首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Direct projections from the parabrachial nucleus (PBN) to the lower brain stem and the spinal cord were examined in the cat by the Fink-Heimer and the horseradish peroxidase (HRP) methods. After placing lesions in the PBN, many fine degenerated fibers were seen contralaterally in the ventromedial portions of the caudal pontine reticular formation, and ipsilaterally in the lateral portions of the facial nucleus, the regions around the hypoglossal nucleus, and the regions around the ambiguus nucleus; some degenerated fibers were traced ipsilaterally down to the spinal cord. Subsequently, HRP injections were attempted into these regions where many fine degenerated fibers were observed. In cats injected with HRP into the lateral portions of the facial nucleus, the regions around the hypoglossal nucleus, the regions around the ambiguus nucleus, or the first cervical cord segment, many HRP-labeled neurons were seen in the ventral portions of the PBN. The mean of the average soma diameters of the PBN neurons labeled with HRP injected into the regions around the hypoglossal nucleus or the first cervical cord segment was significantly larger than that of the PBN neurons labeled with HRP injected into the lateral portions of the facial nucleus or the regions around the ambiguus nucleus.  相似文献   

2.
The post eromedial ventral nucleus (VPM) of the cat is divided cytoar-chitectonically into the magnocellular (VPMmc), lateral parvocellular (VPMpcl), and medial parvocellular (VPMpcm) divisions. Cell bodies of neurons in the VPMpcm are small, while those in the VPMpcl are small to medium-sized. The VPMmc contains large neurons. Direct projections from the lower brain stem structures to each of the three divisions of the VPM were examined by the retrograde horseradish peroxidase (HRP) method. When HRP injection was done into the VPMmc, labeled neurons were mainly located conlralaterally in the ventral division of the principal sensory trigeminal nucleus (Vp), in the rostral part of the oral subnucleus in the spinal trigeminal nucleus (Vsp), and in the interpolar sub-nucleus of the Vsp; a few labeled neurons were also found contralaterally in lamina I of the caudal subnucleus of the Vsp. When HRP injection was restricted to the VPMpcl or VPMpcm, HRP-labeled neurons were mainly observed ipsilaterally, respectively, in the dorsal division of the Vp, or in the parabrachiaJ nucleus (PBN) regions dorsomedial and ventromedial to the brachium conjunctivum. After HRP injection into the parvocellular part of the VPM (VPMpc), labeled neurons were also seen contralaterally in the Vsp, but these were far less numerous than those seen after HRP injections into the VPMmc. Thus, each of the three divisions of the VPM receives main ascending afferent fibers from different brain stem structures; the VPMpcm, VPMpcl, or VPMmc receives afferent fibers, respectively, from the PEN ipsilaterally, from the dorsal division of Vp ipsilaterally, or from the ventral division of the Vp and the Vsp contralaterally.  相似文献   

3.
Distribution of thalamic neurons projecting to the orbital gyrus in the cat was examined by the horseradish peroxidase (HRP) method. After injection of HRP within the cortex of the orbital gyrus, thalamic neurons labeled with HRP were observed ipsilaterally within the pars parvicellularis of the nucleus ventralis posteromedialis (VPMpc) and the caudoventral portions of the nucleus centralis medialis: HRP-labeled neurons in the VPMpc were numerous and those in the nucleus centralis medialis were moderate in number. A few HRP-labeled neurons were seen occasionally in the nucleus paracentralis, nucleus centralis lateralis, nucleus submedius, and nucleus medialis. The VPMpc neurons labeled with HRP injected into the rostral portions of the orbital gyrus were seen chiefly in the dorsal aspects of the VPMpc, whereas the VPMpc neurons labeled with the enzyme injected into the caudal portions of the orbital gyrus were distributed mainly in the ventral aspects of the VPMpc: the region of distribution of the VPMpc neurons projecting onto the rostral portions of the orbital gyrus extended somewhat more rostrally than that of the VPMpc neurons projecting onto the caudal portions of the orbital gyrus. Functional significance of the VPMpc neurons that send their axons to the orbital gyrus is discussed in terms of the relay neurons of the central gustatory pathways.  相似文献   

