首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The postnatal light environment that a mouse experiences during the critical first three postnatal weeks has long‐term effects on both its circadian rhythm output and clock gene expression. Furthermore, data from our lab suggest that postnatal light may also impact the hypothalamic‐pituitary‐adrenal (HPA) axis, which is a key regulator of stress. To test the effect of postnatal light exposure on adult stress responses and circadian rhythmicity, we raised mice under either 24‐h light – dark cycles (LD), constant light (LL) or constant dark (DD) during the first three postnatal weeks. After weaning we then exposed all animals to LD cycles (basal conditions), followed by LL (stressed conditions) environments. We examined brain neuropeptide and glucocorticoid receptor (GR) expression, plasma corticosterone concentration rhythm and body temperature rhythm, together with depression‐ and anxiety‐related behaviour. Results showed that LL‐ and DD‐raised mice exhibited decreased GR expression in the hippocampus, increased plasma corticosterone concentration at the onset of the dark phase and a depressive phenotype when exposed to LD cycles later in life. Furthermore, LL‐raised mice showed increased corticotrophin‐releasing hormone mRNA expression in the paraventricular nucleus of the hypothalamus. When exposed to LL as adults, LL‐raised mice showed a significant circadian rhythm of plasma corticosterone concentration, together with a shorter period and stronger circadian rhythm of body temperature compared to DD‐raised mice. Taken together, these data suggest that altered postnatal light environments have long‐term effects on the HPA axis and the circadian system, which can lead to altered stress responses and a depressive phenotype in adulthood.  相似文献   

2.
Individuals with neurodevelopmental disorders, such as schizophrenia and autism spectrum disorder, exhibit various sleep and circadian rhythm disturbances that often persist and worsen throughout the lifespan. To study the interaction between circadian rhythm disruption and neurodevelopmental disorders, we utilized a mouse model based on prenatal maternal immune activation (MIA). We hypothesized that MIA exposure would lead to impaired circadian locomotor activity rhythms in adult mouse offspring. We induced MIA by injecting pregnant dams with polyinosinic:polycytidylic acid (poly IC) at embryonic day 9.5, then aged resulting offspring to adulthood. We first confirmed that poly IC injection in pregnant dams elevated plasma levels of pro- and anti-inflammatory cytokines and chemokines. We then placed adult offspring in running wheels and subjected them to various lighting conditions. Overall, poly IC-exposed male offspring exhibited altered locomotor activity rhythms, reminiscent of individuals with neurodevelopmental disorders. In particular, we report increased (subjective) day activity across 3 different lighting conditions: 12 h of light, 12 h of dark (12:12LD), constant darkness (DD) and constant light. Further data analysis indicated that this was driven by increased activity in the beginning of the (subjective) day in 12:12LD and DD, and at the end of the day in 12:12LD. This effect was sex-dependent, as in utero poly IC exposure led overall to much milder alterations in locomotor activity rhythms in female offspring than in male offspring. We also confirmed that the observed behavioral impairments in adult poly IC-exposed offspring were not due to differences in maternal behavior. These data further our understanding of the link between circadian rhythm disruption and neurodevelopmental disorders and may have implications for mitigating risk to the disorders and/or informing the development of circadian-based therapies.  相似文献   

3.
Ethologically based animal models are widely used; however, results from different laboratories vary significantly which may partly be due to the lack of standardization. Here, we examined the effects of circadian rhythm, lighting condition and mouse strain (BALB/c and C57BL/6, known to differ in measures of avoidance and risk assessment behavior) on two well established behavioral tests in mice: the Elevated Plus Maze (EPM) and the Open Field (OF). Parameters from both paradigms are commonly used as indices of anxiety-like behavior. BALB/c mice and C57BL/6 mice were independently tested in the morning and at night, in regular laboratory lighting and in the dark. We developed a novel method based on infrared lighting from below, coupled to respective video-tracking equipment, which facilitates standard testing of behavior interference-free in complete darkness. The two mouse strains differed in anxiety-related variables for the EPM in the dark, and for the OF in regular laboratory lighting. Moreover, BALB/c displayed greater anxiety-like behavior than C57BL/6 in the OF but less anxiety-like behavior than C57BL/6 in the EPM. Lighting condition has a major influence on both behavioral tests and this to a considerably larger extent than circadian rhythm. In addition, the lighting condition interacts strongly with the genetic background, producing discriminative differences in the anxiety-related variables depending on mouse strain and lighting condition. These results challenge the comparability of not sufficiently standardized tests of anxiety-like behavior and emphasize the need for controlling environmental variables in behavioral phenotyping.  相似文献   

