首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In five head-injured patients with cerebral contusion and oedema in whom it was not possible to control intracranial pressure (ICP) (ICP>20 mmHg) by artificial hyperventilation (PaCO2 level 3.5–4.0 kPa) and barbiturate sedation, indomethacin was used as a vasoconstrictor drug. In all patients, indomethacin (a bolus injection of 30 mg, followed by 30 mg/h for seven hours) reduced ICP below 20 mmHg for several hours. Studies of cerebral circulation and metabolism during indomethacin treatment showed a decrease in CBF at 2h. After 7h, ICP remained below 20 mmHg in three patients, and these still had reduced CBF. In the other patients a return of ICP and CBF to pretreatment levels was observed. In all patients indomethacin treatment was followed by a fall in rectal temperature. These results suggest that indomethacin due to its cerebral vasoconstrictor and antipyretic effect should be considered as an alternative for treatment of ICP-hypertension in head-injured patients.Presented at the Fifth Nordic CBF Symposium, Lund, Sweden, 21–22 May 1990.  相似文献   

2.
In patients with severe head injuries ICP, MAP and CBF were measured continuously. In most patients there was a positive vasopressor response to increasing ICP, but the ICP/MAP ratio varied considerably in individual cases. CBF was diminished either by increasing ICP or by decreasing MAP. This effect was more marked with ICP above 40 mm Hg or MAP below 110 mm Hg. In terminal stages there was often a negative MAP/ICP ratio accompanied by massive cerebral hyperaemia. Key words: Severe head injury--intracranial pressure--mean arterial pressure--cerebral blood flow--cerebral perfusion pressure--critical limit of ICP and CBF. Abbreviations: ICP equals intracranial pressure (mm Hg); CBF, Flow equals cerebral blood flow (ml/min); MAP equals mean arterial pressure (mm Hg); CPP equals cerebral perfusion pressure (mm Hg) (difference between MAP and ICP); BP equals blood pressure.  相似文献   

3.
Brain temperature was continuously measured in 58 patients after severe head injury and compared to rectal temperature, intracranial pressure, cerebral blood flow, and outcome after 3 months. The temperature difference between brain and rectal temperature was also calculated. Mild hypothermia (34-36 degrees C) was also used to treat uncontrollable intracranial pressure (ICP) above 20 mm Hg when other methods failed. Brain and rectal temperature were strongly correlated (r = 0.866; p < 0.001). Four groups were identified. The mean brain temperature ranged from 36.9 +/- 0.4 degrees C in the normothermic group to 38.2 +/- 0.5 degrees C in the hyperthermic group, 35.3 +/- 0.5 degrees C in the mild therapeutic hypothermia group, and 34.3 +/- 1.5 degrees C in the hypothermia group without active cooling. The mean DeltaT(br-rect) was positive for patients with a T(br) above 36.0 degrees C (0.0 +/- 0.5 degrees C) and negative for patients during mild therapeutic hypothermia (-0.2 +/- 0.6 degrees C) and also in those with a brain temperature below 36 degrees C without active cooling (0.8 +/- -1.4 degrees C) - the spontaneous hypothermic group. The cerebral perfusion pressure (CPP) was increased significantly by active cooling compared to the normothermic and hyperthermic groups. The mean cerebral blood flow (CBF) in patients with a brain temperature between 36.0 degrees C and 37.5 degrees C was 37.8 +/- 14.0 mL/100 g/min. The lowest CBF was measured in patients with a brain temperature <36.0 degrees C and a negative brain-rectal temperature difference (17.1 +/- 14.0 mL/100 g/min). A positive trend for improved outcome was seen in patients with mild hypothermia. Simultaneous monitoring of brain and rectal temperature provides important diagnostic and prognostic information to guide the treatment of patients after severe head injury (SHI) and the wide differentials that can develop between the brain and core temperature, especially during rapid cooling, strongly supports the use of brain temperature measurement if therapeutic hypothermia is considered for head injury care.  相似文献   