4.
Distribution of cerebellothalamic neurons projecting to the ventral nuclei of the thalamus was examined in the cat, using the horseradish peroxidase (HRP) method. After injections of HRP within the lateral or ventrolateral portions of the ventroanterior and ventrolateral nuclear complex of the thalamus (VA-VL), neurons labeled retrogradely with HRP were seen contralaterally in the cerebellar nuclei; many of them were situated in the nucleus interpositus anterior and nucleus interpositus posterior, and a moderate number of them were located in the nucleus lateralis. Labeled neurons in the nucleus interpositus posterior were observed mainly in the medial and ventral portions of the nucleus. On the side ipsilateral to the injections, a few labeled neurons were seen in the nucleus interpositus anterior, nucleus interpositus posterior, and nucleus lateralis. Virtually no labeled neurons were found in the nucleus medialis of the cerebellum. After HRP injections into the medial or dorsomedial portions of the VA-VL, many labeled neurons were found contralaterally in the ventral and ventrolateral portions of the nucleus interpositus posterior, as well as in the nucleus lateralis, especially in its ventral and lateral portions. On the side ipsilateral to the injections, labeled neurons in the nucleus lateralis and nucleus interpositus posterior were small in number. In the nucleus medialis only a few labeled neurons were found bilaterally in the caudal levels of the nucleus. After HRP injections centered on the ventromedial nucleus of the thalamus, many labeled neurons occurred bilaterally in the caudal portions of the nucleus medialis, with a slight contralateral preponderance, and contralaterally in the lateral and ventral portions of the nucleus lateralis. A few labeled neurons were also seen contralaterally in the ventrolateral and lateral portions of the nucleus interpositus posterior, and ipsilaterally in the nucleus lateralis.  相似文献   

5.
After horseradish peroxidase (HRP) injections into various parts of the ventral thalamic nuclear group and its adjacent areas, the distribution of labeled neurons was compared in the cerebral cortex, basal ganglia, and the brain stem. The major differences in distribution patterns were as follows: Injections of HRP into the lateral or ventrolateral portions of the ventroanterior and ventrolateral nuclear complex of the thalamus (VA-VL) produced retrogradely labeled neurons consistently in area 4 gamma (lateral part of the anterior and posterior sigmoid gyri, lateral sigmoid gyrus and the lateral fundus of the cruciate sulcus), the medial division of posterior thalamic group (POm), suprageniculate nucleus (SG) and anterior pretectal nucleus ipsilaterally, and in the nucleus Z of the vestibular nuclear complex bilaterally. Injections into the medial or dorsomedial portion of the VA-VL resulted in labeled neurons within the areas 6a beta (medial part of the anterior sigmoid gyrus), 6a delta (anterior part of ventral bank of buried cruciate sulcus), 6 if. fu (posterior part of the bank), fundus of the presylvian sulcus (area 6a beta), medial part of the nucleus lateralis posterior of thalamus and nucleus centralis dorsalis ipsilaterally, and in the entopeduncular nucleus (EPN) and medial pretectal nucleus bilaterally. Only a few neurons were present in the contralateral area 6a delta. After HRP injections into the ventral medial nucleus (VM), major labeled neurons were observed in the gyrus proreus, area 6a beta (mainly in the medial bank of the presylvian sulcus), and EPN ipsilaterally, and in the medial pretectal nucleus and substantia nigra bilaterally. Following HRP injections into the centre médian nucleus (CM), major labeled neurons were found in the areas 4 gamma, 6a beta, and the orbital gyrus ipsilaterally, and in the EPN, rostral and rostrolateral parts of the thalamic reticular nucleus, locus ceruleus, nucleus reticularis pontis oralis et caudalis and nucleus prepositus hypoglossi bilaterally. The contralateral intercalatus nucleus also possessed labeled neurons. With HRP injections into the paracentral and centrolateral nuclei, labeled neurons were observed in the gyrus proreus and the cortical areas between the caudal presylvian sulcus and anterior rhinal sulcus ipsilaterally, and in the nuclei interstitialis and Darkschewitsch bilaterally. Minor differences in the distribution pattern were observed in the superior colliculus, periaqueductal gray, mesencephalic and medullary reticular formations, and vestibular nuclei in all cases of injections.  相似文献   