4.
Circadian rhythms of locomotor activity and adrenal glucocorticoid are controlled by the suprachiasmatic nucleus (SCN), the center of a biological clock, in mammals. Arg–vasopressin (AVP) contents in the SCN play a role in endogenous circadian rhythm during the absence of time cues. The AVP-containing neurons in the SCN are considered to transmit a circadian signal to the other parts of the brain. The circadian rhythms of AVP in the SCN in relation to the plasma corticosterone and locomotor activity were investigated. Under the light–dark cycle, plasma corticosterone levels were reciprocally correlated with the AVP content in the SCN. Under free-running conditions with constant dim light, AVP rhythms were reciprocally synchronized with the locomotor activity. The correlation of AVP with plasma corticosterone is different at different times of the day both under the LD cycle and constant dim light. Dexamethasone (i.p., 0.1 mg/100) increased the AVP contents, and this tendency was significantly greater during the dark period. These results indicate that corticosterone in the blood may regulate the circadian rhythm through AVP variation in the SCN.  相似文献   

5.
Prenatal stress (PS) causes anxiety in mothers and their offspring and chewing is a commonly observed behavior during maternal stress. Prolactin (PRL) is an anti-anxiety factor that suppresses the hypothalamic–pituitary–adrenal axis. Here, we studied the roles of PRL, corticosterone (CORT), and their receptors in PS-induced anxiety-like behavior in dams and their offspring. We further investigated whether chewing during maternal stress could prevent PS-induced harmful consequences. Pregnant rats were randomly divided into PS, PS + chewing, and control groups. Anxiety-like behaviors of dams and their adolescent offspring were assessed using the open field test and elevated plus maze. Serum levels of PRL and CORT were measured by ELISA. Expression of mRNA and protein of PRLR and glucocorticoid receptor (GR) in the prefrontal cortex (PFC) were evaluated by qRT-PCR and western blotting, respectively. Compared to the control rats, dams and their female offspring, but not male offspring, in the PS group showed increased anxiety-like behaviors. The PS-affected rats had a lower serum PRL level and increased PRLR expression in the PFC. In contrast, these rats had a higher serum CORT level and decreased GR expression in the PFC. Chewing ameliorated anxiety-like behaviors and counteracted stress-induced changes in serum PRL and CORT, as well as the expression of their receptors in the PFC. Conclusion: PS-induced anxiety-like behavior is associated with changes in the serum levels of PRL and CORT and expression of their receptors in the PFC. Moreover, chewing blunts the hormonal and receptor changes and may serve as an effective stress-coping method for preventing PS-induced anxiety-like behavior.  相似文献   

