首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polycyclic aromatic hydrocarbon 6-methyl-1,3,8-trichlorodibenzofuran (MCDF) is related to the industrial byproduct dioxin and is a weak agonist and partial antagonist at the aryl hydrocarbon receptor (AhR). Tamoxifen is used for the treatment and prevention of breast cancer and interferes with the interaction of estrogen with estrogen receptor alpha (ER). The combination of MCDF and tamoxifen lowered the effective dose of both drugs required to inhibit 7,12-dimethylbenz(a)anthracene-induced mammary tumor growth in rats and protected against the estrogenic effects of tamoxifen on the uterus in rats (A. McDougal et al., Cancer Res 2001;61:3902-7), pointing to the potential use of MCDF in breast cancer treatment. Potential AhR-ER cross-talk is evidenced by the antiestrogenic activity of MCDF and the degradative effect of MCDF on ER protein levels. Our studies confirmed that MCDF degraded the ER. MCDF displayed antiestrogenic activity at higher concentrations in MCF-7 human breast cancer cells, but MCDF alone (10(-6) M) stimulated the growth of MCF-7 cells. MCDF also activated an estrogen response element (ERE)-luciferase reporter and increased mRNA levels of the estrogen-responsive gene transforming growth factor (TGF)-alpha. The estrogenic effects of MCDF are ER dependent because they were blocked by the pure antiestrogen ICI 182,780. MCDF induced ER-coactivator interaction in glutathione S-transferase pull-down assays and the formation of an ER.ERE complex in gel mobility shift assays, further indicating that the estrogenic actions of MCDF are mediated by the ER. In addition, knockdown of the AhR with small interfering RNA did not affect MCDF-induced ERE-luciferase activity. Overall, these data support the conclusion that MCDF is a partial agonist at the ER. This study provides the first evidence for the direct interaction of the ER with MCDF and challenges the view that MCDF is simply an AhR-specific ligand.  相似文献   

2.
Two thirds of breast cancers express the estrogen receptor (ER), which contributes to tumor development and progression. ER-targeted therapy is therefore widely used in breast cancer to inhibit signaling through ER and disrupt breast cancer growth. This therapeutic strategy, particularly using the antiestrogen tamoxifen, is proven to increase the cure rates in early breast cancer, improve patient outcomes in advanced disease, and reduce breast cancer incidence in the prevention setting. Despite the recent integration of more powerful endocrine agents into breast cancer care, resistance to all forms of endocrine therapy remains a major problem. New insight into ER biology and progress in understanding resistance mechanisms, mediated by molecular crosstalk between ER and various growth factor signaling pathways, are generating tremendous promise for new therapeutic opportunities to target resistance and improve breast cancer disease outcomes.  相似文献   

3.
The estrogen receptor: a model for molecular medicine.   总被引:10,自引:0,他引:10  
The identification of the estrogen receptor (ER) in the laboratory provided a mechanism to describe the target site specificity of estrogen action in uterus, vagina, pituitary gland, and breast cancer. Most importantly, a test was established to predict the outcome of antihormonal therapy in breast cancer, and a target was identified to develop new drugs for the treatment and prevention of breast cancer. The development of tamoxifen for the treatment of all stages of ER-positive breast cancers has resulted in the improved survival of breast cancer patients. However, the recognition of selective ER modulation, i.e., estrogen-like action in bones and lowering circulating cholesterol but antiestrogenic actions in breast and uterus, has resulted in the development of multifunctional medicines with the goal of preventing not only breast and uterine cancer but also osteoporosis and coronary heart disease.  相似文献   

4.
Estrogen receptor (ER), mediating estrogen-signaling stimuli, is a dominant regulator and a key therapeutic target in breast cancer etiology and progression. Endocrine therapy, blocking the ER pathway, is one of the most important systemic therapies in breast cancer management, but de novo and acquired resistance is still a major clinical problem. New research highlights the role of both genomic and nongenomic ER activities and their intimate molecular crosstalk with growth factor receptor and other signaling kinase pathways in endocrine resistance. These signaling pathways, when overexpressed and/or hyperactivated, can modulate both activities of ER, resulting in endocrine resistance. Thus, these signal transduction receptors and signaling molecules may serve as both predictive markers and novel therapeutic targets to circumvent endocrine resistance. Compelling experimental and clinical evidence suggest that the epidermal growth factor/HER2/neu receptor (EGFR/HER2) pathway might play a distinct role in endocrine resistance, and especially in resistance to selective estrogen receptor modulators (SERMs) such as tamoxifen. Results from preclinical studies of treatment combinations with various endocrine therapy drugs together with several potent anti-EGFR/HER2 inhibitors are very promising, and clinical trials to see whether this new strategy is effective in patients are now ongoing.  相似文献   