6.
The distribution of thalamocortical neurons projecting to layer I of the cat auditory cortical fields was examined by the horseradish peroxidase (HRP) method. After HRP injection into layer I of the primary auditory cortex (AI), HRP-labeled neuronal cell bodies were distributed mainly in the medial, dorsal, and ventrolateral divisions of the medial geniculate nucleus (MGN) and suprageniculate nucleus (Sg), and additionally in the lateral and medial divisions of the posterior group of the thalamus (Pol and Pom), lateroposterior thalamic nucleus (Lp), and nucleus of the brachium of the inferior colliculus (BIN). After HRP injection into layer I of the second auditory cortex (AII), labeled neurons were seen mainly in the medial, dorsal, and ventrolateral divisions of the MGN and Sg and additionally in the Pom, Lp, and BIN. After HRP injection into layer I of the anterior auditory field (AAF), labeled neurons were located mainly in the medial and dorsal divisions of the MGN, Sg, Pol, and BIN, and additionally in the ventrolateral divisions of the MGN, Pom, and Lp. After HRP injection into layer I of the dorsal part of the posterior ectosylvian gyrus (Epd), labeled neurons were observed chiefly in the medial and dorsal divisions of the MGN, Sg, and Lp and additionally in the ventrolateral division of the MGN, Pom, and BIN. After HRP injection into layer I of the ventral part of the posterior ectosylvian gyrus (Epv), labeled neurons were distributed chiefly in the medial and dorsal divisions of the MGN and Pol and additionally in the ventrolateral division of the MGN, Sg, and BIN. Thus no labeled neurons were found in the ventral division of the MGN after HRP injection into layer I of all auditory cortical fields examined in the present study. The average soma diameters of neurons that were labeled after HRP injection into layer I were statistically smaller than those of neurons that were labeled after HRP injection into layer IV.  相似文献   

7.
Projections from the parvicellular division of the posteromedial ventral thalamic nucleus (VPMpc) of the cat were examined. After injection of horseradish peroxidase conjugated with wheat germ agglutinin (WGA-HRP) into the VPMpc, both anterogradely labeled axon terminals and retrogradely labeled neuronal cell bodies were found ipsilaterally in three discrete regions of the cerebral cortex, i.e., in the orbital cortex, caudoventral part of the infralimbic cortex, and medial part of the fundus of the posterior rhinal sulcus (perirhinal area); in the subcortical regions, anterogradely labeled axon terminals were seen ipsilaterally in the rostrodorsal part of the lateral amygdaloid nucleus. Neuronal connections between these VPMpc-recipient regions were further verified by injecting WGA-HRP into each of the three cortical and the lateral amygdaloid regions. After injection of WGA-HRP into each of the three cortical regions, labeled neuronal cell bodies and axon terminals were seen ipsilaterally in the VPMpc, especially in its medial part, and in the other two of the three VPMpc-recipient cortical regions. In the rostrodorsal part of the lateral amygdaloid nucleus, both axon terminals and neuronal cell bodies were labeled after WGA-HRP injection into the perirhinal area, and only axon terminals were labeled after WGA-HRP injection into the orbital cortex, but no labeling was observed after WGA-HRP injection into the infralimbic cortex. After injection of WGA-HRP into the rostrodorsal portion of the lateral amygdaloid nucleus, both axon terminals and neuronal cell bodies were labeled ipsilaterally in the perirhinal area and the ectorhinal area, and only neuronal cell bodies were labeled ipsilaterally in the VPMpc (especially in its medial part) and orbital cortical region; no labeling was observed in the infralimbic cortex. The present results indicate that the VPMpc of the cat is connected reciprocally with the orbital, infralimbic, and perirhinal cortical regions on the ipsilateral side, that the three VPMpc-recipient cortical regions are reciprocally connected with each other, that the VPMpc sends fibers ipsilaterally to the rostrodorsal part of the lateral amygdaloid nucleus, which may relay information from the VPMpc to the perirhinal cortical area, and that the VPMpc-recipient area in the lateral amygdaloid nucleus receives cortical fibers from the orbital and perirhinal cortical regions.  相似文献   

