首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Nemaline myopathy is a hereditary disease of skeletal muscle defined by a distinct pathology of electron-dense accumulations within the sarcomeric units called rods, muscle weakness and, in most cases, a slow oxidative (type 1) fiber predominance. We generated a transgenic mouse model to study this disorder by expressing an autosomal dominant mutant of alpha-tropomyosin(slow) previously identified in a human cohort. Rods were found in all muscles, but to varying extents which did not correlate with the amount of mutant protein present. In addition, a pathological feature not commonly associated with this disorder, cytoplasmic bodies, was found in the mouse and subsequently identified in human samples. Muscle weakness is a major feature of this disease and was examined with respect to fiber composition, degree of rod-containing fibers, fiber mechanics and fiber diameter. Hypertrophy of fast, glycolytic (type 2B) fibers was apparent at 2 months of age. Muscle weakness was apparent in mice at 5-6 months of age, mimicking the late onset observed in humans with this mutation. The late onset did not correlate with observed changes in fiber type and rod pathology. Rather, the onset of muscle weakness correlates with an age-related decrease in fiber diameter and suggests that early onset is prevented by hypertrophy of fast, glycolytic fibers. We suggest that the clinical phenotype is precipitated by a failure of the hypertrophy to persist and therefore compensate for muscle weakness.  相似文献   

2.
Hirschsprung disease is a congenital form of aganglionic megacolon that results from cristopathy. Hirschsprung disease usually occurs as a sporadic disease, although it may be associated with several inherited conditions, such as multiple endocrine neoplasia type 2. The rearranged during transfection (RET) proto-oncogene is the major susceptibility gene for Hirschsprung disease, and germline mutations in RET have been reported in up to 50% of the inherited forms of Hirschsprung disease and in 15-20% of sporadic cases of Hirschsprung disease. The prevalence of Hirschsprung disease in multiple endocrine neoplasia type 2 cases was recently determined to be 7.5% and the cooccurrence of Hirschsprung disease and multiple endocrine neoplasia type 2 has been reported in at least 22 families so far. It was initially thought that Hirschsprung disease could be due to disturbances in apoptosis or due to a tendency of the mutated RET receptor to be retained in the Golgi apparatus. Presently, there is strong evidence favoring the hypothesis that specific inactivating haplotypes play a key role in the fetal development of congenital megacolon/Hirschsprung disease. In the present study, we report the genetic findings in a novel family with multiple endocrine neoplasia type 2: a specific RET haplotype was documented in patients with Hirschsprung disease associated with medullary thyroid carcinoma, but it was absent in patients with only medullary thyroid carcinoma. Despite the limited number of cases, the present data favor the hypothesis that specific haplotypes not linked to RET germline mutations are the genetic causes of Hirschsprung disease.  相似文献   

3.
4.
BACKGROUND: (R)- and (S)-Enantiomers of albuterol likely exert differential effects in patients with asthma. The (R)-enantiomer binds to the beta2-adrenergic receptor with greater affinity than the (S)-enantiomer and is responsible for albuterol's bronchodilating activity. (S)-Albuterol augments bronchospasm and has proinflammatory actions. OBJECTIVE: The study aim was to determine whether the (S)-enantiomer, in contrast to the (R)-enantiomer, has adverse effects on allergic airway inflammation and hyperresponsiveness in a mouse asthma model. METHODS: Mice sensitized to ovalbumin (OVA) intraperitoneally on days 0 and 14 were challenged with OVA intranasally on days 14, 25, and 35. On day 36, 24 hours after the final allergen challenge, the effect of the (R)- and (S)-enantiomers of albuterol (1 mg x kg(-1) x d(-1) administered by means of a miniosmotic pump from days 13-36) on airway inflammation and hyperreactivity was determined. RESULTS: In OVA-sensitized/OVA-challenged mice, (R)-albuterol significantly reduced the influx of eosinophils into the bronchoalveolar lavage fluid and airway tissue. (R)-Albuterol also significantly decreased airway goblet cell hyperplasia and mucus occlusion and levels of IL-4 in bronchoalveolar lavage fluid and OVA-specific IgE in plasma. Although (S)-albuterol significantly reduced airway eosinophil infiltration, goblet cell hyperplasia, and mucus occlusion, it increased airway edema and responsiveness to methacholine in OVA-sensitized/OVA-challenged mice. Allergen-induced airway edema and pulmonary mechanics were unaffected by (R)-albuterol. CONCLUSION: Both (R)- and (S)-enantiomers of albuterol reduce airway eosinophil trafficking and mucus hypersecretion in a mouse model of asthma. However, (S)-albuterol increases allergen-induced airway edema and hyperresponsiveness. These adverse effects of the (S)-enantiomer on lung function might limit the clinical efficacy of racemic albuterol.  相似文献   

