首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Four plasma proteins have been shown to be able to mediate platelet adhesion to synthetic materials when they are adsorbed as purified proteins: fibrinogen (Fg), fibronectin (Fn), vitronectin (Vn), and von Willebrand factor (vWF). Among them, Fg is thought to play a leading role in mediating platelet adhesion to plasma-preadsorbed biomaterials, but this has been established for only three types of materials so far in our laboratory. Furthermore, the role of Fn, Vn, and vWF in mediating platelet adhesion to plasma-preadsorbed surfaces is still unclear. The aim of the current study was to assess the importance of Fg, Fn, Vn, and vWF in mediating platelet adhesion to a series of polystyrene-based surfaces. The strategy applied in the present investigation was to compare platelet adhesion to surfaces preadsorbed with normal plasma, plasma selectively depleted in Fn or Vn or both Fn and Vn, plasma from donors who were genetically deficient in vWF, and serum. Few platelets adhered to the surfaces preadsorbed with serum, whereas depletion of Fn, Vn, or vWF from plasma did not decrease platelet adhesion significantly. Replenishment of exogenous Fg to serum before protein adsorption restored platelet adhesion to the surfaces, suggesting that Fg was the major plasma protein that mediated platelet adhesion. Also, we found that a surface density of adsorbed Fg far below the amount that usually adsorbs to synthetic surfaces was sufficient to support full-scale platelet adhesion.  相似文献   

2.
Previously we observed that platelets adherent to surfaces preadsorbed with blood plasma exhibited 1.3 to 2.4 times greater procoagulant activity than platelets on surfaces adsorbed with fibrinogen (Fg) only. These observations suggested that the adhesion proteins adsorbed from plasma may activate platelets in a cooperative, or synergistic manner. In the present study, polystyrene surfaces adsorbed with both Fg and vWF induced up to three times greater procoagulant activity than surfaces adsorbed with Fg or vWF only. The amounts of Fg and vWF adsorbed from binary mixtures that resulted in increased procoagulant activity were found to be similar to the amounts that adsorbed to PS from 100% plasma. The effect of adsorbed adhesion proteins on platelet spreading was also investigated. The proportion of fully spread platelets increased, depending on the adhesion protein preadsorbed to the surface, in the following order: vWF < Fg < Fn < (vWF + Fg) < Vn < plasma.  相似文献   

3.
Platelet adhesion to synthetic surfaces that come in contact with blood is mediated by the adsorption of adhesive plasma proteins, especially fibrinogen. However, the roles of other adhesive proteins, such as fibronectin, vitronectin, and von Willebrand factor in platelet adhesion are not yet clear. In this study, the role of fibronectin in platelet adhesion to surfaces was assessed using three approaches. First, platelet adhesion was measured on Immulon I preadsorbed with fibronectin-depleted plasma or fibronectin-depleted plasma replenished with increasing amount of fibronectin. Under these conditions, fibronectin adsorbed from plasma did not have any effect on platelet adhesion, while fibrinogen played a major role in mediating platelet adhesion. Since fibronectin might play a role in platelet adhesion to surfaces which adsorb little or no fibrinogen, we also used two other strategies to assess the potential role of fibronectin. One was to use platelets treated with a platelet activation inhibitor, prostaglandin E1, which prevents the activation of platelet fibrinogen receptor GP IIb/IIIa. The adhesion of prostaglandin E1-treated platelets to Immulon I preadsorbed with plasma was greatly decreased compared to that of untreated platelets, but was increased by the addition of supernormal concentrations of fibronectin to the plasma. This suggests that GP Ic/IIa, rather than GP IIb/IIIa, might be the platelet receptor which is responsible for platelet adhesion to surface-bound fibronectin. Finally, we studied the effect of fibronectin on platelet adhesion to surfaces preadsorbed with fibronectin-depleted afibrinogenemic plasma. We found that fibronectin re-addition to fibronectin-depleted afibrinogenemic plasma increased platelet adhesion. However, our most important finding was that fibronectin seems to play little or no role in mediating platelet adhesion to polystyrene surfaces preadsorbed with normal plasma.  相似文献   