8.
The connectivity and cytoarchitecture of telencephalic centers except dorsal and medial pallium were studied in the fire-bellied toad Bombina orientalis by anterograde and retrograde biocytin labeling and intracellular biocytin injection (total of 148 intracellularly labeled neurons or neuron clusters). Our findings suggest the following telencephalic divisions: (1) a central amygdala-bed nucleus of the stria terminalis in the caudal midventral telencephalon, connected to visceral-autonomic centers; (2) a vomeronasal amygdala in the caudolateral ventral telencephalon receiving input from the accessory olfactory bulb and projecting mainly to the preoptic region/hypothalamus; (3) an olfactory amygdala in the caudal pole of the telencephalon lateral to the vomeronasal amygdala receiving input from the main olfactory bulb and projecting to the hypothalamus; (4) a medial amygdala receiving input from the anterior dorsal thalamus and projecting to the medial pallium, septum, and hypothalamus; (5) a ventromedial column formed by a nucleus accumbens and a ventral pallidum projecting to the central amygdala, hypothalamus, and posterior tubercle; (6) a lateral column constituting the dorsal striatum proper rostrally and the dorsal pallidum caudally, and a ventrolateral column constituting the ventral striatum. We conclude that the caudal mediolateral complex consisting of the extended central, vomeronasal, and olfactory amygdala of anurans represents the ancestral condition of the amygdaloid complex. During the evolution of the mammalian telencephalon this complex was shifted medially and involuted. The mammalian basolateral amygdala apparently is an evolutionary new structure, but the medial portion of the amygdalar complex of anurans reveals similarities in input and output with this structure and may serve similar functions.  相似文献   

9.
The topographic organization of neurons in the dorsal nucleus of the lateral lemniscus (DNLL) which project to the superior and inferior colliculi was studied using the retrograde horseradish peroxidase (HRP) and the fluorescent double labeling methods. Neurons projecting to the superior colliculus (SC) are situated in the rostral portion of the DNLL, whereas those to the inferior colliculus (IC) are found in the caudal area of this nucleus. These two portions are completely separated from each other and no neurons projecting to both the SC and the IC are observed. In the dorsolateral part of the rostral portion of the DNLL, neurons projecting to the ipsilateral SC are found, whereas neurons projecting to the contralateral SC are located in the central to medial part of the nucleus, but no neurons sending collateral axons to both sides of the SC were observed. Neurons located in the central part of the caudal area of the DNLL project to the ipsilateral IC and neurons in the lateral and medial parts project contralaterally to the IC. Some of the neurons in the caudal part of the DNLL have divergent axonal branching projecting to both sides of the IC. In the ventral nucleus of the lateral lemniscus, labeled neurons were observed only when the HRP was injected into the ipsilateral IC.  相似文献   