5.
6.
7.
8.
A transgenic mouse strain with a high copy number of rescuablelac Z sequences was evaluated for its effectiveness in detectinglacZ mutations in selected tissues. Procarbazine, cyclophosphamide,ethylnitrosourea, 7, 12-dimethylbenz [a] anthracene (DMBA),acrylamide and chlorambucil were tested following either singleor repeated dosing regimens. Bone marrow, liver, skin and testistissues were selected to assess as target sites for mutation.Bone marrow, liver and testis tissues were examined for mutationfollowing exposures to ethylnitrosourea and chlorambucil. Increasedmutant frequencies were found for both chemicals in all threetissues. Bone marrow tissue was examined for mutation followingprocarbazine, cyclophosphamide and acrylamide exposures, andskin was examined for mutation following dermal applicationof DMBA. Mutation induction was observed in all cases. The resultsbtained from this investigation demonstrate the applicabilityof this transgenic mouse as an effective model to detect andanalyze gene mutation in selected organs including germinaltissues. Studies of organotrophic chemical mutagens and carcinogensare possible with this model as are studies of the susceptibilityof germinal tissues to mutagen exposures. 2To whom correspondence should be addressed  相似文献   

9.
10.
Alport syndrome is a human hereditary glomerulonephritis which results in end-stage renal failure (ESRF) in most cases. It is caused by mutations in any one of the collagen alpha3(IV), alpha4(IV), or alpha5(IV) chain genes (COL4A3-COL4A5). Patients carrying identical mutations can exhibit very different disease courses, suggesting that other genes or the environment influence disease progression. We previously generated a knockout mouse model of Alport syndrome by mutating Col4a3. Here, we show that genetic background strongly influences the timing of onset of disease and rate of progression to ESRF in these mice. On the 129X1/SvJ background, Col4a3 -/- mice reached ESRF at approximately 66 days of age, while on the C57BL/6J background, the mean age at ESRF was 194 days of age. This suggests the existence of modifier genes that influence disease progression. A detailed histopathological analysis revealed that glomerular basement membrane lesions typical of Alport syndrome were significantly more frequent in homozygotes on the 129X1/SvJ background than on the C57BL/6J background as early as two weeks of age, suggesting that modifier genes act by influencing glomerular basement membrane structure. Additional data indicated that differential physiological responses to basement membrane splitting also underlie the differences in disease progression. We attempted to map the modifier genes as quantitative trait loci (QTLs) using age at ESRF as the quantitative trait. Genome scans were performed on mice at the two extremes in a cohort of mutant F1 x C57BL/6J backcross mice. Analysis with Map Manager QT revealed QTLs linked to markers on chromosomes 9 and 16. A more detailed understanding of how these QTLs act could lead to new approaches for therapy in diverse renal diseases.  相似文献   

11.
Animal models suggest that a deficiency in myeloperoxidase (MPO; EC 1.11.1.7), a lysosomal hemoprotein involved in host defense, may be associated with a decreased level of immunity. A nonsynonymous mutation, resulting in an arginine to cysteine substitution (Arg499Cys or R499C), has been identified in the exon 9 genetic coding region of a Japanese patient with complete MPO deficiency. Genetic analysis revealed that the mRNA of the patient could be correctly transcribed then further translated into a peptide sequence. However, the Western blot analysis confirmed the absence of MPO peptides. An initial screening assay of the patient's blood exhibited an abnormal hematograph, and no MPO activity was detected. To determine if this mutation might be associated with MPO deficiency, DNA samples for 387 controls were examined. Genetic analysis was performed using standard PCR techniques for amplification and sequencing. None of the control samples possessed the R499C substitution. This mutation is in close proximity to a different mutation (G501S) previously found in another Japanese MPO-deficient patient, and the amino acid, H502, which is strongly involved in heme binding, leading to the speculation that heme binding may play a role in complete MPO deficiency.  相似文献   