5.
6.
7.
Treatment of estrogen-sensitive breast cancer with selective estrogen selective modulators (SERMs) and, more recently, aromatase inhibitors has met with wide success. However, antagonism of estrogen receptor (ER) activity in breast carcinomas by SERMs such as tamoxifen has been associated with increased risk of cancer in other tissue such as the endometrium. Furthermore, current therapies using aromatase inhibitors have side effects on bone resulting in development of osteoporosis in some patients. We present in this paper the results of a study using 4-chlorophenylacetate (4-CPA), a compound which belongs to a family of small aromatic fatty acids that has been shown to possess anticancer properties, to treat DMBA exposed MMTV-aromatase mice. These animals exhibit elevated levels of estrogen in their mammary glands and develop estrogen-responsive tumors. Consistent with our earlier findings showing that 4-CPA inhibited the growth of ER positive breast cancer cells in vitro, we now demonstrate that this compound inhibits tumor formation in MMTV-aromatase mice. This effect was not associated with reduction of ER expression in their mammary tissue, or to alteration of aromatase levels or activity. The data suggest that 4-CPA is a novel therapeutic agent that could be used in the prevention or treatment of estrogen-sensitive breast cancer.  相似文献   

8.
The incidence of breast cancer is rising throughout the world. Breast cancer is slowly becoming more prevalent in countries which previously had low rates of cancer as well as becoming a leading cause of cancer death in some countries. Fortunately, a large number of these tumors are estrogen receptor (ER) positive and respond to anti-hormonal adjuvant therapy which until recently has been 5 years of tamoxifen treatment. Unfortunately, a significant number of patients develop recurrent cancers and the recurrent tumors are resistant to tamoxifen treatment. In addition, because of tamoxifen's selective estrogenic actions, there have been reports of venous thrombosis, endometrial cancer, and strokes in patients receiving tamoxifen therapy. Thus, there are other novel therapies such as aromatase inhibitors that block estrogen production in postmenopausal women or fulvestrant that destroys the estrogen receptor. This paper will summarize the therapeutic options for anti-hormonal therapy, the role of anti-hormonal agents in advanced breast cancer, and adjuvant therapy and the current status of chemoprevention with selective ER modulators.  相似文献   

9.
Tamoxifen has been widely used for treatment, and more recently, for the prevention of breast cancer. Since breast carcinomas are composed of heterogeneous populations of estrogen receptor-positive (ER+) cells, we hypothesized that tamoxifen may suppress tumor growth by differentially affecting cell proliferation and apoptosis. ER+ mammary tumors were induced in Sprague–Dawley rats by N-methyl-N-nitrosourea (MNU) and when they became palpable, the animals were treated for 5, 10, or 20 days with tamoxifen, 1.0 mg/kg body weight. Tamoxifen induced a time-dependent decrease in proliferating (BrdU-labeled) cells, arrested the cells in G1/0 phase, and differentially decreased the cyclin E and cyclin D1 expression at mRNA and protein levels. In the same tumors, apoptotic cells increased during the first 10 days of treatment, but their number remained unchanged with extension of the treatment to 20 days. Thus, we provide data that tamoxifen may differentially affect cell proliferation and apoptosis in mammary tumors and that the expression levels of cyclin D1 and cyclin E might also be considered potential intermediate biomarkers of response of mammary tumors to tamoxifen and possibly to other selective estrogen receptor modulators (SERMs).  相似文献   

10.
3,3',4,4'-Tetrachlorobiphenyl (tetraCB) binds to the aryl hydrocarbonreceptor (AhR), and several reports have demonstrated that AhRagonists exhibit antiestrogenic and antitumorigenic activitiesin human breast cancer cells, the rodent uterus and breast.In contrast, a recent study showed that 3,3',4,4'-tetraCB boundthe estrogen receptor (ER) and exhibited ER agonist activities,and we therefore have reinvestigated the estrogenic and antiestrogenicactivities of 3,3',4,4'-tetraCB. Our results showed that 3,3',4,4'-tetraCBand a structurally related analog, 3,3',4,4',5-pentaCB, didnot bind the mouse uterine or human ER, did not induce proliferationof MCF-7 or T47D human breast cancer cells or induce reportergene activity in cells transfected with E2-responsive constructsderived from the creatine kinase B (pCKB) or cathepsin D (pCD)gene promoters. Moreover, 3,3',4,4'-tetraCB and 3,3',4,4',5-pentaCBdid not induce an increase in uterine wet weight, peroxidaseactivity or progesterone receptor binding in the 21–25-day-oldfemale B6C3F1 mouse uterus. In contrast, both compounds inhibited17ß-estradiol (E2)-induced cell proliferation andtransactivation in MCF-7/T47D cells and uterine responses inB6C3F1 mice; surprisingly inhibition of E2-induced reportergene activity was not observed in T47D cells transfected withpCKB, and this was observed as a cell-specific response withother AhR agonists. Additionally, 3,3',4,4'-tetraCB significantlyinhibited mammary tumor growth in female Sprague–Dawleyrats initiated with 7,12-dimethylbenzanthracene. Our resultsindicate that 3,3',4,4'-tetraCB does not exhibit ER agonistactivity but exhibits a broad spectrum of antiestrogenic responsesconsistent with ligand-mediated AhR–ER crosstalk.  相似文献   