10.
The course of descending fibers projecting to the spinal cord and the arrangement of their parent cells located in various nuclei of the dorso-lateral pontine tegmentum were studied using the horseradish peroxidase (HRP) retrograde axonal transport technique. Retrogradely labeled neurons were found in the locus coeruleus (LC), subcoeruleus (SC), K?lliker-Fuse nucleus (KF) and in the lateral parabrachial nucleus (LPB) after HRP injections into various spinal segments. Neurons innervating the thoracic spinal cord were found to be arranged in the ventral portion of the LC and in the entire SC; their axons descended ipsilaterally. Neurons with descending axons to lumbar segments were seen mainly in the ventral portion of the LC and in the medial portion of SC. Most of their axons were also seen to descend ipsilaterally. Neurons projecting to sacral segments occurred in the entire LC and in the medial portion of the SC. Large part of descending fibers crossed the midline at the level of (or near) the termination site. Neurons of all portions of the KF and LPB projected to the thoracic spinal cord only ipsilaterally, while many descending fibers innervating the sacral segments crossed the midline.  相似文献   

11.
It was shown in the cat by the anterograde and retrograde WGA-HRP method that the medial portion of the parvocellular part of the posteromedial ventral nucleus of the thalamus sent fibers ipsilaterally to the caudoventral part of the infralimbic cortex on the medial surface of the frontal lobe, as well as the orbital cortical regions and the rostrodorsal part of the lateral amygdaloid nucleus.  相似文献   

12.
Amygdaloid and pontine projections to the feline ventromedial nucleus of the hypothalamus (HVM) were studied with retrograde transport of horseradish peroxidase (HRP) and anterograde transport of tritiated amino acids. Following injections of HRP into HVM, amygdaloid neurons were labeled in the ipsilateral cortical and medial nuclei and the ventral portion of the parvocellular part of the basal nucleus. In experiments in which HRP was injected into the tuberal hypothalamus following stria terminalis lesions, it was determined that amygdaloid neurons projecting to HVM by way of the stria terminalis were located in the cortical and medial nuclei while those projecting through another route, presumably the ventral amygdalofugal pathway, were found in the rostral part of the medial nucleus and the parvocellular basal nucleus. Following HRP injection into lateral hypothalamus at the level of HVM, labeled neurons were seen in the magnocellular basal nucleus. After preoptic injections, neurons containing the HRP reaction product were in cortical and medial nuclei and magnocellular and parvocellular parts of the basal nucleus. In addition to cells in the amygdala, rostral pontine neurons were labeled after HRP injections into HVM. The cells were located ipsilateral to the injection, mostly in the dorsal nucleus of the lateral lemniscus, lateral and dorsolateral to the brachium conjunctivum. The pontine cells labeled following HVM injections of HRP were different from those labeled following lateral hypothalamic and preoptic region injections. The pontine projection to HVM was confirmed using axoplasmic transport autoradiography. A mixture of tritiated leucine and tritiated proline was injected into the lateral pontine region labeled after HRP injections into HVM. Labeled axons ascending in the medial forebrain bundle terminated throughout the rostro-caudal extent of HVM.  相似文献   