4.
Fluorocarbon radio-frequency glow-discharge (RFGD) treatment has previously been shown to cause decreased platelet adhesion despite the presence of adsorbed fibrinogen on the surfaces. In this study platelet adhesion to fluorocarbon RFGD-treated surfaces preadsorbed with human plasma was further examined. A series of plasma deposited fluorocarbon thin films were made by varying the C3F6/CH4 ratio in the monomer feed. The surfaces were preadsorbed with plasma, serum, or plasma selectively depleted of fibronectin, vitronectin, or Von Willebrand factor, and platelet adhesion was measured. We also measured fibrinogen adsorption to the surfaces from plasma, monoclonal antibody binding to adsorbed fibrinogen and SDS elutability of the adsorbed fibrinogen. The antibodies used bind to the three putative platelet binding sites on fibrinogen, namely, M1 antibody binds to the dodecapeptide at the C-terminus of the gamma chain, gamma (402-411), R1 antibody binds to a sequence in the Aalpha chain (87-100) which includes RGDF at Aalpha (95-98) and R2 antibody binds a sequence in the Aalpha chain (566-580) which includes RGDS at Aalpha (572-575). Fibrinogen was found to play a decisive role in mediating platelet adhesion to the fluorocarbon surfaces contacting plasma. Few platelets adhered to the fluorocarbon surfaces preadsorbed with serum, while preadsorption with plasma selectively-depleted of either fibronectin, vitronectin, or von Willebrand factor did not decrease platelet adhesion significantly. Replenishment of exogenous fibrinogen to serum restored platelet adhesion, while replenishment of the other proteins had no effect. Platelet adhesion to the fluorocarbon surfaces was lower than to PET or the methane glow-discharge-treated PET. However, there was no apparent correlation between platelet adhesion and the amount of fibrinogen adsorption or monoclonal antibody binding to surface-bound fibrinogen.  相似文献   

5.
The effect of adsorbed fibrinogen (Fg) and von Willebrand factor (vWf) on platelet adhesion at low or high shear rate to several materials was studied. The materials studied were polyethylene terephthalate (PET), polystyrene (PS), glass, and tetraglyme-coated PET. The materials were preadsorbed with normal plasma, serum, and Fg-deficient plasma replenished with various amounts of Fg, and vWf-deficient plasma with or without added vWf. Platelet adhesion to PET preadsorbed with Fg-deficient plasma or serum was low at either low or high shear rate, but increased as Fg was added to the preadsorption media. However, the effect of added Fg on adhesion at the higher shear rate was much greater on surfaces preadsorbed with plasma than for serum, probably due to the much lower vWf concentration in serum in comparison to plasma. Platelet adhesion to either polystyrene or glass preadsorbed with normal plasma was much higher at high shear than low shear, but when vWf-deficient plasma was used to preadsorb these surfaces, adhesion was much less at the higher shear rate than at low shear rate. Platelet adhesion to polystyrene preadsorbed with vWf-deficient plasma to which vWf was added was higher at high shear rate than low shear rate. These results show that under high shear rate, both Fg and vWf are required for platelet adhesion on synthetic biomaterials. The results suggest that developing surfaces that adsorb low amounts of vWf is a good approach to improving the blood compatibility of biomaterials.  相似文献   

6.
The authors used an immunogold labeling procedure to investigate the redistribution of platelet receptors and their ligands on the surface of contact-activated adherent platelets before and after thrombin stimulation. During the initial stage of platelet adhesion, a typical segregation of receptors occurred. Gold particles identifying glycoprotein (GP) Ib (CD42b) and GPIIb-IIIa (CD41a) remained distributed over the entire platelet surface, whereas gold particles identifying GPIa-IIa (CDw 49b) and GPIV (CD36) were found essentially overlying the granulomere; p24 (CD9) was present at the peripheral platelet rim and over the cell body. An increased labeling of GPIIb-IIIa, GPIV and p24 was also observed on pseudopods, with GPIIb-IIIa and GPIV concentrated at the enlarged extremities and at sites of contact between two platelets, whereas GPIb was absent from pseudopods. After thrombin stimulation of adherent platelets, GPIb underwent a relocation to the cell center, in contrast to GPIIb-IIIa which still remained randomly distributed over the cell body. To investigate whether ligand distribution paralleled this receptor segregation, platelet released von Willebrand factor (vWF), fibrinogen (Fg) and thrombospondin (TSP) were visualized. During the early stages of platelet activation, surface labeling for all three adhesive proteins was minimal and almost undetectable. Occasionally, intragranular Fg and vWF was accessible to gold-coupled antibodies, with vWF exhibiting the typical eccentric alpha-granular localization. At later stages of activation and especially after thrombin stimulation, no surface labeling for vWF was observed, whereas immunogold particles identifying vWF were still present inside enlarged clear vacuoles. In contrast, labeling of Fg and TSP was increased over the granulomere and extended to the cell periphery and the pseudopods, but was absent from the hyalomere, despite the presence of GPIIb-IIIa molecules. Double labeling experiments showed colocalization of Fg and TSP, GPIV and TSP, as well as Fg and GPIIb-IIIa, although no typical coclustering of GPIIb-IIIa and GPIV or GPIIb-IIIa and p24 was apparent. Our results further suggest that 1) on surface activated adherent platelets, not all GPIIb-IIIa molecules become competent to bind Fg, 2) GPIa-IIa is not anchored to the platelet membrane skeleton, and 3) during the early stage of platelet activation, a communication exists between the alpha granules and the platelet surface.  相似文献   