6.
The circadian time-keeping system consists of clocks in the suprachiasmatic nucleus (SCN) and in peripheral organs including an adrenal clock linked to the rhythmic corticosteroid production by regulating steroidogenic acute regulatory protein (StAR). Clock cells contain an autonomous molecular oscillator based on a group of clock genes and their protein products. Mice lacking the VPAC2 receptor display disrupted circadian rhythm of physiology and behaviour, and therefore, we using real-time RT-PCR quantified (1) the mRNAs for the clock genes Per1 and Bmal1 in the adrenal gland and SCN, (2) the adrenal Star mRNA and (3) the serum corticosterone concentration both during a light/dark (L/D) cycle and at constant darkness in wild type (WT) and VPAC2 receptor-deficient mice (VPAC2-KO). We also examined if PER1 and StAR were co-localised in the adrenal steroidogenic cells. Per1 and Bmal1 mRNA showed a 24-h rhythmic expression in the adrenal of WT mice under L/D and dark conditions. During a L/D cycle, the adrenal clock gene rhythm in VPAC2-KO mice was phase-advanced by approximately 6?h compared to WT mice and became arrhythmic in constant darkness. A significant 24-h rhythmic variation in the adrenal Star mRNA expression and circulating corticosterone concentration was similarly phase-advanced during the L/D cycle. The loss of adrenal clock gene rhythm in the VPAC2 receptor knockout mice after transfer into constant darkness was accompanied by disappearance of rhythmicity in Star mRNA expression and serum corticosterone concentration. Double immunohistochemistry showed that the PER1 protein and StAR were co-localised in the same steroidogenic cells. Circulating corticosterone plays a role in the circadian timing system and the misaligned corticosterone rhythm in the VPAC2 receptor knockout mice could be involved in their abnormal rhythms of physiology.  相似文献   

7.
Depressive episodes are associated with disturbances in circadian rhythms, and constant illumination has been reported to induce depressive-like behavior in rodents. Rats kept in constant darkness express the endogenous circadian rhythm, and most animals under constant light conditions lose circadian locomotor rhythmicity. Exposure to constant light in rats during lactation was reported to prevent this loss of circadian rhythm in adulthood. Thus, the aim of the present study was to verify whether exposure to constant light during lactation prevents anhedonia-like behavior induced by constant light in adult rats. In experiment 1, we replicated the anhedonia-like effects of constant light in adult male rats. We showed that this effect is reversed by imipramine treatment in the drinking water. In experiment 2, we subjected rats to constant darkness (neonatal-DD), constant light (neonatal-LL) or to normal light/dark cycle (neonatal-LD) during the neonatal phase and evaluated them after constant light exposure in adulthood. The group exposed to constant light during the neonatal phase did not reduce their sucrose preference and exhibited greater locomotor activity than the other groups. The neonatal-DD group exhibited decreased sucrose preference earlier than controls and had higher serum corticosterone concentrations. Prevention of arrhythymicity might protect neonatal-LL rats from anhedonia-like behavior induced by constant light, whereas constant darkness during the neonatal phase rendered the neonatal-DD group more susceptible to depressive-like behavior. These results corroborate with the literature data indicating that circadian disruption may contribute in mood disorders and that early life stress can influence stress responsivity in adulthood.  相似文献   

8.
Studies of the hypothalamic-pituitary-adrenal (HPA) axis and the hypothalamic-pituitary-testicular (HPT) axis have revealed a reciprocal relationship between these two endocrine pathways. In rats, for example, disruption of the HPT axis alters the circadian secretion of corticosterone. Stress, on the other hand, can have varying effects on testosterone secretion in both rats and humans. Furthermore, in contrast to humans, where several pulses of testosterone secretion can be detected across the 24-h period with the largest in the morning, rats appear to exhibit a diurnal rhythm of testosterone secretion. In the present study, we used an automated blood sampling system to investigate the true circadian pattern of testosterone secretion under basal conditions and investigated how this responds to changes in levels of circulating corticosteroids. Analysis of plasma testosterone revealed the expected bimodal pattern of basal testosterone secretion. The two secretory episodes were 12.59 h ± 41 min apart and 4.04 h ± 16 min long, with one in the light phase and the other in the dark phase of the cycle. Interestingly, when both testosterone and corticosterone diurnal profile were compared, we found that the circadian rise in plasma corticosterone levels falls neatly between the two testosterone secretory episodes. Treatment of rats with the synthetic glucocorticoid methylprednisolone in their drinking water abolished the normal bimodal profile of testosterone secretion. These rats show transient pulses of testosterone throughout the 24 h, but no circadian pattern. By contrast, adrenalectomised rats maintain their bimodal circadian pattern, suggesting that an intact HPA axis is not necessary for generation of the endogenous HPT rhythm. Thus, although the circadian rhythm of testosterone does not depend on normal HPA function, increased levels of glucocorticoids can abolish normal HPT rhythmicity.  相似文献   