13.
Anatomical and electrophysiological methods were used to investigate the projections and response properties of neurons in the second cervical (C2) spinal segment of the cat giving origin to a previously undescribed projection to the ipsilateral thalamus. The method of retrograde axonal transport of horseradish peroxidase (HRP) was used to identify neurons in C2 giving rise to thalamic projections. Following large (3.0 μl) thalamic HRP injections, a large numbers of labeled neurons was observed in lateral laminae VII–VIII of C2 ipsilateral to the injections. They occurred as small clusters of cells along the longitudinal axis of C2. Labeled neurons were also observed contralaterally in the lateral cervical nucleus, dorsal horn (especially medial lamina VI), and loosely distributed in the ventral horn. The ipsilaterally projecting neurons were also labeled following small (0.2–0.5 μl) HRP injections restricted to individual spinothalamic terminal zones (intralaminar nuclei, ventrobasal complex-nucleus ventralis lateralis border zone, medial division of the posterior nuclei), indicating that as a group they project widely throughout the thalamus. Single unit recording methods were used to obtain complementary information on the functional properties of these neurons. The antidromic stimulation method was applied to identify units in C2 projecting to the ipsilateral thalamus in anesthetized, paralyzed cats. Three categories of ipsilaterally projecting C2 units were identified: (i) units not driven by any type of natural stimulation; (2) units having large cutaneous receptive fields (RFs) and wide dynamic response ranges (“widefield”), and (3) units with smaller RFs and varied properties (“other”). Widefield units with bilaterally symmetrical and asymmetrical RFs were observed. Co-stimulation of different portions of an excitatory RF produced summation of the unit response. Inhibitory RF components were identified in one third of the widefield units. Unit recordings after spinal tract lesions revealed that the afferent input passed via the ipsilateral lateral and/or ventral funiculi. Widefield unit responses to somatosensory stimuli could be inhibited by dorsal column conditioning stimulation. Several “other” units resembled widefield units, while a second group had small RFs restricted to the C2 dermatome. Possible functional roles of the projecting C2 neurons in somatosensory and non-specific systems are discussed.  相似文献   

14.
While gustation in the hamster has been extensively studied at the behavioral and physiological level, very little is known about the central anatomy of the taste system. The purpose of this study was to trace the connections of the parabrachial nucleus (PBN) in the golden Syrian hamster (Mesocricetus auratus) using wheat germ agglutinin-conjugated horseradish peroxidase. The PBN is the site of the second central synapse for the ascending gustatory system and receives taste afferents from the nucleus of the solitary tract. Following large injections into the PBN, anterogradely transported label was seen in the lateral hypothalamus, dorsal thalamus, bed nucleus of the stria terminalis, and amygdala. The anatomy of the two primary targets, the ventral posteromedial thalamus and central nucleus of the amygdala, is described based on Nissl-stained material, and acetylcholinesterase and NADH dehydrogenase histochemistry. Injections into these two regions revealed different patterns of efferents within the PBN. Following injections into the thalamus, retrogradely labelled cell bodies were distributed throughout the PBN subdivisions bilaterally, but concentrated in the central medial (CM) and external lateral (EL) subdivisions. Following injections into the amygdala, retrogradely labelled cell bodies were primarily in the ipsilateral PBN EL, while anterogradely transported label was distributed throughout much of the ipsilateral PBN. The majority of CM efferents projecting to the thalamus were elongate cells, whereas the majority of CM efferents to the amygdala were round-oval cells. These results indicate that the ascending central gustatory system changes from a serial pathway (nucleus of the solitary tract-PBN) to a parallel organization consisting of two major projections, the parabrachio-thalamo-cortical and parabrachio-amygdaloid pathways.  相似文献   

15.
Injections of calcitonin gene-related peptide (CGRP) into the amygdala evoke fear-related behaviors and antinociceptive effects. In the present study we therefore characterized CGRP-containing amygdaloid afferents by injecting the retrograde tracer FluoroGold (FG) into subnuclei of the amygdala and adjacent divisions of the extended amygdala, namely, the lateral (LA) and central (CE) amygdaloid nuclei, interstitial nucleus of the posterior limb of the anterior commissure (IPAC), and the amygdalostriatal area (AStr). The distribution of retrogradely FG-labeled neurons and colocalization of CGRP-immunoreactivity with FG-labeling were mapped in the posterior paralaminar thalamic complex and parabrachial nuclei. The analysis of the posterior thalamus revealed that about 50% of CGRP-containing neurons projected to the AStr, the projections originating in the medial part of the medial geniculate body, posterior intralaminar nucleus, parvicellular subparafascicular nucleus, and peripeduncular nucleus. However, the percentage of CGRP-containing thalamic neurons projecting to the adjacent LA, medial part of the CE, and ventrocaudal part of the caudatoputamen rapidly dropped to 3-9%. There were no double-labeled cells after injections into the lateral and capsular parts of the CE and the IPAC. Thus, the AStr received the heaviest CGRP-containing projection from the posterior thalamus. CGRP-containing parabrachial neurons projected to the AStr and lateral, capsular, and medial parts of the CE, the projections originating in the external, crescent, and central parts of the lateral parabrachial nucleus and external part of the medial parabrachial nucleus. The results demonstrate a distinct projection pattern of CGRP-containing thalamic and parabrachial neurons to subnuclei of the amygdala and extended amygdala.  相似文献   

