) syndrome occurs in humans after antidepressant overdose or combination of drugs inducing a massive increase in extracellular 5-HT. Several 5-HT receptors are known to participate in this syndrome in humans and animal models. The 5-HT2B receptor has been proposed as a positive modulator of serotonergic activity, but whether it is involved in 5-HT syndrome has not yet been studied.We analyzed here, a putative role of 5-HT2B receptors in this disorder by forced swimming test (FST) and behavioral assessment in the open field. In FST, genetic (5-HT2B−/− mice) or pharmacological (antagonist RS127445 at 0.5 mg/kg) ablation of 5-HT2B receptors facilitated selective 5-HT reuptake inhibitors (SSRI)-induced increase of immobility time as well as expression of other symptoms related to 5-HT syndrome like hind limb abduction and Straub tail. Increase in immobility was also developed in FST by both wild type (WT) and 5-HT2B−/− mice after the administration of 5-HT1A, 5-HT2A or 5-HT2C receptor agonists, 8-OH-DPAT (5 mg/kg), DOI (1 mg/kg), or WAY161503 (5 mg/kg), respectively. In contrast, the 5-HT2B receptor agonist BW723C86 (3 mg/kg) or 5-HT1B receptor agonist CGS12066A (2 mg/kg) decreased immobility time in both genotypes. The 5-HT syndrome induced by fluoxetine at high doses was blocked in WT and 5-HT2B−/− mice by administration of 5-HT1A and 5-HT2C receptor antagonists (WAY100635 0.5 mg/kg and SB242084 0.5 mg/kg) but not by the 5-HT2A receptor antagonist MDL100907 (1 mg/kg). By behavioral assessment, we confirmed that 5-HT2B−/− mice were more prone to develop 5-HT syndrome symptoms after administration of high dose of SSRIs or the 5-HT precursor 5-Hydroxytryptophan, 5-HTP, even if increases in 5-HT plasma levels were similar in both genotypes.This evidence suggests that the presence of 5-HT2B receptors hinders acute 5-HT toxicity once high levels of 5-HT are attained. Therefore, differential agonism/antagonism of 5-HT receptors should be considered in the search of therapeutic targets for treating this serious disorder.  相似文献   

7.
Rationale  Social instigation is used in rodents to induce high levels of aggression, a pattern of behavior with certain parallels to that of violent individuals. This procedure consists of a brief exposure to a provocative stimulus male, before direct confrontation with an intruder. Studies using 5-HT1A and 5-HT1B receptor agonists show an effective reduction in aggressive behavior. An important site of action for these drugs is the ventral orbitofrontal cortex (VO PFC), an area of the brain which is particularly relevant in the inhibitory control of aggressive and impulsive behavior. Objectives  The objectives of the study are to assess the anti-aggressive effects of 5-HT1A and 5-HT1B agonist receptors [8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide (8-OH-DPAT) and CP-93,129] in the VO PFC of socially provoked male mice. To confirm the specificity of the receptor, 5-HT1A and 5-HT1B antagonist receptors (WAY-100,635 and SB-224,289) were microinjected into the same area, in order to reverse the agonist effects. Results  8-OH-DPAT (0.56 and 1.0 μg) reduced the frequency of attack bites. The lowest dose of CP-93,129 (0.1 μg) also decreased the number of attack bites and lateral threats. 5-HT1A and 5-HT1B receptor agonists differed in their effects on non-aggressive activities, the former decreasing rearing and grooming, and the latter, increasing these acts. Specific participation of the 1A and 1B receptors was verified by reversal of anti-aggressive effects using selective antagonists WAY-100,635 (10.0 μg) and SB-224,289 (1.0 μg). Conclusions  The decrease in aggressiveness observed with microinjections of 5-HT1A and 5-HT1B receptor agonists into the VO PFC of socially provoked mice, supports the hypothesis that activation of these receptors modulates high levels of aggression in a behaviorally specific manner.  相似文献   