4.
The effects of propofol on cerebral blood flow, intracranial pressure (ICP) and cerebral oxygen consumption (CMRO2) were assessed in ten severely head-injured patients undergoing surgery for limb fractures. The patients, aged between 15 and 40 years, were in deep coma, scored 6-7 on the Glasgow coma score. They were mechanically ventilated and sedated with 1 mg.h-1 phenoperidine. Anaesthesia was carried out with a 2 mg.kg-1 intravenous bolus of propofol, immediately followed by a 150 micrograms.kg-1.min-1 infusion, which lasted for a mean time of 41.4 +/- 7.3 min. Data were collected 5 min before any propofol was given, 15 min after the start of the infusion, and 15 min after its end. A radial artery cannula, a 7.5 Fr thermodilution flow-directed pulmonary arterial catheter, a cerebral intraventricular catheter and a catheter in the jugular venous bulb were used for this purpose. Carotid arterial injection of 133Xenon was used to determine regional cerebral blood flow (rCBF). Anaesthetic blood concentrations of propofol (3 to 5 micrograms.ml-1) were associated with a decrease in all the parameters studied: cerebral perfusion pressure, from 82 +/- 14 mmHg to 59 +/- 7 mmHg (p less than 0.001); rCBF, from 35 +/- 6 ml.100 g-1.min-1 to 26 +/- 5 ml.100 g-1.min-1 (p less than 0.01); ICP from 11.3 +/- 2.6 mmHg to 9.2 +/- 2.5 mmHg (p less than 0.001); CMRO2 from 1.63 +/- 0.38 mlO2 +/- 100 g-1.min-1 to 1.18 +/- 0.38 mlO2.100 g-1.min-1 (p less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Increased brain tissue stiffness following severe traumatic brain injury is an important factor in the development of raised intracranial pressure (ICP). However, the mechanisms involved in brain tissue stiffness are not well understood, particularly the effect of changes in systemic blood pressure. Thus, controversy exists as to the optimum management of blood pressure in severe head injury, and diverging treatment strategies have been proposed. In the present study, the effect of induced alterations in blood pressure on ICP and brain stiffness as indicated by the pressure-volume index (PVI) was studied during 58 tests of autoregulation of cerebral blood flow in 47 comatose head-injured patients. In patients with intact autoregulation mechanisms, lowering the blood pressure caused a steep increase in ICP (from 20 +/- 3 to 30 +/- 2 mm Hg, mean +/- standard error of the mean), while raising blood pressure did not change the ICP. When autoregulation was defective, ICP varied directly with blood pressure. Accordingly, with intact autoregulation, a weak positive correlation between PVI and cerebral perfusion pressure was found; however, with defective autoregulation, the PVI was inversely related to cerebral perfusion pressure. The various blood pressure manipulations did not significantly alter the cerebral metabolic rate of oxygen, irrespective of the status of autoregulation. It is concluded that the changes in ICP can be explained by changes in cerebral blood volume due to cerebral vasoconstriction or dilatation, while the changes in PVI can be largely attributed to alterations in transmural pressure, which may or may not be attenuated by cerebral arteriolar vasoconstriction, depending on the autoregulatory status. The data indicate that a decline in blood pressure should be avoided in head-injured patients, even when baseline blood pressure is high. On the other hand, induced hypertension did not consistently reduce ICP in patients with intact autoregulation and should only be attempted after thorough assessment of the cerebrovascular status and under careful monitoring of its effects.  相似文献   

6.
7.
Summary The effects of a stepwise acute increase of intracranial cerebrospinal fluid pressure on cerebral blood flow, cerebral arteriovenous differences of oxygen and glucose and on the output of lactate were studied in anaesthetized normoventilated normoxic dogs. Intracranial hypertension was produced by infusing mock-CSF into the cisterna magna. Mean arterial blood pressure was kept at a constant level throughout the experimental investigations. At a cerebral perfusion pressure of about 70 mm Hg, CBF and the cerebral metabolic rates of oxygen and glucose were not significantly changed. However, further reduction in the cerebral perfusion pressure to below 40 mm Hg, was accompanied by a statistically significant decrease of CBF and a deterioration of the oxidative metabolism. Glucose uptake was particularly disturbed by raised intracranial pressure. Increased cerebral output of lactate and low CMRO2 indicated raised glycolysis. But (V-A)lactate was also increased at a relatively moderate reduction of the cerebral perfusion pressure, when autoregulation was still effective and CMRO2 unchanged. The data are discussed in context with similar experimental results recently published by other investigators.Herrn Prof. Dr. H. Penzholz zum 60. Geburtstag gewidmet.  相似文献   