11.
Following tamoxifen, the first selective oestrogen receptor modulator (SERM), a number of other antioestrogens have been developed. The first-generation SERMs exhibit cross-resistance with tamoxifen and have agonist effects on the uterus. Toremifene has equal efficacy to tamoxifen and may be useful as a tamoxifen alternative. Efficacy results for droloxifene and idoxifene were disappointing and their clinical development ceased. Response rates for second-generation SERMs such as raloxifene and arzoxifene are also not high, although raloxifene shows promise in the chemoprevention of breast cancer. Paradoxically, high-dose oestrogens are proving to be effective breast cancer treatment with similar responses to tamoxifen in postmenopausal women with advanced disease, although these drugs are not well tolerated. Fulvestrant is a new type of oestrogen receptor (ER) antagonist with no agonist effects, which binds, blocks and degrades the ER. Fulvestrant produces high response rates compared with the SERMs, is not cross-resistant with SERMs or aromatase inhibitors (AIs) and is equally as effective as the AI anastrozole in the treatment of postmenopausal women with advanced breast cancer who have progressed after prior antioestrogen therapy. Pure antioestrogens such as the ER antagonist fulvestrant provide opportunities for therapeutic sequencing with tamoxifen and AIs and offer exciting possibilities for the future treatment of breast cancer.  相似文献   

12.
13.
McDougal A  Wormke M  Calvin J  Safe S 《Cancer research》2001,61(10):3902-3907
Tamoxifen (TAM) is a highly effective selective estrogen receptor (ER) modulator used extensively for the treatment and prevention of breast cancer. However, prolonged treatment of women with TAM may be a risk factor for endometrial cancer, and research in our laboratory is focused on the development of selective aryl hydrocarbon receptor modulators that can be used in combination with TAM to improve its efficacy in the breast and inhibit TAM-induced endometrial effects. This study investigated the effects of the selective aryl hydrocarbon receptor modulators 6-methyl-1,3,8-trichlorodibenzofuran (6-MCDF) alone and in combination with TAM in the carcinogen-induced mammary tumor model and in the ovariectomized uterotropic assay using female Sprague Dawley rats. The lowest effective dose of 6-MCDF that inhibited tumor growth was 50 microg/kg/day, and TAM was antitumorigenic at a dose of 100 microg/kg/day. In animals cotreated with TAM + 6-MCDF at doses of 100, 50, or 25 microg/kg/day of each compound, complete inhibition of mammary tumor growth was observed at all doses, and the results are consistent with a more than additive antitumorigenic response for the low dose group (25 + 25 microg/kg) and additive interactions at the 50 and 100 microg/kg doses. In a separate experiment, 6-MCDF (800 microg/kg) inhibited TAM-induced peroxidase activity and progesterone receptor binding in the ovariectomized rat uterus but did not affect TAM-induced bone growth in ovariectomized rats. This study also investigated the effects of TAM and 6-MCDF alone and in combination on ERalpha protein levels in MCF-7 human breast cancer cells as a model for studying interactions between these compounds. The results show that 6-MCDF decreased TAM-induced ERalpha levels in the absence or presence of 17beta-estradiol through proteasome activation, and these interactions may contribute to the observed combined antitumorigenic effects of these compounds.  相似文献   

14.

Introduction

Ductal carcinoma in situ (DCIS) is a noninvasive premalignant lesion and is considered a precursor to invasive carcinoma. DCIS accounts for nearly 20% of newly diagnosed breast cancer, but the lack of experimentally amenable in vivo DCIS models hinders the development of treatment strategies. Here, we demonstrate the utility of a mouse transplantation model of DCIS for chemoprevention studies using selective estrogen receptor modulators (SERMs). This model consists of a set of serially transplanted lines of genetically engineered mouse mammary intraepithelial neoplasia (MIN) outgrowth (MIN-O) tissue that have stable characteristics. We studied the ovarian-hormone-responsiveness of one of the lines with a particular focus on the effects of two related SERMs, tamoxifen and ospemifene.