7.
The potential hemocompatibility of radiofrequency glow discharge (RFGD) polymers made by copolymerization of mixtures of hexafluoropropene and ethylene (C(3)F(6)/C(2)H(4)) or acrylic acid and 1,7-octadiene was investigated using in vitro assays for platelet adhesion and platelet catalyzed thrombin generation. Thrombin generation rate normalized to platelet number was used as a measurement of platelet activation (procoagulant activity). RFGD polymers produced by copolymerization of acrylic acid and 1, 7-octadiene contained varying amounts of carboxylic acid species as determined by electron spectroscopy for chemical analysis (ESCA). These polymers induced little variation in platelet adhesion, thrombin generation, or platelet activation. RFGD polymerization of C(3)F(6) and C(2)H(4) resulted in polymers with varying proportions of fluorinated species, as determined by ESCA. Fibrinogen adsorption from plasma was maximal on a polymer made with 25% C(3)F(6) (75% C(2)H(4)) in the feed. However von Willebrand factor (vWF) adsorption was greater on polymers made with increased %C(3)F(6) in the feed. Platelet adhesion decreased with increasing %C(3)F(6) in the feed. Thrombin generation was lowest for platelets adherent to polymers made from both C(3)F(6) and C(2)H(4). Therefore, procoagulant activity of platelets increased for polymers made with increased %C(3)F(6) in the feed, similar to the trend in vWF adsorption. These findings suggest that increased incorporation of fluorinated species into RFGD polymers leads to decreased platelet adhesion and increased platelet activation (which is possibly due to increased vWF adsorption).  相似文献   

8.
Substrate specific cellular responses are the result of a complex biological system that includes protein adsorption, receptor-ligand binding, and signal transduction. This investigation attempted to identify specific proteins adsorbed from human serum that may be responsible for the previously reported in vitro surface dependent behavior of human macrophages and foreign body giant cells (FBGCs). The adsorption of human albumin, alpha(2)-macroglobulin, complement factor 3b, fibronectin, IgG, thrombospondin, vitronectin (VN), and von Willebrand factor (vWF) from a 25% serum solution was quantified with (125)I-labeled protein. Adsorption substrates included clean glass, alkyl-silane modified glass, amino-silane modified glass, poly(ethylene oxide) (PEO)-coupled glass, and the reference biomaterials poly(etherurethane urea), Silastic(R), and poly(tetrafluoroethylene) (PTFE). Following quantification of 2-h adsorption, surfaces were treated with sodium dodecyl sulfate (SDS) and the level of adsorbed proteins remaining was quantified. The pre- and post-SDS adsorption were both compared to previously reported surface dependent in vitro macrophage and FBGC behavior on the same surfaces; however, no correlations could be made. Adsorption strength, defined as the percentage of initially adsorbed protein that remained adsorbed after SDS treatment, correlated well with previously reported in vitro cellular behavior indicating that adsorbed vWF, IgG, and VN may be involved in the modulation of adherent macrophage and FBGC behavior. Those surfaces that strongly adsorbed vWF also inhibited long-term macrophage adhesion, while those surfaces that strongly adsorbed IgG promoted long-term macrophage adhesion. In addition, the highest levels of FBGC formation had been observed only on those surfaces that strongly adsorbed VN. Subsequent human monocyte cultures on protein preadsorbed substrates confirmed the inhibitory effect of adsorbed vWF and the promoting effect of IgG on longterm macrophage adhesion as predicted by adsorption strength correlations. However, preadsorbed VN was not observed to modulate FBGC formation, which is in contrast to the conclusions of the adsorption correlations.  相似文献   