9.
Pituitary-adrenal responses to stress in the neonatal rat have been reported to be substantially reduced compared to older animals (i.e. a stress hyporesponsive period). This supposed period of endocrine quiescence is characterized by reduced stress-induced increases in both plasma ACTH and corticosterone. At the same time a number of authors have noted the decreased plasma corticosteroid-binding globulin (CBG) levels of the neonate, and there is evidence for an increased percentage of free corticosterone as well as age-related changes in the volume of distribution for corticosterone. These findings suggest that the reduced CBG levels might enhance the biological significance of existing glucocorticoid levels, beyond that assumed on the basis of plasma total corticosterone levels. We examined this question by estimating hippocampal glucocorticoid receptor occupancy and ‘translocation’ in Day 6, Day 15, and adult animals under basal and stressful conditions. The results showed that: 1) plasma ACTH levels were elevated in Day 6 animals in response to acute exposure to ether, maternal separation, and maternal separation + ether, however, ACTH responses were substantially lower than in Day 15 or adult animals; 2) Plasma total corticosterone levels followed a similar pattern; most noteworthy was the potent glucocorticoid response in Day 15 animals to the combination of maternal separation + ether; 3) Plasma CBG levels in Day 6 animals were extremely low (<3% adult values); by Day 15 CBG levels were about 25% of adult levels. Interestingly, maternal separation was associated with a substantial decrease in plasma CBG levels; 4) Hippocampal glucocorticoid receptor occupancy/translocation was similar at all ages under both basal and stress conditions. The only notable exception occurred during maternal separation in Day 15 animals, where the percentage of hippocampal glucocorticoid receptor occupancy/translocation was higher than that observed at any time in either Day 6 or adult animals. This finding is likely related to the decrease in plasma CBG that occurs following separation of Day 15 pups from the dam. Thus, despite the higher corticosterone level in the adult, the increase in glucocorticoid receptor occupancy/translocation was generally comparable across all ages either under basal conditions, or following stress. These receptor data underscore the importance of developmental changes in plasma CBG levels.  相似文献   

10.
There is converging evidence that prenatal maternal infection can increase the risk of occurrence of neuropsychiatric disorders like schizophrenia, autism, anxiety and depression in later life. Experimental studies have shown conflicting effects of prenatal maternal immune activation on anxiety-like behavior and hypothalamic–pituitary–adrenal (HPA) axis development in offspring. We investigated the effects of maternal immune activation during pregnancy on anxiety- and depression-like behaviors in pregnant mice and their offspring to determine whether these effects are dependent on strain. NMRI and C57BL/6 pregnant mice were treated with either saline or lipopolysaccharide on gestational day 17 and then interleukin (IL)-6 and corticosterone (COR) levels; anxiety or depression in the pregnant mice and their offspring were evaluated. The results indicate that maternal inflammation increased the levels of COR and anxiety-like behavior in NMRI pregnant mice, but not in C57BL/6 dams. Our data also demonstrate that maternal inflammation elevated the levels of anxiety-and depression-like behaviors in NMRI offspring on the elevated plus-maze, elevated zero-maze, tail suspension test and forced swimming test respectively, but not in the open field and light–dark box. In addition, we did not find any significant change in anxiety- and depression-like behaviors of adult C57BL/6 offspring. Our findings suggest that prenatal maternal immune activation can alter the HPA axis activity, anxiety- and depression-like behaviors in a strain- and task-dependent manner in offspring and further comprehensive studies are needed to prove the causal relationship between the findings found here and to validate their relevance to neuropsychiatric disorders in humans.  相似文献   

11.
Long-term potentiation (LTP) of hippocampal granule cells was studied in vivo at various times during the light-dark cycle in both intact control and adrenalectomized (ADX) rats. Both groups of rats demonstrated a circadian rhythm of LTP, however the rhythmicity of the ADX animals was the opposite to that found in intact controls. Thus, in experiments performed during the dark phase, intact control animals demonstrated more LTP than did the ADX animals. During the light period ADX animals demonstrated more LTP than intact controls. These data suggest that adrenal hormones play a role in regulating the circadian rhythm of LTP.  相似文献   