8.
5-HT2C receptor agonists have considerable therapeutic potential, however there is little in vivo data to compare the potency and selectivity of 5-HT2C receptor agonists. Since 5-HT2C receptor agonists reduce locomotor activity and food intake, changes in these drug-induced behaviours in 5-HT2C receptor knockout mice could provide a means to examine receptor selectivity in-vivo. Initially this study compared older 5-HT2C agonists mCPP and MK212, to newer, apparently more selective compounds: Ro 60-0175, WAY161503, CP809,101 and lorcaserin (APD356) on motor activity in wild-type, and 5-HT2C receptor knockout mice. Two 5-HT2C receptor antagonists SB242084 and SDZ SER 082 were also examined. mCPP did not significantly alter activity in wild-type mice, but enhanced activity in knockout animals. MK212 (3 and 10 mg/kg) and Ro 60-0175 (1 and 3 mg/kg) reduced activity in wild-type but not knockout animals. At 10 mg/kg, Ro 60-0175 reduced activity in knockout animals, suggesting loss of 5-HT2C receptor selectivity. CP809,101 and lorcaserin reduced activity in wild-type but not knockout mice. In subsequent feeding studies, Ro 60-0175 and lorcaserin reduced food intake in wild-type animals only. Selectivity of effect for mCPP was marginal. The antagonist SB242084 increased activity in wild-type animals but not in knockout mice; SB242084 did not alter feeding in either genotype. SDZ SER 082 reduced activity in both genotypes implying poor selectivity for 5-HT2C receptors. The data demonstrate that studying food intake, and particularly motor behaviour, in the 5-HT2C receptor knockout mouse is a useful and relatively simple approach for screening 5-HT2C receptor ligands in vivo.  相似文献   

9.
Intracerebroventricular administration of selective agonist of serotonin 5-HT7 receptor LP44 (4-[2-(methylthio)phenyl]-N-(1,2,3,4-tetrahydro-1-naphthalenyl)-1-pyperasinehexanamide hydrochloride; 10.3, 20.5 or 41.0 nmol) produced considerable hypothermic response in CBA/Lac mice. LP44-induced (20.5 nmol) hypothermia was significantly attenuated by the selective 5-HT7 receptor antagonist SB 269970 (16.1 fmol, i.c.v.) pretreatment. At the same time, intraperitoneal administration of LP44 in a wide range of doses 1.0, 2.0 or 10.0 mg/kg (2.0, 4.0, 20.0 μmol/kg) did not cause considerable hypothermic response. These findings indicate the implication of central, rather than peripheral 5-HT7 receptors in the regulation of hypothermia. The comparison of LP44-induced (20.5 nmol) hypothermic reaction in eight inbred mouse strains (DBA/2J, CBA/Lac, C57BL/6, BALB/c, ICR, AKR/J, C3H and Asn) was performed and a significant effect of genotype was found.In the same eight mouse strains, functional activity of 5-HT1A and 5-HT3 receptors was studied. The comparison of hypothermic responses produced by 5-HT7 receptor agonist LP44 (20.5 nmol, i.c.v.) and 5-HT1A receptor agonist 8-OH-DPAT 1.0 mg/kg, i.p. (3.0 μmol/kg), 5-HT3 receptor agonist m-CPBG (40.0 nmol, i.c.v.) did not reveal considerable interstrain correlations between 5-HT7 and 5-HT1A or 5-HT3 receptor-induced hypothermia. The selective 5-HT7 receptor antagonist SB 269970 (16.1 fmol, i.c.v.) failed to attenuate the hypothermic effect of 8-OH-DPAT 1.0 mg/kg, i.p. (3.0 μmol/kg) and m-CPBG (40.0 nmol, i.c.v.) indicating that the brain 5-HT7 receptor is not involved in the hypothermic effects of 8-OH-DPAT or m-CPBG. The obtained results suggest that the central 5-HT7 receptor plays an essential role in the mediation of thermoregulation independent of 5-HT1A and 5-HT3 receptors.  相似文献   