9.
Von Willebrand factor, a key protein in the exposure of CD62P on platelets   总被引:3,自引:0,他引:3  
Broberg M  Nygren H 《Biomaterials》2001,22(17):2403-2409
When a biomaterial is introduced into the body water, electrolytes, and proteins adsorb to the surface. Platelets are then the first cells to interact with the surface adsorbed protein layer. We have studied the role of von Willebrand factor (vWF) for platelet-protein interaction by measuring different platelet responses to protein- and plasma-coated hydrophobic glass surfaces. A high exposure of CD62P on the platelet surface was seen after 10 min of incubation on platelets interacting with vWF and normal plasma-coated surfaces (79 and 67%, respectively). On the surfaces coated with albumin and factor VIII deficient plasma, the exposure was low (11 and 27%, respectively). A higher formation of filipodial extensions on the platelets was seen on the surfaces coated with vWF and normal plasma than on the surfaces coated with albumin or factor VIII deficient plasma. No significant differences were seen between the surfaces regarding the platelet release of PF4, ATP, or phospholipids. As shown by these results, vWF is a specific regulator of the exposure of CD62P by platelets and hence important for the interaction between platelets and later arriving neutrophils at biomaterial surfaces.  相似文献   

10.
The roles of adsorbed fibrinogen (Fg) and von Willebrand factor (VWF) in mediating platelet adhesion to synthetic surfaces under flow were investigated using polystyrene (PS) as a model hydrophobic surface. We measured platelet adhesion to PS pre-adsorbed with Fg, VWF, normal plasma, afibrinogenemic plasma, VWF-deficient plasma and deficient plasmas with various concentrations of added Fg or VWF. Platelets in a red blood cell suspension were passed through a flow chamber at either low (50 or 100 s(-1)) or high (500 or 1000 s(-1)) shear. Adhesion to PS pre-adsorbed with afibrinogenemic plasma was very low under both low and high shear conditions, but was restored in a dose-dependent manner with addition of Fg. Less than 20 ng/cm(2)of adsorbed Fg was sufficient to support full-scale platelet adhesion under flow. At high shear rate, platelet adhesion on PS pre-adsorbed with VWF-deficient plasma was much less than on PS pre-adsorbed with normal plasma, but adhesion to PS pre-adsorbed with VWF-deficient plasma with added VWF was very similar to adhesion to PS pre-adsorbed with normal plasma. At low shear, adhesion to PS pre-adsorbed with VWF-deficient plasma was the same as on PS pre-adsorbed with normal plasma. As little as 1 ng/cm(2) of VWF adsorbed from plasma made platelet adhesion higher under high shear than under low shear. The effects of adsorbed Fg and VWF on the morphologies of platelets that adhered from suspensions flowing at high shear rates were also investigated. The lack of either Fg or VWF resulted in marked decreases in the extent of platelet spreading. Real-time observation of platelet adhesion under an epifluorescent microscope showed that platelets adhered to the surface in a linear pattern aligned in the direction of flow under high shear conditions.  相似文献   

11.
Ten specially synthesized polyurethanes (PUs) were used to investigate the effects of surface properties on platelet adhesion. Surface composition and hydrophilicity, fibrinogen (Fg) and von Willebrand's factor (vWf) adsorption, monoclonal anti-Fg binding, and platelet adhesion were measured. PUs preadsorbed with afibrinogenemic plasma or serum exhibited very low platelet adhesion, while adhesion after preadsorption with vWf deficient plasma was not reduced, showing that Fg is the key plasma protein mediating platelet adhesion under static conditions. Platelet adhesion to the ten PUs after plasma preadsorption varied greatly, but was only partially consistent with Fg adsorption. Thus, while very hydrophilic PU copolymers containing PEG that had ultralow Fg adsorption also had very low platelet adhesion, some of the more hydrophobic PUs had relatively high Fg adsorption but still exhibited lower platelet adhesion. To examine why some PUs with high Fg adsorption had lower platelet adhesion, three monoclonal antibodies (mAbs) that bind to sites in Fg thought to mediate platelet adhesion were used. The antibodies were: M1, specific to gamma-chain C-terminal; and R1 and R2, specific to RGD containing regions in the alpha-chain N- and C-terminal, respectively. Platelet adhesion was well correlated with M1 binding, but not with R1 or R2 binding. When these mAbs were incubated with plasma preadsorbed surfaces, they blocked adhesion to variable degrees. The ability of the R1 and R2 mAbs to partially block adhesion to adsorbed Fg suggests that RGD sites in the alpha chain may also be involved in mediating platelet adhesion and act synergistically with the C-terminal of the gamma-chain.  相似文献   