12.
Germline mutations in the RET proto-oncogene are responsible for the development of human hereditary diseases, including multiple endocrine neoplasia (MEN) type 2A and 2B, familial medullary thyroid carcinoma (FMTC), and Hirschsprung's disease (HSCR). It has been reported that some families developed both MEN 2A/FMTC and HSCR, in which a mutation in a cysteine residue at codon 609, 618, or 620 in the RET gene was present. Here we report a novel RET mutation detected in a Japanese family with medullary thyroid carcinoma and HSCR. A germline mutation in cysteine 611 of the RET gene was identified in this family, which introduced an amino-acid change from cysteine to serine. By biological and biochemical analyses of mutant RET proteins, we previously predicted the potentiality that amino-acid substitution for cysteine 611 as well as cysteines 609, 618, and 620 would promote the development of MEN 2A/FMTC and HSCR. This clinical case substantiates our suggestion for the mechanism of the development of both the diseases.  相似文献   

13.
Synphilin-1 is linked to the pathogenesis of Parkinson's disease (PD) based on its identification as an alpha-synuclein (PARK1) and parkin (PARK2) interacting protein. Moreover, synphilin-1 is a component of Lewy bodies (LB) in brains of sporadic PD patients. Therefore, we performed a detailed mutation analysis of the synphilin-1 gene in 328 German familial and sporadic PD patients. In two apparently sporadic PD patients we deciphered a novel C to T transition in position 1861 of the coding sequence leading to an amino acid substitution from arginine to cysteine in position 621 (R621C). This mutation was absent in a total of 702 chromosomes of healthy German controls. To define a possible role of mutant synphilin-1 in the pathogenesis of PD we performed functional analyses in SH-SY5Y cells. We found synphilin-1 capable of producing cytoplasmic inclusions in transfected cells. Moreover we observed a significantly reduced number of inclusions in cells expressing C621 synphilin-1 compared with cells expressing wild-type (wt) synphilin-1, when subjected to proteasomal inhibition. C621 synphilin-1 transfected cells were more susceptible to staurosporine-induced cell death than cells expressing wt synphilin-1. Our findings argue in favour of a causative role of the R621C mutation in the synphilin-1 gene in PD and suggest that the formation of intracellular inclusions may be beneficial to cells and that a mutation in synphilin-1 that reduces this ability may sensitize neurons to cellular stress.  相似文献   

14.
In this study, we investigated mice of the TgCRND8 line, an APP transgenic mouse model of Alzheimer's disease (AD), with respect to behavioral, endocrinological, and neuropathological parameters. Our results show that transgenic and wild-type mice did not differ in their general health status, exploratory and anxiety related behavior as well as in the activity of their sympathetic-adrenomedullary system. Significant differences, however, were found regarding body weight, amyloid plaque formation, and the activity of the hypothalamic-pituitary-adrenocortical (HPA) axis. Continuous monitoring of glucocorticoid (GC) concentrations over a period of 120 days, utilizing a noninvasive technique to measure corticosterone metabolites in fecal samples, revealed that transgenic animals showed adrenocortical hyperactivity, starting very early in males (from day 30) and later in females (around day 90). It is hypothesized that these changes in the activity of the HPA axis are linked to amyloid-beta associated pathological alterations in the hippocampus, causing degenerations in the negative feedback regulation of the HPA axis leading to hypersecretion of GC. Thus, the development of adrenocortical hyperactivity might be a key-element in the understanding of AD.  相似文献   

15.
Glial fibrillary acidic protein (GFAP) is an intermediate filament protein that is highly expressed in reactive astrocytes. Increased production of GFAP is a hallmark of astrogliosis in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). However, the physiological and pathological roles of GFAP, particularly in chronic neurodegenerative conditions, remain unclear. To address this issue, we here investigate whether absence of GFAP affects the phenotypic expression of motor neuron disease (MND) using an H46R mutant Cu/Zn superoxide dismutase-expressing mouse model of ALS (SOD1(H46R)). GFAP deficient SOD1(H46R) mice showed a significant shorter lifespan than SOD1(H46R) littermates. Further, at the end stage of disease, loss of GFAP resulted in increased levels of Vim and Aif1 mRNAs, encoding vimentin and allograft inflammatory factor 1 (AIF1), respectively, in the spinal cord, although no discernible differences in the levels and distribution of these proteins between SOD1(H46R) and GFAP-deficient SOD1(H46R) mice were observed. These results suggest that loss of GFAP in SOD1(H46R) mice marginally accelerates the disease progression by moderately enhancing glial cell activation. Our findings in a mouse model of ALS may have implication that GFAP is not necessary for the initiation of disease, but it rather plays some modulatory roles in the progression of ALS/MND.  相似文献   