8.
The traditional practice of elevating the head in order to lower intracranial pressure (ICP) in head-injured patients has been challenged in recent years. Some investigators argue that patients with intracranial hypertension should be placed in a horizontal position, the rationale being that this will increase the cerebral perfusion pressure (CPP) and thereby improve cerebral blood flow (CBF). However, ICP is generally significantly higher when the patient is in the horizontal position. This study was undertaken to clarify the issue of optimal head position in the care of head-injured patients. The effect of 0 degree and 30 degrees head elevation on ICP, CPP, CBF, mean carotid pressure, and other cerebral and systemic physiological parameters was studied in 22 head-injured patients. The mean carotid pressure was significantly lower when the patient's head was elevated at 30 degrees than at 0 degrees (84.3 +/- 14.5 mm Hg vs. 89.5 +/- 14.6 mm Hg), as was the mean ICP (14.1 +/- 6.7 mm Hg vs. 19.7 +/- 8.3 mm Hg). There was no statistically significant change in CPP, CBF, cerebral metabolic rate of oxygen, arteriovenous difference of lactate, or cerebrovascular resistance associated with the change in head position. The data indicate that head elevation to 30 degrees significantly reduced ICP in the majority of the 22 patients without reducing CPP or CBF.  相似文献   

9.
Summary Background. Cerebral compliance expresses the capability to buffer an intracranial volume increase while avoiding a rise in intracranial pressure (ICP). The autoregulatory response to Cerebral Perfusion Pressure (CPP) variation influences cerebral blood volume which is an important determinant of compliance. The direction of compliance change in relation to CPP variation is still under debate. The aim of the study was to investigate the relationship between CPP and compliance in traumatic brain injured (TBI) patients by a new method for continuous monitoring of intracranial compliance as used in neuro-intensive care (NICU).Method. Three European NICU’s standardised collection of CPP, compliance and ICP data to a joint database. Data were analyzed using an unpaired student t-test and a multi-level statistical model.Results. For each variable 108,263 minutes of data were recorded from 21 TBI patients (19 patients GCS≤8; 90% male; age 10–77 y). The average value for the following parameters were: ICP 15.1±8.9 mmHg, CPP 74.3±14 mmHg and compliance 0.68±0.3 ml/mmHg. ICP was ≥20 mmHg in 20% and CPP<60 mmHg for 10.7% of the time. Compliance was lower (0.51±0.34 ml/mmHg) at ICP≥20 than at ICP<20 mmHg (0.73±0.37 ml/mmHg) (p<0.0001). Compliance was significantly lower at CPP<60 than at CPP≥60 mmHg: 0.56±0.36 and 0.70±0.37 ml/mmHg respectively (p<0.0001). The CPP – compliance relationship was different when ICP was above 20 mmHg compared with below 20 mmHg. At ICP<20 mmHg compliance rose as CPP rose. At ICP≥20 mmHg, the relation curve was convexly shaped. At low CPP, the compliance was between 0.20 and 0.30 ml/mmHg. As the CPP reach 80 mmHg average compliance was 0.55 ml/mmHg., but compliance fell to 0.40 ml/mmHg when CPP was 100 mmHg.Conclusions. Low CPP levels are confirmed to be detrimental for intracranial compliance. Moreover, when ICP was pathological, indicating unstable intracranial equilibrium, a high CPP level was also associated with a low volume-buffering capacity.  相似文献   

10.
OBJECT: The authors investigated the effects of hyperoxia on brain tissue PO2 and on glucose metabolism in cerebral and adipose tissue after traumatic brain injury (TBI). METHODS: After 3 hours of ventilation with pure O2, 18 tests were performed on different days in eight comatose patients with TBI. Lactate, pyruvate, glucose, glutamate, and brain tissue PO2 were measured in the cerebral extracellular fluid (ECF) by using microdialysis. Analytes were also measured in the ECF of abdominal adipose tissue. After 3 hours of increase in the fraction of inspired O2, brain tissue PO2 rose from the baseline value of 32.7 +/- 18 to 122.6 +/- 45.2 mm Hg (p < 0.0001), whereas brain lactate dropped from its baseline (3.21 +/- 2.77 mmol/L), reaching its lowest value (2.90 +/- 2.58 mmol/L) after 3 hours of hyperoxia (p < 0.01). Pyruvate dropped as well, from 153 +/- 56 to 141 +/- 56 micromol/L (p < 0.05), so the lactate/pyruvate ratio did not change. No significant changes were observed in glucose and glutamate. The arteriovenous difference in O2 content dropped, although not significantly, from a baseline of 4.52 +/- 1.22 to 4.15 +/- 0.76 m/100 ml. The mean concentration of lactate in adipose tissue fell significantly as well (p < 0.01), but the lactate/pyruvate ratio did not change. CONCLUSIONS: Hyperoxia slightly reduced lactate levels in brain tissue after TBI. The estimated redox status of the cells, however, did not change and cerebral O2 extraction seemed to be reduced. These data indicate that oxidation of glucose was not improved by hyperoxia in cerebral and adipose tissue, and might even be impaired.  相似文献   