10.
Rationale The 5-HT2C receptor modulates mesolimbic dopamine (DA) function and the expression of DA-dependent behaviors, including stimulant-induced hyperactivity. The 5-HT2C receptor may also be involved in drug-induced locomotion that is 5-HT-dependent.Objectives This study investigated the effects of the 5-HT2C receptor antagonist 6-chloro-5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]-indoline (SB242084) on hyperlocomotion induced by psychomotor stimulants with selective, or mixed, actions on serotonergic and/or dopaminergic systems.Materials and methods Male Sprague–Dawley rats were treated in the presence or absence of SB242084 with releasers/reuptake inhibitors of DA (amphetamine and methylphenidate), 5-HT (fenfluramine and citalopram), or both 5-HT and DA (MDMA and cocaine). In addition, the effects of SB242084 combined with nicotine, morphine, or the 5-HT1A/1B receptor agonist RU24969 were examined. Locomotor activity was recorded for 2 h.Results SB242084 potentiated hyperactivity induced by MDMA (2.5–5 mg/kg), amphetamine (0.5 mg/kg), fenfluramine (5 mg/kg), cocaine (10 mg/kg), and methylphenidate (5 mg/kg). SB242084 modestly potentiated nicotine-induced (0.2–0.4 mg/kg) and morphine-induced (2.5 mg/kg) hyperactivity. SB242084 failed to influence hyperactivity induced by RU24969 (0.5–1 mg/kg) or citalopram (10–20mg/kg).Conclusion SB242084 potentiated the locomotor stimulant effects of both indirect DA and 5-HT agonists. This potentiation may reflect two distinct mechanisms. The first involves direct enhancement of DA activity as shown by potentiation of the effects of amphetamine and methylphenidate. The second mechanism reflects an unmasking of stimulatory 5-HT receptors activated by 5-HT releasers (possibly 5-HT1B/2A) through blockade of inhibitory 5-HT2C receptors. The failure of SB242084 to potentiate the effect of citalopram might reflect differences between changes in synaptic levels of 5-HT produced by release compared to reuptake inhibition.  相似文献   

11.
Summary The purpose of this study was to investigate whether the effects of cisapride and its close structural analogue R 76186 on the isolated guinea-pig colon ascendens, are mediated through 5-HT4 receptors.Both cisapride and R 76186 induced contractions in a concentration-dependent fashion, giving monophasic concentration-response curves (cisapride: EC50 = 1.1 × 10–7 M, maximum effect = 40.3% of methacholine induced (3 × 10–7 M) contractions; R 76186: EC5o = 2.4 × 10–8 M, maximum effect = 52.1%). Blockade of either 5-HT2 or 5-HT3 receptors did not affect the responses to cisapride. However, tropisetron (in 5-HT4 receptor-blocking concentrations), and DAU 6285 and SDZ 205–557, two novel selective 5-HT4 receptor antagonists, depressed the concentration-response curve to cisapride (to about 50%), and the curve to R 76186 was shifted to the right. The apparent pA2 values were 6.6 (tropisetron), 6.3 (DAU 6285), and 7.5 (SDZ 205-557). However, none of these antagonisms was purely competitive as higher concentrations of these antagonists depressed the curve to R76186. Desensitization of the 5-HT4 receptor with 5-methoxytryptamine (5-MeOT) inhibited the responses to cisapride, and abolished those to R 76186. The contractions to cisapride and R76186 were sensitive to mutual antagonism, depressing their concentration-response curves.Conclusions: Both cisapride and R 76186 mediate their contractile effects in the guinea-pig colon ascendens through agonism at the 5-HT4 receptor, though cisapride also uses a non-5-HT mechanism. R 76 186 is a selective and potent 5-HT4 receptor agonist. Correspondence to M. R. Briejer at the above address in Belgium  相似文献   

12.
Summary The effects of several antagonists, known to interact with 5-HT2 receptors (ritanserin, LY 53857, ICI 169,369, methysergide, mesulergine and ketanserin), were tested against 5-HT-stimulated production of inositol phosphate in pig choroid plexus, a 5-HT1C receptor model. These antagonists produced dextral shifts of the concentration response curve to 5-HT in a parallel manner, without depressing significantly the maximal response. The following pA2 values (in parentheses) were obtained: mesulergine (8.88), methysergide (8.85), LY 53857 (8.69), ritanserin (8.69), ICI 169,369 (7.86), and ketanserin (6.57). These pA2 values were in good agreement with the pKD values determined in radioligand binding studies performed in pig choroid plexus with [3H]mesulergine. The present data demonstrate that several drugs described as 5-HT2 receptor selective antagonists (e.g. ritanserin, LY 53857 and ICI 169,369) are also potent, competitive and surmountable antagonists at 5-HT1C receptors. Thus, the results provide further evidence for the pharmacological similarity of 5-HT1C and 5-HT2 receptors. However, in contrast to the situation described with methysergide, ritanserin and LY 53857 in several 5-HT2 receptor models, none of these antagonists acted in a non-competitive or unsurmountable fashion at 5-HT1C receptors. These results suggest, but do not firmly rule out, that at least in the presence of the drugs tested in the present study, 5-HT1C receptors in the choroid plexus do not undergo an allosteric modulation; these findings are apparently in contrast to a model proposed previously for 5-HT2 receptors (Kaumann and Frenken 1985, Naunyn-Schmiedeberg's Arch Pharmacol 328: 295–300) Send offprint requests to P. Schoeffter at the above address  相似文献   