16.
We describe three novel mutations in the human arylsulfatase A gene in three patients with MLD, an autosomal recessive lysosomal storage disorder. An insertion, 2590_2591insCCCC in exon 8 and a deletion, 752_758delGCCGGCC, in exon 3 will both result in frameshifts. A mutation in exon 8, 2566T-->C, results in a missense mutation C488R, disrupting an unusual cysteine-knot at the C-terminal end of the protein. All three mutations are heterozygous with previously documented mutations. A previously reported mutation, R84Q was identified on a pseudodeficiency allele. These mutations are part of a heterogeneous spectrum of mutations found in a collection of DNA samples from MLD patients from across Canada and the USA.  相似文献   

17.
Gaucher disease (GD) is the most frequently encountered lysosomal storage disease, caused by autosomal recessive inborn defects in the glucocerebrosidase gene (GBA) at 1q21. The disease is most common in the Ashkenazi Jewish population. GD can present with a vast phenotypic heterogeneity, which can be predicted to some extent from the underlying mutation. In this report, we describe a Lebanese Arab family with multigenerational incidence of GD caused by a heterozygous genotype of a rare mutation, R48W, and a common one, L444P. Our patients' clinical course is described. We also review the English literature for patients with this rare mutation.  相似文献   

18.
19.
We have identified a point mutation in Npc1 that creates a novel mouse model (Npc1(nmf164)) of Niemann-Pick type C1 (NPC) disease: a single nucleotide change (A to G at cDNA bp 3163) that results in an aspartate to glycine change at position 1005 (D1005G). This change is in the cysteine-rich luminal loop of the NPC1 protein and is highly similar to commonly occurring human mutations. Genetic and molecular biological analyses, including sequencing the Npc1(spm) allele and identifying a truncating mutation, confirm that the mutation in Npc1(nmf164) mice is distinct from those in other existing mouse models of NPC disease (Npc1(nih), Npc1(spm)). Analyses of lifespan, body and spleen weight, gait and other motor activities, as well as acoustic startle responses all reveal a more slowly developing phenotype in Npc1(nmf164) mutant mice than in mice with the null mutations (Npc1(nih), Npc1(spm)). Although Npc1 mRNA levels appear relatively normal, Npc1(nmf164) brain and liver display dramatic reductions in Npc1 protein, as well as abnormal cholesterol metabolism and altered glycolipid expression. Furthermore, histological analyses of liver, spleen, hippocampus, cortex and cerebellum reveal abnormal cholesterol accumulation, glial activation and Purkinje cell loss at a slower rate than in the Npc1(nih) mouse model. Magnetic resonance imaging studies also reveal significantly less demyelination/dysmyelination than in the null alleles. Thus, although prior mouse models may correspond to the severe infantile onset forms of NPC disease, Npc1(nmf164) mice offer many advantages as a model for the late-onset, more slowly progressing forms of NPC disease that comprise the large majority of human cases.  相似文献   

20.
The LuxS protein is required for the biosynthesis of the type 2 autoinducer (AI-2), which is involved in quorum sensing in a wide range of bacterial species. We have determined the effects of a defined luxS mutation on the virulence of Streptococcus pneumoniae. Although the luxS mutant displayed reduced virulence relative to its wild-type parent, the type 2 strain D39, it was by no means avirulent in a mouse model. After intranasal administration, the luxS mutant was able to colonize the nasopharynx of the mouse as efficiently as the wild type. However, it was less able to spread from the nasopharynx to the lungs or the blood. Intraperitoneal coadministration studies indicated that the luxS mutant was less fit and was readily outcompeted by wild-type D39. However, when administered on its own by this route, the mutant was able to proliferate and cause fatal systemic disease, albeit at a lower rate than the wild type. Western blot analysis of whole-cell lysates of the mutant and its parent did not reveal any differences in the levels of several well-characterized virulence proteins. However, analysis of Coomassie blue-stained protein profiles after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that mutation of luxS had pleiotropic effects on protein expression in all cellular compartments. This is consistent with the product of luxS having a regulatory role in S. pneumoniae. This is the first report of a direct role for luxS (and by inference, AI-2) in the virulence of a gram-positive pathogen. However, the fact that mutagenesis of luxS does not completely attenuate S. pneumoniae has implications for the possible use of AI-2 antagonists for treatment of pneumococcal infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号