11.
12.
A drop in the arterial PO2 occurring 24 hours after head injury was identified in eight patients. Traditional modes of therapy include administration of supplemental oxygen and provision of an unobstructed airway. The latter proved to be inadequate to continually maintain the PaO2 at a level consistent with the O2 content of the inspired air. Initially, determination of the PaO2, after institution of supplemental oxygen, may demonstrate adequate oxygenation, but blood gas monitoring should be continued since a delayed fall in arterial oxygen tension may occur 24 hours after head injury. This period of potentially deficient blood oxygenation, if severe enough, may further aggravate preexisting brain damage and profoundly affect the ultimate outcome of the patient. The delayed fall in PaO2 is the result of intrapulmonary shunting principally due to a ventilation/perfusion mismatch. The precise mechanism of the ventilation/perfusion inequality in the brain-injured patient awaits further elucidation, but may differ from the alteration in pulmonary function seen in the Respiratory Distress Syndrome.  相似文献   

13.
Background. Flow-metabolism coupling is thought to be derangedafter traumatic brain injury, while the effects of propofolon flow-metabolism coupling are controversial. We have useda step increase in target plasma propofol concentration in headinjured patients to explore flow-metabolism coupling in thesepatients. Methods. Ten patients with a moderate to severe head injuryreceived a step increase in propofol target controlled infusionof 2 µg ml–1. Cerebral tissue gas measurements wererecorded using a multimodal sensor, and regional chemistry wasassessed using microdialysis. Arterial-jugular venous oxygendifferences (AVDO2) were measured and all patients had corticalfunction monitoring (EEG). Results. The step increase in propofol led to a large increasein EEG burst-suppression ratio (0% (range 0–1.1) to 46.1%(range 0–61.7), P<0.05); however, this did not significantlychange tissue gas levels, tissue chemistry, or AVDO2. Conclusions. Flow-metabolism coupling remains intact duringa step increase in propofol after traumatic brain injury. TheEEG burst-suppression induced by propofol after traumatic braininjury does not appear to be a useful therapeutic tool in reducingthe level of regional ischaemic burden. Br J Anaesth 2003; 91: 781–6  相似文献   

14.
Therapeutic agents for reducing raised intracranial pressure (ICP) may do so at the expense of reduced mean arterial pressure (MAP). As a consequence, cerebral perfusion pressure (CPP) = (MAP - ICP) may not improve. It is unknown whether the level of MAP alters cerebral blood flow (CBF) when MAP and ICP change in parallel so that CPP remains constant. This study investigates CBF at a constant CPP but varying levels of MAP and ICP in 12 anaesthetized cats. CBF was studied at three levels of CPP: 60 (n = 4), 50 (n = 4), and 40 mm Hg (n = 4) under conditions of both intact and impaired autoregulation. At CPP levels of 50 and 60 mm Hg, when autoregulation was intact, CBF remained unchanged. With loss of autoregulation, there was a trend for CBF to increase as MAP and ICP were increased in parallel at a CPP of 50 and 60 mm Hg, although the relationship did not achieve statistical significance. Absolute CBF levels were, however, significantly different between the autoregulating and nonautoregulating groups (p <0.001). At a CPP of 40 mm Hg, CBF showed a linear correlation with blood pressure (BP) (r = 0.57, p <0.05). These results demonstrate that when autoregulation is impaired, there is a functional difference between autoregulating and nonautoregulating cerebral vessels despite similar MAP and CPP. These results also show that at a CPP of 40 mm Hg when autoregulation is impaired, CBF depends more on arterial driving pressure than on CPP.  相似文献   