Methods

The estrogen receptor (ER) status and ovarian-hormone-dependence of the mouse MIN outgrowth tissue were determined by immunohistochemistry and ovarian ablation. The effects of tamoxifen and ospemifene on the growth and tumorigenesis of MIN outgrowth were assessed at 3 and 10 weeks after transplantation. The effects on ER status, cell proliferation, and apoptosis were studied with immunohistochemistry.

Results

The MIN-O was ER-positive and ovarian ablation resulted in reduced MIN-O growth and tumor development. Likewise, tamoxifen and ospemifene treatments decreased the MIN growth and tumor incidence in comparison with the control (P < 0.01). Both SERMs significantly decreased cell proliferation. Between the two SERM treatment groups, there were no statistically significant differences in MIN-O size, tumor latency, or proliferation rate. In contrast, the ospemifene treatment significantly increased ER levels while tamoxifen significantly decreased them.

Conclusion

Tamoxifen and ospemifene inhibit the growth of premalignant mammary lesions and the progression to invasive carcinoma in a transplantable mouse model of DCIS. The inhibitory effects of these two SERMs are similar except for their effects on ER modulation. These differences in ER modulation may suggest different mechanisms of action between the two related SERMs and may portend different long-term outcomes. These data demonstrate the value of this model system for preclinical testing of antiestrogen or other therapies designed to prevent or delay the malignant transformation of premalignant mammary lesions in chemoprevention.  相似文献   

15.
Nearly 75% of breast tumors express estrogen receptor (ER), and will be treated with endocrine therapy, such as selective estrogen receptor modulator (SERM), tamoxifen, or aromatase inhibitors. Despite their proven success, as many as 40–50% of ER+ tumors fail to respond to endocrine therapy and eventually recur as aggressive, metastatic cancers. Therefore, preventing and/or overcoming endocrine resistance in ER+ tumors remains a major clinical challenge. Deregulation or activation of the nuclear factor κB (NFκB) pathway has been implicated in endocrine resistance and poor patient outcome in ER+ tumors. As a consequence, one option to improve on existing anti-cancer treatment regimens may be to introduce additional anti-NFκB activity to endocrine therapy drugs. Our approach was to design and test SERM-fumarate co-targeting hybrid drugs capable of simultaneously inhibiting both ER, via the SERM, raloxifene, and the NFκB pathway, via fumarate, in breast cancer cells. We find that the hybrid drugs display improved anti-NFκB pathway inhibition compared to either raloxifene or fumarate. Despite some loss in potency against the ER pathway, these hybrid drugs maintain anti-proliferative activity in ER+ breast cancer cells. Furthermore, these drugs prevent clonogenic growth and mammosphere formation of ER+ breast cancer cells. As a proof-of-principle, the simultaneous inhibition of ER and NFκB via a single bifunctional hybrid drug may represent a viable approach to improve the anti-inflammatory activity and prevent therapy resistance of ER-targeted anti-cancer drugs.  相似文献   

16.
Despite the effectiveness of the selective estrogen receptor (ER) modulators in preventing ER-positive breast cancer, chemopreventive agents still need to be developed for the prevention of ER-negative breast cancers. The naturally occurring retinoids are promising agents for the prevention of human cancers but are too toxic for long-term chronic use. We previously demonstrated that the chemopreventive effects of the retinoids could be separated from the toxicity by using an RXR-selective retinoid, LGD1069. The studies described here demonstrate that LGD1069 effectively suppresses ER-negative tumor development in mouse mammary tumor virus-erbB2 transgenic mice with minimal toxicity. These studies suggest that receptor-selective retinoids are promising agents for the prevention of breast cancer and that they may be particularly useful in preventing ER-negative breast cancer.  相似文献   