13.

BACKGROUND AND PURPOSE

5-HT is known to be a potent vasospasmogenic agonist in various arteries. However, in veins the vasomodulating actions of 5-HT, and the underlying mechanisms, remain to be fully clarified. Here, we characterized the actions by which 5-HT affects electrical and mechanical activities in the rabbit jugular vein.

EXPERIMENTAL APPROACH

Membrane potential and isometric tension were measured in endothelium-intact and -denuded preparations. Localization of 5-HT receptor subtypes was examined immunohistochemically.

KEY RESULTS

5-HT induced a transient then a small, sustained smooth muscle cell hyperpolarization in endothelium-intact strips. In endothelium-denuded strips, 5-HT induced only a sustained hyperpolarization, and this was changed to a depolarization by the selective 5-HT7 receptor inhibitor SB269970. This depolarization was inhibited by the 5-HT2A receptor blocker sarpogrelate. 5-HT induced a relaxation of PGF-induced contracted strips that was similar in endothelium-intact and -denuded preparations. The latter relaxation was changed to contraction by SB269970 and this contraction was inhibited by sarpogrelate. Immunoreactive responses against endothelial and smooth muscle 5-HT2A receptors and smooth muscle 5-HT7 receptors were identified in the vein. The 5-HT-induced relaxation of the PGF contraction was inhibited by the cAMP-dependent protein kinase inhibitor Rp-cAMPS and by the AC inhibitor SQ22536.

CONCLUSIONS AND IMPLICATIONS

These results indicate that 5-HT activates both smooth muscle 5-HT7 receptors (to produce relaxation) and smooth muscle 5-HT2A receptors (to produce contraction) in rabbit jugular vein. We suggest that in this particular vein, the 5-HT2A receptor-induced depolarization and contraction are masked by the 5-HT7 receptor-induced responses, possibly via actions mediated by cAMP.  相似文献   

14.
15.
Rationale  Serotonin 2C (5-HT2C) receptors may play a role in regulating motivation and reward-related behaviours. To date, no studies have investigated the possible role of 5-HT2C receptors in ventral tegmental area (VTA) intracranial self-stimulation (ICSS). Objectives  The current study investigated the hypotheses that 5-HT2C receptors play an inhibitory role in VTA ICSS, and that 5-HT2C receptors within the nucleus accumbens (NAc) shell may be involved. Methods  Male Sprague–Dawley rats were implanted with a VTA electrode and bilateral NAc shell cannulae for the experiment involving microinjections, and trained to respond for electrical self-stimulation. The systemic effects of the selective 5-HT2C receptor agonist WAY 161503 (0–1.0 mg/kg), the 5-HT1A/1B/2C receptor agonist TFMPP (0.3 mg/kg) and the selective 5-HT2C receptor antagonist SB 242084 (1.0 mg/kg) were compared using rate-frequency threshold analysis. Intra-NAc shell microinjections of WAY 161503 (0–1.5 μg/side) were investigated and compared to amphetamine (1.0 μg/side). Results  WAY 161503 (1.0 mg/kg) and TFMPP (0.3 mg/kg) significantly increased rate-frequency thresholds (M50 values) without altering maximal response rates (RMAX values). SB 242084 attenuated the effects of TFMPP; SB 242084 had no affect on M50 or RMAX values. Intra-NAc shell WAY 161503 had no effect on M50 or RMAX values; intra-NAc amphetamine decreased M50 values. Conclusions  These results suggest that 5-HT2C receptors play an inhibitory role in regulating reward-related behaviour while 5-HT2C receptor activation in the NAc shell did not appear to influence VTA ICSS behaviour under the present experimental conditions. This work was funded by the Canadian Institutes of Health Research (CIHR) (A.J.G). D.J.H. was the recipient of a postgraduate scholarship from the Natural Sciences and Engineering Research Council of Canada (NSERC).  相似文献   