15.
In a search for a nonsurgical intervention to control intracranial hypertension during craniotomy, the authors studied the effects of dihydroergotamine on mean arterial blood pressure (MABP), intracranial pressure (ICP), cerebral perfusion pressure (CPP), cerebral blood flow (CBF), and cerebral metabolism in patients who underwent craniotomy for supratentorial brain tumors. Twenty patients were randomized to receive either dihydroergotamine 0.25 mg intravenously or placebo as a bolus dose during craniotomy. Anesthesia was induced with thiopental/fentanyl/atracurium, and maintained with isoflurane/N2O/fentanyl at normocapnia. After removal of the bone flap and exposure of intact dura, ICP was measured subdurally and dihydroergotamine/placebo was administered. Intracranial pressure and MABP were measured continuously. Cerebral blood flow (after intravenous administration of 133Xe) and arteriojugular venous difference of oxygen (AVDO2) were measured before, and 30 minutes after, dihydroergotamine/placebo administration. Cerebral metabolic rate of oxygen (CMRO2) was calculated. After administration of dihydroergotamine, a significant increase in MABP from 74 to 87 mm Hg (median) and CPP from 65 to 72 mm Hg (median) were found. Simultaneously to the increase in MABP, a significant increase in ICP from 9.5 to 11.5 mm Hg (median) was disclosed, whereas no significant differences in CBF, AVDO2, or CMRO2 were found. Intracranial pressure was significantly higher after dihydroergotamine than after placebo. In conclusion, no ICP decreasing effect of a bolus dose of dihydroergotamine was found when administered to patients with brain tumors during isoflurane/N2O anesthesia. Corresponding increases in MABP and ICP suggest that abolished cerebral autoregulation might explain why dihydroergotamine was associated with an ICP increase.  相似文献   

16.
ICP monitoring appears not to be essential for the prognosis of head injury patients, but it may be of some clinical value in association with the neurological status and other clinical data. The results of ICP measurement show that a high level in brain pressure and the poor outcome have a better correlation with one another than a lower level of brain pressure and a good recovery.  相似文献   

17.
Ng I  Lim J  Wong HB 《Neurosurgery》2004,54(3):593-7; discussion 598
OBJECTIVE: Severely head-injured patients have traditionally been maintained in the head-up position to ameliorate the effects of increased intracranial pressure (ICP). However, it has been reported that the supine position may improve cerebral perfusion pressure (CPP) and outcome. We sought to determine the impact of supine and 30 degrees semirecumbent postures on cerebrovascular dynamics and global as well as regional cerebral oxygenation within 24 hours of trauma. METHODS: Patients with a closed head injury and a Glasgow Coma Scale score of 8 or less were included in the study. On admission to the neurocritical care unit, a standardized protocol aimed at minimizing secondary insults was instituted, and the influences of head posture were evaluated after all acute necessary interventions had been performed. ICP, CPP, mean arterial pressure, global cerebral oxygenation, and regional cerebral oxygenation were noted at 0 and 30 degrees of head elevation. RESULTS: We studied 38 patients with severe closed head injury. The median Glasgow Coma Scale score was 7.0, and the mean age was 34.05 +/- 16.02 years. ICP was significantly lower at 30 degrees than at 0 degrees of head elevation (P = 0.0005). Mean arterial pressure remained relatively unchanged. CPP was slightly but not significantly higher at 30 degrees than at 0 degrees (P = 0.412). However, global venous cerebral oxygenation and regional cerebral oxygenation were not affected significantly by head elevation. All global venous cerebral oxygenation values were above the critical threshold for ischemia at 0 and 30 degrees. CONCLUSION: Routine nursing of patients with severe head injury at 30 degrees of head elevation within 24 hours after trauma leads to a consistent reduction of ICP (statistically significant) and an improvement in CPP (although not statistically significant) without concomitant deleterious changes in cerebral oxygenation.  相似文献   