12.
Fibrinogen readily adsorbs to the surface of biomaterials and, because of its demonstrated ability to support platelet adhesion and aggregation, plays a role in thrombotic events associated with the implantation of synthetic materials in the human body. Thus, understanding the factors influencing the interactions of fibrinogen with biomaterials, and how platelet responses are affected, is crucial for the development of synthetic materials exhibiting improved blood compatibility. In this study, the effects of fibrinogen residence time and shear rate on the procoagulant activity of adherent platelets, along with their morphologic status, as deduced from scanning electron microscopy, were investigated. To examine whether adherent platelets promoted the generation of thrombin, polymeric materials (polytetrafluoroethylene, polyethylene, and silicone rubber) preadsorbed with fibrinogen were exposed to platelet suspensions at different wall shear rates and then incubated with clotting factors for 5 minutes under static conditions. The amount of thrombin generated per platelet was calculated from the optical density of the color developed by adding substrate S-2238. Scanning electron microscopy images of the platelets revealed that the platelets exhibited different morphologies, depending on the shear rate and residence time of the adsorbed fibrinogen. Platelets ranged from their normal discoid shape observed primarily under static conditions, to that of fully spread platelets. Results from this study show that platelets, in the presence of shear forces, undergo activation on exposure to surfaces on which adsorbed fibrinogen has resided for short residence times rather than long residence times. Interestingly, studies examining the procoagulant responses of such adherent platelets demonstrated that the platelets attached to the fibrinogen coated materials did not promote significant thrombin generation. Such low prothrombinase activity of adherent platelets suggests that adsorbed fibrinogen, while capable of supporting platelet adhesion and spreading on biomaterials, does not necessarily enhance the procoagulant activity of adherent platelets.  相似文献   

13.
Previous studies showed that platelet adhesion to biomaterials from static suspensions was greatly increased by the adsorption of even very small amounts (<5 ng/cm2) of fibrinogen (Fg). In this study, the sensitivity of platelet adhesion to Fg was reexamined by measuring platelet adhesion under flow conditions. The role of adsorbed von Willebrand's factor (vWf) was also studied. Polyethylene (PE) tubing was preadsorbed with Fg, vWf, vWf-deficient plasma, and Fg-deficient plasma or serum with added Fg, and Fg adsorption measured with 125I Fg. Platelets in a red blood cell suspension were passed through the tubes at either low (50 s(-1)) or high (500 or 1000 s(-1)) shear rates and adhesion measured with an improved LDH assay. Adhesion from flowing suspensions measured after preadsorption with afibrinogenemic plasma or serum was very low, but increased greatly with addition of Fg. Less than 10 ng/cm2 of adsorbed Fg was enough to greatly enhance platelet adhesion. Adhesion at high shear was also strongly affected by vWf, as platelet adhesion at 500 s(-1) to PE preadsorbed with vWf-deficient plasma decreased by more than tenfold compared to adhesion at 50 s(-1), but platelet adhesion to PE preadsorbed with normal plasma increased about eightfold when shear rate was increased. The results show that very low amounts of adsorbed Fg are able to support platelet adhesion under shear flow. However, adsorbed vWf also appears to play an important cofactor role in platelet adhesion to biomaterials, as its presence greatly augments platelet adhesion under high shear.  相似文献   