16.
BACKGROUND AND PURPOSE: The serotonergic system within the spinal cord have been proposed to play an important role in the analgesic effects of systemic morphine. Currently, seven groups of 5-HT receptors (5-HT1-7) have been characterized. One of the most recently identified subtypes of 5 HT receptor is the 5-HT7 receptor. We aimed to examine the role of spinal 5-HT7 receptors in the antinociceptive effects of systemic morphine. EXPERIMENTAL APPROACH: The involvement of spinal 5-HT7 receptor in systemic morphine antinociception was compared to that of the 5-HT1A and 5-HT2 receptors by using the selective 5-HT7 receptor antagonist, SB-269970, the selective 5-HT1A receptor antagonist, WAY 100635, the selective 5-HT2 antagonist ketanserin as well as the non-selective 5-HT1,2,7 receptor antagonist, metergoline. Nociception was evaluated by the radiant heat tail-flick test. KEY RESULTS: I.t. administration of SB-269970 (10 microg) and metergoline (20 microg) completely blocked the s.c. administered morphine-induced (1, 3, 5 and 10 mg kg(-1)) antinociception in a time-dependent manner. Additionally, i.t. administration of SB-269970 (1, 3, 10 and 20 microg) and metergoline (1, 5, 10 and 20 microg) dose dependently inhibited the antinociceptive effects of a maximal dose of morphine (10 mg kg(-1), s.c.). I.t. administration of WAY 100635 (20 microg) or ketanserine (20 microg) did not alter morphine-induced (1, 3, 5 and 10 mg kg(-1), s.c.) antinociception. CONCLUSION AND IMPLICATIONS: These findings indicate that the involvement of spinal 5-HT7, but not of 5-HT1A or of 5-HT2 receptors in the antinociceptive effects of systemic morphine.  相似文献   

17.
This study assessed the role of systemic and spinal 5-HT7 receptors on rats submitted to spinal nerve injury. In addition, the 5-HT7 receptors level in dorsal root ganglion and spinal cord was also determined. Tactile allodynia was induced by L5/L6 spinal nerve ligation. Systemic (0.01-10 mg/kg) or spinal (0.3-30 μg) administration of the selective 5-HT7 receptor antagonist SB-269970 but not vehicle reduced in a dose-dependent manner established tactile allodynia. This effect was maintained for about 6 h. SB-269970 was more potent and effective by the spinal administration route than through systemic injection. Spinal nerve ligation reduced expression of 5-HT7 receptors in the ipsilateral but not contralateral dorsal root ganglia. Moreover, 5-HT7 receptor levels were lower in the ipsilateral dorsal spinal cord of neuropathic rats compared to naïve and sham rats. No changes in the receptor levels were observed in the contralateral dorsal spinal cord and in both regions of the ventral spinal cord. Data suggest that spinal 5-HT7 receptors play a pronociceptive role in neuropathic rats. Results also indicate that spinal nerve injury leads to a reduced 5-HT7 receptors level in pain processing-related areas which may result from its nociceptive role in this model. Data suggest that selective 5-HT7 receptor antagonists may function as analgesics in nerve injury pain states.  相似文献   