12.
Individuals are increasingly exposed to light at night. Exposure to constant light (LL) disrupts circadian rhythms of locomotor activity, body temperature, hormones, and the sleep-wake cycle in animals. Other behavioural responses to LL have been reported, but are inconsistent. The present experiment sought to determine whether LL produces changes in affective responses and whether behavioural changes are mediated by alterations in glucocorticoid concentrations. Relative to conspecifics maintained in a light/dark cycle (LD, 16:8 light/dark), male Swiss-Webster mice exposed to LL for three weeks increased depressive-like behavioural responses as evaluated by the forced swim test and sucrose anhedonia. Furthermore, providing a light escape tube reversed the effects of LL in the forced swim test. LL mice displayed reduced anxiety as evaluated by the open field and elevated-plus maze. Glucocorticoid concentrations were reduced in the LL group suggesting that the affective behavioural responses to LL are not the result of elevated corticosterone. Additionally, mice housed in LD with a clear tube displayed increased paired testes mass as compared to LL mice. Taken together, these data provide evidence that exposure to unnatural lighting can induce significant changes in affect, increasing depressive-like and decreasing anxiety-like responses.  相似文献   

13.
Ageing alters fundamental aspects of circadian rhythmicity in mammals; the effects include reduced rhythm amplitude and alterations in period length and in entrainment to the light/dark cycle. Such changes may reflect disruptions in cellular function within the suprachiasmatic nucleus (SCN), the site of the predominant circadian pacemaker. In the SCN, vasoactive intestinal peptide (VIP)-synthesizing neurones receive various inputs, including retinohypothalamic projections containing pituitary adenylate cyclase activating peptide (PACAP). SCN VIP cells establish connections with local neurones and send efferents beyond the nucleus. Considerable evidence implicates VIP and PACAP in circadian rhythm maintenance and/or entrainment to photic Zeitgebers. These actions involve members of a distinct family of receptors; mRNAs for two such receptors, VPAC2 and PAC1, are present in the SCN. This study used isotopic in situ hybridization to examine the effects of ageing on expression of mRNAs for VIP, VPAC2 and PAC1 in the SCN of male rats under a 12 : 12 h light/dark cycle. Analysis of film autoradiographs from young adult (2-3 months) or aged (19-20 months) rats, at eight time points across the light/dark cycle, showed loss of diurnal rhythmicity and reduced levels for VIP mRNA in the aged group. A diurnal rhythm of VPAC2 receptor mRNA was present in both groups, but its levels were reduced in the aged rats. There were no differences between the two groups for PAC1 receptor mRNA expression. The present results indicate that ageing reduces VIP and VPAC2 receptor mRNA and eliminates diurnal expression of VIP mRNA within the SCN of aged male rats.  相似文献   

14.
The suprachiasmatic nucleus (SCN) of the anterior hypothalamus contains a circadian pacemaker in mammals. We determined the circadian profiles of arginine-vasopressin (AVP), a major peptide in the dorsomedial SCN, in rats under light-dark (LD), constant dark (DD) and constant light (LL) conditions. Under LD conditions, AVP levels in the SCN showed circadian rhythmicity with a peak at early light phase and a broad trough during the dark phase. This rhythm in the AVP contents was maintained even after 14 days of free-running under DD conditions and 3 days under LL conditions. These circadian patterns of AVP are similar to those of somatostatin, another peptide in the dorsomedial SCN. This indicates a common mode of regulation for peptides in this subfield of the SCN.  相似文献   