18.
目的 观察颅脑手术病人不同呼气末二氧化碳分压(PaCO2)与脑代谢、脑血流、颅内压的相关性。方法 12例择期行颅脑手术病人,行七氟醚麻醉,待1.3MAC时,调整呼吸频率,使PETCO2达40、30、20mm Hg,每阶段稳定 30min.分别采清醒时及PETCO2各时段的颈内静脉、桡动脉血以及脑脊液作血气分析以及测定葡萄糖、乳酸含量,根据血气分析找出相对应的PaCO2,用修正Kety-Schmidt惰性气体饱和技术计算CBF,并由此根据动静脉差值计算出CMRO2、CMRglu值的变化。结果 与清醒时通气状态相比,PET COZ 20Tin Hg脑血流减少57.75%。CMROZ减少58.70%,,CMRglu减少46.93%,(P<0.05)。颈静脉血氧饱和度以及pH无明显变化(P>0.05)。P。COZ 40和20mm Hg时脑血流比P。,CO 30mm Hg时增加和减少了29.2%和11.3%(P<0.05),随着PETCO2的降低ICP也呈不同程度的下降(r=0.857,P<0.01)。不同PETCO2下脑脊液中PH、乳酸盐和SjvO2无明显变化(P>0.05)。结论 1.3MAC七氟醚麻醉下,不同PET CO2时神经外科手术病人CBF、CMR和 ICP与 PETCO2变化相关,表明脑血管对CO2的反应性依然存在,但由于PETCO2 40mmHg时CBF增加,所以临床上应予避免。  相似文献   

19.
During 1977-1978, 127 patients with severe head injury were admitted and underwent intracranial pressure (ICP) monitoring. All patients had Glasgow Coma Scale (GCS) scores of 7 or less. All received identical initial treatment according to a standardized protocol. The patients' average age was 29 years; 60% had multiple trauma, and 35% needed emergency intracranial operations. Treatment for elevations of ICP was begun when ICP rose to 20 to 25 mm Hg, and included mannitol therapy and drainage of cerebrospinal fluid (CSF) when possible. Forty-three patients (34%) had ICP greater than or equal to 25 mm Hg; of these, 36 (84%) died. The mortality rate of the entire group was 46%. During 1979-1980, 106 patients with severe head injury were admitted and underwent ICP monitoring. Their average ager was 29 years; 51% had multiple trauma, and 31% underwent emergency intracranial surgery. All patients received the same standardized protocol as the previous series, with the exception of the treatment of ICP. In this present series: if ICP was 15 mm Hg or less (normal ICP), patients were continued on hyperventilation, steroids, and intensive care; if ICP was 16 to 24 mm Hg, mannitol was administered and CSF was drained; if ICP was 25 mm Hg or greater, the patients were randomized into a controlled barbiturate therapy study. Twenty-six patients (25%) had ICP's of 25 mm Hg or greater, compared to 34% in the previous series (p less than 0.05), and 18 of these 26 patients (69%) died. The overall mortality for this current series was 28% compared to 46% in the previous series (p less than 0.0005). This study reconfirms the high mortality rate if ICP is 25 mm Hg or greater; however, the data also document that early aggressive treatment based on ICP monitoring significantly lessens the incidence of ICP of 25 mm Hg or greater and reduces the overall mortality rate of severe head injury.  相似文献   

20.
BACKGROUND: Remifentanil, an ultra-short-acting opioid, is used as an on-top analgesic in head trauma patients during transient painful procedures, e.g. endotracheal suctioning, physiotherapy, on the intensive care unit. However, previous studies have shown that opioids may increase intracranial pressure and decrease cerebral blood flow. METHODS: The present study investigates the effect of remifentanil on mean arterial blood pressure, intracranial pressure measured with intraparenchymal or epidural probes, and on cerebral blood flow velocity assessed by transcranial Doppler flowmetry in 20 head trauma patients sedated with propofol and sufentanil. Ventilation was adjusted for a target PaCO2 of 4.7-5.1 kPa. After baseline measurements a bolus of remifentanil (0.5 microg x kg(-1) i.v.) was administrated followed by a continuous infusion of remifentanil (0.25 microg x kg(-1) x min(-1) i.v.) for 20 min. RESULTS: There was no change in mean arterial blood pressure, intracranial pressure, and cerebral blood flow velocity in response to remifentanil infusion over time. Statistical analysis was performed using the Wilcoxon Signed Rank test. CONCLUSIONS: These data suggest that remifentanil can be used for on-top analgesia in head trauma patients without adverse effects on cerebrovascular haemodynamics, cerebral perfusion pressure or intracranial pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号