14.
The ability of tetraethylene glycol dimethyl ether (tetraglyme) plasma deposited coatings exhibiting ultralow fibrinogen adsorption to reduce blood activation was studied with six in vitro methods, namely fibrinogen and von Willebrand's factor adsorption, total protein adsorption, clotting time in recalcified plasma, platelet adhesion and procoagulant activity, and whole blood thrombosis in a disturbed flow catheter model. Surface plasmon resonance results showed that tetraglyme surfaces strongly resisted the adsorption of all proteins from human plasma. The clotting time in the presence of tetraglyme surfaces was lengthened compared with controls, indicating a lower activation of the intrinsic coagulation cascade. Platelet adhesion and thrombin generation by adherent platelets were greatly reduced on tetraglyme-coated materials, compared with uncoated and Biospan-coated glass slides. In the in vitro disturbed blood flow model, tetraglyme plasma coated catheters had 50% less thrombus than did the uncoated catheters. Tetraglyme-coated materials thus had greatly reduced blood interactions as measured with all six methods. The improved blood compatibility of plasma-deposited tetraglyme is thus not only due to their reduced platelet adhesion and activation, but also to a generalized reduction in blood interactions.  相似文献   

15.
The adhesion and activation of monocytes and macrophages are thought to affect the foreign body response to implanted medical devices. However, these cells interact with devices indirectly, because of the prior adsorption of proteins. Therefore, we preadsorbed several "model" biomaterial surfaces with proteins and then measured foreign body giant cell (FBGC) formation, tumor necrosis factor alpha (TNFalpha) release, and procoagulant activity. The model surfaces were tissue culture polystyrene (TCPS), untreated polystyrene (PS), and Primaria, whereas the proteins used were albumin, fibronectin, fibrinogen, and immunoglobulin. FBGC formation, TNFalpha release, and procoagulant activity of monocytes were the highest for surfaces preadsorbed with IgG. FBGC formation was lower on surfaces with adsorbed fibrinogen and fibronectin than on uncoated surfaces. TNFalpha release and procoagulant activity of monocytes were similar on surface adsorbed with fibrinogen, fibronectin, or albumin. Monocyte activation was also affected by the surface chemistry of the substrates, because FBGC formation was the highest on PS and the lowest on TCPS. Monocyte procoagulant activity was the highest on Primaria. Adsorbed proteins and surface chemistry were found to have strong effects on FBGC formation, monocyte TNFalpha release, and procoagulant activity in vitro, providing support for the idea that these same variables could affect macrophage-mediated foreign body response to biomaterials in vivo.  相似文献   

16.
The capillary perfusion model according to Cazenave and co-workers was characterized by investigating the effects of protein precoating, perfusion time and shear rate on platelet deposition using 111Indium labelling of human platelets and scanning electron microscopy (SEM). Compared with uncoated polyethylene, platelet deposition was increased after precoating with purified human von Willebrand factor, fibrinogen or fibronectin, and decreased by preadsorbed immunoglobulin G, albumin or whole plasma. Platelet aggregates were observed on immunoglobulin G-coated polyethylene, whereas all other surfaces showed single adherent platelets. Complete platelet spreading was only observed after precoating with fibronectin. The quantitative data concerning platelet deposition were evaluated by using the convective-diffusion theory. Our results indicate the applicability of this perfusion model for the in vitro testing of biomaterials.  相似文献   

17.
Platelet adhesion under static and flow conditions from a washed platelet suspension containing albumin to a polymer deposited by radio-frequency glow discharge of allylamine vapour on a poly(ethylene terephthalate) substrate was measured. Electron spectroscopy for chemical analysis was used to characterize the surface. Fibrinogen adsorption from a series of dilute plasma solutions to radio-frequency glow discharge/allylamine, measured using 125I radiolabelled baboon fibrinogen, increased with decreasing plasma dilution to a level much higher than that previously observed on polyurethanes. Elutability by sodium dodecyl sulphate of fibrinogen adsorbed from dilute plasma also increased with increasing plasma concentration, but fibrinogen preadsorbed from plasma became non-elutable when surfaces were stored in buffer for 5 d before contact with sodium dodecyl sulphate. Platelet adhesion to substrates which had been pre-adsorbed with dilute plasma was measured using baboon platelets radiolabelled with 111In. Adhesion greatly decreased as the plasma concentration used for preadsorption increased, suggesting that non-specific platelet binding to the bare surface occurs when protein coverage is incomplete. Non-specific platelet binding was inhibited to varying degrees by preadsorption of different proteins to the surface. Platelet adhesion to surfaces preadsorbed with dilute (1.0%) baboon and human plasmas lacking fibrinogen (i.e. serum, heat-defibrinogenated plasma and congenitally afibrinogenemic plasma) was diminished compared with normal plasma. Addition of exogenous fibrinogen to the deficient plasma partially restored platelet adhesion to normal levels. Adhesion to surfaces preadsorbed with human plasma deficient in von Willebrand factor was comparable to that observed with normal plasma. The plasma preadsorption studies with fibrinogen deficient media suggested that adsorbed fibrinogen is necessary for platelet adhesion to the radio-frequency glow discharge/allylamine substrate at high protein coverage. However, since adhesion was greatly reduced when the plasma preadsorbed substrate was stored in buffer before platelet contact, the conformation of adsorbed fibrinogen is also important in mediating platelet adhesion to radio-frequency glow discharge.  相似文献   