15.
Mice born from high care‐giving females show, as adults, low anxiety levels, decreased responsiveness to stress, and substantial improvements in cognitive function and hippocampal plasticity. Given the relevance of this issue for preventing emotional and cognitive abnormalities in high‐risk subjects, this study examines the possibility to further enhance the beneficial effects observed in the progeny by augmenting maternal care beyond the highest levels females can display in standard laboratory conditions. This was produced by placing a second female with the dam and its litter in the rearing cage from the partum until pups weaning. Maternal behavior of all females was scored during the first week postpartum, and behavioral indices of emotionality, prestress and poststress corticosterone levels, cognitive performance, and hippocampal morphology were assessed in the adult offspring. We found that pups reared by female dyads received more maternal care than pups reared by dams alone, but as adults, they did not exhibit alterations in emotionality or corticosterone response estimated in basal condition or following restraint stress. Conversely, they showed enhanced performance in hippocampal‐dependent tasks including long‐term object discrimination, reactivity to spatial change, and fear conditioning together with an increase in dendritic length and spine density in the CA1 region of the hippocampus. In general, the beneficial effects of dyadic maternal care were stronger when both the females were lactating. This study demonstrates that double‐mothering exerts a long‐term positive control on cognitive function and hippocampal neuronal connectivity. This experimental manipulation, especially if associated with increased feeding, might offer a concrete possibility to limit or reverse the consequences of negative predisposing conditions for normal cognitive development. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Hippocampal rhythms in clock gene expression, enzymatic activity, and long‐term potentiation (LTP) are thought to underlie day–night differences in memory acquisition and recall. Glycogen synthase kinase 3‐beta (GSK3β) is a known regulator of hippocampal function, and inhibitory phosphorylation of GSK3β exhibits region‐specific differences over the light‐dark cycle. Here, we sought to determine whether phosphorylation of both GSK3α and GSK3β isoforms has an endogenous circadian rhythm in specific areas of the hippocampus and whether chronic inhibition or activation alters the molecular clock and hippocampal plasticity (LTP). Results indicated a significant endogenous circadian rhythm in phosphorylation of GSK3β, but not GSK3α, in hippocampal CA1 extracts from mice housed in constant darkness for at least 2 weeks. To examine the importance of this rhythm, genetic and pharmacological strategies were used to disrupt the GSK3 activity rhythm by chronically activating or inhibiting GSK3. Chronic activation of both GSK3 isoforms in transgenic mice (GSK3‐KI mice) diminished rhythmic BMAL1 expression. On the other hand, chronic treatment with a GSK3 inhibitor significantly shortened the molecular clock period of organotypic hippocampal PER2::LUC cultures. While WT mice exhibited higher LTP magnitude at night compared to day, the day–night difference in LTP magnitude remained with greater magnitude at both times of day in mice with chronic GSK3 activity. On the other hand, pharmacological GSK3 inhibition impaired day–night differences in LTP by blocking LTP selectively at night. Taken together, these results support the model that circadian rhythmicity of hippocampal GSK3β activation state regulates day/night differences in molecular clock periodicity and a major form of synaptic plasticity (LTP).  相似文献   

17.
The role of the pineal gland and adrenocorticosteroids in circadian rhythmicity of immune function was investigated in Sprague-Dawley rats that either had been pinealectomized (PX) or had undergone superior cervical ganglionectomy (SCGX), which functionally denervates the pineal. For both experiments, conducted between August and October, rats were entrained to a 10-h light:14-h dark cycle and fed ad libitum. The circadian rhythm in monocytes (ANOVA, p less than .01 for Control + Sham + PX samples) tended to parallel that of plasma corticosteroid levels (ANOVA, p less than .01) with the peak during early dark and the nadir at early light. In comparison, suppressor/cytotoxic T cells and B cells tended to be more frequent during early light with minimum levels during early dark (ANOVA, p less than .05 and .01, respectively, for Control + Sham + PX samples). Natural killer (NK) activity in control animals varied significantly (ANOVA, p less than .05) over the light:dark cycle with peak activity during early dark in the SCGX experiment, but was only slightly elevated during late dark in the PX experiment. PX animals exhibited increased frequency of NK cells, but only in samples collected during the day (t test, p less than .05). This effect was not observed in sham-operated PX controls and in SCGX animals. Neither PX nor SCGX had a significant (ANOVA) effect on plasma corticosterone levels. These observations in the rat are consistent with findings in mice and humans that corticosteroids play an important general role in circadian rhythmicity of immune functions. In contrast, the present study suggests that pineal gland influence of immune function(s) is more specific and that pineal gland interaction with NK cells has a circadian component.  相似文献   