18.
The present study reinvestigated a series of 5-HT receptor antagonists at both constitutively active rat and human 5-HT7(a) receptors in HEK-293F cells using the cAMP signalling pathway as a functional read-out. Both rat and human 5-HT7(a) receptors were expressed in similar amounts ([3H]-LSD binding: 1.0 to 1.1 pmol/mg protein). Attenuation of basal cAMP formation by the inverse agonist SB-691673 (1 μM) was slightly larger by the human 5-HT7(a) (−73±3 %) than rat 5-HT7(a) receptor (−62±3 %). The 5-HT receptor antagonists investigated here displayed systematically inverse agonism. While methiothepin and SB-269970 displayed similar negative intrinsic activity to SB-691673 at the rat 5-HT7(a) receptor, the compounds SB-258719, mesulergine and metergoline displayed some lower negative intrinsic activity (between −38 and −49%). Inverse agonist properties were observed with potencies fitting with their respective binding pIC50 values and pKB values as estimated from antagonist studies with 5-HT. With the exception of SB-258719 and mesulergine, which remained a partial inverse agonist at the human 5-HT7(a) receptor, the other compounds behaved with a similar Emax value to the full inverse agonist SB-691673. In conclusion, none of the 5-HT receptor antagonists investigated displayed silent properties at the rat or human 5-HT7(a) receptor, when these are expressed in a system allowing detection of constitutive activity. They appear to be partial to full inverse agonists, further illustrating that an antagonist is preferentially an inverse agonist when investigated under constitutively active receptor conditions.In honor of the memory of our dear friend and colleague Dr. Gonzalo Romero (26th of September 1964, Sevilla), who had a great sense of humour and love of life, who died much too soon on the 9th of July 2006.  相似文献   

19.
5-HT receptors were studied in human occipital arteries, obtained from patients during neurosurgery. We detected mRNA for the following receptors (incidence): 5-HT1B (14/18), 5-HT1D (15/18), 5-HT2A (16/18), 5-HT2B (8/8), 5-HT4(a) (13/18), 5-HT4(b) (5/18), 5-HT4(g) (7/18), 5-HT4(i) (1/18), 5-HT7(a/b) (10/18) and 5-HT7(d) (12/18). 5-HT contracted and relaxed arterial rings at low (–logEC50 M=7.0) and high (–logEC50 M=4.2) concentrations, respectively. 5-HT-evoked contractions were antagonized partially by both 5-HT1B-selective SB224289 (200 nM) and 5-HT2A-selective ketanserin (1 M) but not by 5-HT1D-selective BRL15572 (500 nM) or prazosin (1 M). Sumatriptan caused contractions (–logEC50 M=6.8, intrinsic activity with respect to 5-HT=0.3). Sumatriptan-evoked contractions were antagonized by SB224289 with high potency (pKB=9.4) but not by BRL15572. 5-HT-induced relaxations were resistant to blockade by 5-HT1B-selective SB224289 (1 M), 5-HT1D-selective BRL15572, 5-HT2B-selective SB204741 (1 M), 5-HT4-selective GR113808 (100 nM) and 5-HT7-selective SB269970 (1 M), and a combination of SB204741 and SB269970, inconsistent with an involvement of 5-HT1B, 5-HT1D, 5-HT2B, 5-HT4 and 5-HT7 receptors. Triton X-100 treatment of the arteries abolished acetylcholine-induced relaxations of rings precontracted by prostaglandin F2, but a reduction of the relaxant effects of 5-HT did not reach significance. Nitro-L-arginine (1 mM) reduced 5-HT-induced relaxations, suggesting a contribution of nitric oxide released from endothelial cells. Ketanserin (1 M) prevented the relaxant effects of 5-HT. We conclude that 5-HT contracts human occipital artery through 5-HT1B receptors at low concentrations and through 5-HT2A receptors at high concentrations. Sumatriptan contracts mostly through 5-HT1B receptors. These results are consistent with the 5-HT1B and 5-HT2A mRNA data. 5-HT-induced relaxation is mediated, in part, through ketanserin-sensitive receptors, but 5-HT1B, 5-HT1D, 5-HT2B, 5-HT4 and 5-HT7 receptors appear not to be involved.  相似文献   

20.
This study evaluated the possible involvement of 5-HT(2B) receptors in long-lasting hypotension to 5-hydroxytryptamine (5-HT), which is predominantly mediated by 5-HT7 receptors, in anaesthetised vagosympathectomized rats. Intravenous injections of 5-HT and 5-carboxamidotryptamine (5-CT) elicited a dose-dependent hypotension that was dose-dependently antagonised by (R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl) ethyl] pyrrolidine (SB-269970; a selective 5-HT7 receptor antagonist), but not by saline. Interestingly, alpha-methyl-5-(2-thienylmethoxy)-1H-indole-3-ethanamine (BW723C86; a 5-HT(2B) receptor agonist) produced vasopressor responses without affecting hypotension to 5-HT. These results suggest that hypotension to 5-HT and 5-CT is mainly mediated by 5-HT7 receptors, whilst the role of 5-HT(2B) receptors seems unlikely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号