17.
Our previous studies demonstrated that specific inhibition of the BIG3‐PHB2 complex, which is a critical modulator in estrogen (E2) signaling, using ERAP, a dominant negative peptide inhibitor, leads to suppression of E2‐dependent estrogen receptor (ER) alpha activation through the reactivation of the tumor suppressive activity of PHB2. Here, we report that ERAP has significant suppressive effects against synergistic activation caused by the crosstalk between E2 and growth factors associated with intrinsic or acquired resistance to anti‐estrogen tamoxifen in breast cancer cells. Intrinsic PHB2 released from BIG3 by ERAP effectively disrupted each interaction of membrane‐associated ERα and insulin‐like growth factor 1 receptor beta (IGF‐1Rβ), EGFR, PI3K or human epidermal growth factor 2 (HER2) in the presence of E2 and the growth factors IGF or EGF, followed by inhibited the activation of IGF‐1Rβ, EGFR or HER2, and reduced Akt, MAPK and ERα phosphorylation levels, resulting in significant suppression of proliferation of ERα‐positive breast cancer cells in vitro and in vivo. More importantly, combined treatment with ERAP and tamoxifen led to a synergistic suppression of signaling that was activated by crosstalk between E2 and growth factors or HER2 amplification. Taken together, our findings suggest that the specific inhibition of BIG3‐PHB2 is a novel potential therapeutic approach for the treatment of tamoxifen‐resistant breast cancers activated by the crosstalk between E2 and growth factor signaling, especially in premenopausal women.  相似文献   

18.
19.
PURPOSE: Tamoxifen is an antiestrogen used in women who have estrogen receptor (ER)-alpha-positive breast cancer. Unfortunately, resistance to tamoxifen is common in women with metastatic disease and side effects, including increased risk of endometrial cancer, exist. Here we describe the activity of a new selective ER modulator, ERA-923, in preclinical models focused on these limitations. EXPERIMENTAL DESIGN: The ability of ERA-923, 4-OH tamoxifen, or raloxifene to inhibit estrogen-stimulated growth was evaluated in cell-based and xenograft assays with tumor cells that are sensitive or resistant to tamoxifen. Uterine effects of selective ER modulators were compared in rodents. RESULTS: ERA-923 potently inhibits estrogen binding to ER-alpha (IC(50), 14 nM). In ER-alpha-positive human MCF-7 breast carcinoma cells, ERA-923 inhibits estrogen-stimulated growth (IC(50), 0.2 nM) associated with cytostasis. In vitro, a MCF-7 variant with inherent resistance to tamoxifen (10-fold) or 4-OH tamoxifen (>1000-fold) retains complete sensitivity to ERA-923. Partial sensitivity to ERA-923 exists in MCF-7 variants that have acquired profound tamoxifen resistance. In tumor-bearing animals, ERA-923 (10 mg/kg/day given p.o.) inhibits 17beta-estradiol-stimulated growth in human tumors derived from MCF-7, EnCa-101 endometrial, or BG-1 ovarian carcinoma cells, including a MCF-7-variant that is inherently resistant to tamoxifen. Raloxifene is inactive in the MCF-7 xenograft model. Unlike tamoxifen, droloxifene, or raloxifene, ERA-923 is not uterotropic in immature rats or ovariectomized mice. Consistent with this, tamoxifen, but not ERA-923, stimulates the growth of EnCa-101 tumors. CONCLUSIONS: In preclinical models, ERA-923 has an improved efficacy and safety compared with tamoxifen. Clinical trials with ERA-923 are in progress.  相似文献   

20.
Preventing breast cancer is possible with selective estrogen receptor (ER) modulators and aromatase inhibitors, which reduce the risk of invasive disease by up to 65% (up to 73% for ER-positive and no effect for ER-negative cancer) and the risk of preinvasive disease [ductal carcinoma in situ (DCIS)] by up to 50%. Clearly, approaches for preventing ER-negative, and increased prevention of ER-positive breast cancers would benefit public health. A growing body of work (including recent preclinical and clinical data) support targeting the HER family [epidermal growth factor receptor (EGFR), or human epidermal growth factor receptor (HER) 1 or ErbB1) and HER2, HER3, and HER4] for preventing ER-negative and possibly ER-positive breast cancer. Preclinical studies of HER family-targeting drugs in mammary neoplasia show suppression of (i) ER-negative tumors in HER2-overexpressing mouse strains, (ii) ER-negative tumors in mutant Brca1/p53(+/-) mice, and (iii) ER-positive tumors in the methylnitrosourea (MNU) rat model; tumors arising in both the MNU and mutant Brca1/p53(+/-) models lack HER2 overexpression. Clinical trials include a recent placebo-controlled phase IIb presurgical trial of the dual EGFR HER2 inhibitor lapatinib that suppressed growth of breast premalignancy [including atypical ductal hyperplasia (ADH) and DCIS] and invasive cancer in patients with early-stage, HER2-overexpressing or -amplified breast cancer. These results suggest that lapatinib can clinically suppress the progression of ADH and DCIS to invasive breast cancer, an effect previously observed in a mouse model of HER2-overexpressing, ER-negative mammary cancer. The preclinical and clinical signals provide a compelling rationale for testing HER-targeting drugs for breast cancer prevention in women at moderate-to-high risk, leading perhaps to combinations that prevent ER-negative and ER-positive breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号