18.
Abnormal circadian rhythms have been linked to at least some forms of depression and to disturbances in the sleep-wake cycle. In addition, mental and physical disorders that are associated with rapid travel across time zones (i.e. the jet-lag syndrome) and with rotating shift-work schedules, are thought to involve a disruption of normal circadian rhythmicity. It might be possible to alleviate some of the adverse effects of abnormal circadian rhythms if pharmacological agents could be used to manipulate the central circadian pacemaker(s) that regulate these rhythms. Studies in our laboratory indicate that treatment with a short-acting benzodiazepine, triazolam, can induce major shifts in both behavioral and endocrine circadian rhythms in hamsters under a variety of experimental conditions. In the absence of a synchronizing light-dark cycle (i.e. during exposure to constant light or constant dark), single or multiple injections of triazolam can induce a permanent phase shift in both the circadian rhythm of locomotor activity and the circadian rhythm of pituitary LH release. In addition, repeated daily injections of triazolam can alter the entrained phase relationship of the circadian activity rhythm to a fixed light-dark cycle, and following a shift in the light-dark cycle, a single injection of triazolam can facilitate the time it takes for the activity rhythm to be resynchronized to the new lighting schedule. Thus, triazolam, or drugs with similar phase-shifting effects on the mammalian circadian system, might be useful in the treatment of various physical and mental illnesses that have been associated with a disorder in circadian time-keeping in humans.  相似文献   

19.
Effects of absence of nursing mothers on the circadian pacemaker of their offspring were examined by measuring clock genes, the rat Per1 (rPer1) and rPer2 expression rhythms in the pup suprachiasmatic nuclei (SCN). Neonate rats born to mothers kept under a 12-h light : 12-h dark cycle (LD) were blinded immediately after birth and exposed to periodic maternal deprivation where pups were deprived of their mothers during the light phase of 12-h for the first week of life. At postnatal day 6, the periodic maternal deprivation completely phase-reversed the circadian rhythms in expression of the clock genes in the pup SCN and in spontaneous locomotor activity after the pups were weaned at postnatal day 21. The periodic maternal absence also altered the patterns of stress-related gene expressions such as corticotropine-releasing hormone, arginine vasopressin, and glucocorticoid receptor in particular brain areas of the mother-deprived pups at P6. These findings indicate that periodic absence of the nursing mother in the first week of life produces a resetting effect on the neonatal circadian clock and induces stress responses in the hypothalamus-pituitary-adrenal axis.  相似文献   

20.
1. Anti-depressant drugs alter the period of circadian rhythms under free running conditions. We have examined whether treatment with anti-depressants alters such rhythms under conditions of entrainment to a lighting cycle or following a phase advance of the lighting. 2. In the first experiment, following entrainment to a 10L:14D lighting schedule, male Long Evans rats were injected daily for three weeks, with either saline, desipramine or clomipramine at a dose of 10 mg/kg. Under these conditions, the resting circadian patterns of serum corticosterone and melatonin were not affected. 3. In a second experiment, male Wistar rats, adapted to a 12L:12D lighting cycle, were implanted with transmitters, permitting continuous recording of temperature. Animals were given chow supplemented with clomipramine or desipramine so that plasma clomipramine levels were within the normal therapeutic range for humans and desipramine levels were at 4-6 times the therapeutic range. After three weeks of drug treatment, the mean 24 h pattern of temperature was decreased and phase advanced by 72 min in the desipramine group compared to clomipramine or controls. Following a 6 h phase advance in the lighting cycle, the three groups responded differently. The clomipramine group evidenced the most rapid advance in the acrophase, equivalent to 6.9 h, while the saline and desipramine treated groups re-entrained significantly more slowly. 4. Clomipramine, given to achieve clinically meaningful blood levels, does not alter the circadian temperature rhythm under constant conditions of alternating light and dark, but significantly accelerates the rate of re-entrainment to a 6 h phase advance of the lighting schedule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号