18.
To understand the effects of mediators in coagulating blood at biomaterial surfaces, it is important to use methods that resemble the normal sequence of events in wound healing around implants. The initial adhesion of platelets from whole blood onto material surfaces is mediated by the fibrinogen receptor glycoprotein IIb/IIIa, as shown in a previous study (Broberg et al., J Lab Clin Med 2002; 139:163-172). In this study, isolated platelets were adhered to fibrinogen and exposed to IgG, von Willebrand factor, or thrombin. The response was detected as the number of adherent platelets, the spreading of platelets, the exposure of CD62P (P-selectin), and the release of platelet factor 4 (PF4), ADP, and ATP. These results were compared to the response of platelets adhering to surfaces coated with the same proteins. Fibrinogen-adherent platelets exposed to thrombin generated the significantly highest exposure of CD62P and release of PF4, ADP, and ATP. When platelets were adhered to different protein coatings, von Willebrand factor generated the most CD62P exposure, IgG generated the most PF4 release, and thrombin generated the highest concentration of ADP. These results indicate that protein interactions with platelets may generate different results, depending on the mode of protein exposure.  相似文献   

19.
The time course of the concentration of active thrombin in clotting plasma (the thrombogram) was measured by subsampling from platelet-rich plasma (PRP) and continuous chromogenic measurement of platelet-poor plasma (PPP) in 41 stroke patients under the age of 50, in whom stroke could not be attributed to cardioembolic disease, arterial dissection or vasculitis. A significant increase in the area under the thrombogram (endogenous thrombin potential, ETP) was seen in 23 patients. In 9 of them, ETP was increased in PRP but normal in PPP. High ETP in PRP was significantly associated with stroke, both in the middle and in the highest tercile of the ETP (odds ratio 5.1, range 1.8-15.1, and 3.7, range 1.3-10.3, respectively). A decreased sensitivity to the inhibitory action of thrombomodulin (TM) on thrombin generation was observed in 5 of 37 cases. No further definition of the cause of increased thrombin generation or TM resistance was attempted, except for the role of von Willebrand factor (vWF). ETP in PRP, platelet-derived procoagulant activity and vWF were correlated and higher in patients than in controls (p=0.002, p=0.045 and p=0.0006, respectively). This confirms the correlation between vWF level and stroke at young age found in epidemiological studies. It suggests that the role of vWF in thrombin generation, which has been demonstrated in vitro, may be the underlying mechanism of this correlation. In summary, hypercoagulability, defined as an increased capacity of the platelet plasma system to form thrombin, is found in over half of the patients under 50 years with an otherwise unexplained stroke. Sometimes it is due to increased plasma factor activity, sometimes to an increased procoagulant activity of the platelets.  相似文献   

20.
Platelet glycoprotein Ib (GpIb) is an integral platelet membrane glycoprotein which plays a major role in haemostasis, being involved in both von Willebrand factor (vWF) and alpha-thrombin high affinity binding. Such interactions contribute to the early adhesion of platelets to exposed subendothelium and to the process of platelet activation. Glycoprotein Ib belongs to the so called (LRR) family of proteins, characterized by a structural motif consisting of the presence of one or more tandem LRRs, flanked by conserved sequences. Several experimental strategies have recently documented the involvement of the thrombin domain referred to as 'heparin binding site' in the binding to GpIb. This review is aimed at reporting on the structural mapping of both alpha-thrombin and GpIb domains involved in such interaction and on possible roles of thrombin-GpIb binding on the mechanisms supporting the platelet activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号