16.
Direct cortical projections to the parabrachial nucleus in the cat   总被引:2,自引:0,他引:2  
Direct projections from the cerebral cortex to the parabrachial nucleus in the cat were examined by the horseradish peroxidase (HRP)method. When HRP was injected into the parabrachial nucleus, retrogradely labeled neuronal cell bodies were seen, bilaterally with an ipsilateral predominance, mainly in the orbital gyrus, the lateral bank of the presylvian sulcus, and a restricted region in the infralimbic cortex on the medial surface of the frontal lobe (stereotaxic coordinates; Fr: 22, L: 1, H: -1); all labeled neurons were in deep pyramidal cell layer. After injecting HRP conjugated to wheat germ agglutinin (WGA-HRP) into the cortical regions where retrogradely labeled neurons were found after injecting HRP into the parabrachial nucleus, anterogradely labeled cortical fibers were traced to the parabrachial nucleus. Corticoparabrachial fibers originating from the orbital gyrus and the lateral bank of the presylvian sulcus ran ipsilaterally through the internal capsule and the cerebral peduncle down to the lower brainstem, whereas those from the infralimbic cortex coursed down ipsilaterally through the medial forebrain bundle. These cortical fibers to the parabrachial nucleus were distributed bilaterally with an ipsilateral predominance. Cortical fiber terminals in the parabrachial nucleus were topographically arranged: Corticoparabrachial fibers from the lateral bank of the presylvian sulcus ended most massively in the dorsal part of the lateral parabrachial nucleus. Corticoparabrachial fibers from the orbital gyrus ended most heavily in the medial parabrachial nucleus and less heavily in the lateral parabrachial nucleus. Corticoparabrachial fibers from the infralimbic cortex ended mostly in the parabrachial regions surrounding the brachium conjunctivum.  相似文献   

17.
The present study examined the distribution, morphology, and connections of gamma-aminobutyric acid-immunoreactive (GABA-IR) neuros in the three principal components of the central extended amygdala: the central amygdaloid nucleus, the bed nucleus of the stria terminalis (BNST) and the sublenticular substantia innominata. In the central nucleus, large numbers of GABA-IR neurons were identified in the lateral, lateral capsular, and ventral subdivisions, though in the medial subdivision, GABA-IR neurons were only present at very caudal levels. Combined immunocytochemistry-Golgi impregnation revealed that GABA-IR neurons in the lateral central nucleus were medium-sized spiny neurons that were morphologically similar to GABAergic neurons in the striatum. Injections of horseradish peroxidase into the bed nucleus of the stria terminalis labeled a major proportion of the GABA-IR neurons in the central nucleus. In the bed nucleus, the majority of GABA-IR neurons were located in the anterolateral subdivision, ventral part of the posterolateral subdivision and the parastrial subdivision. GABA-IR neurons in the anterolateral bed nucleus were of the typical mediumsized spiny type. Injections of horseradish peroxidase into the central nucleus labeled a few GABA-IR neurons in the posterior part of the anterolateral bed nucleus. GABA-IR neurons were identified in the sublenticular substantia innominata and medial shell of the nucleus accumbens and contributed to the continuum of GABA-IR extending from the central nucleus to the bed nucleus. Injections of horseradish peroxidase (HRP) into the central nucleus, but not the BNST, labeled a few GABA-IR neurons in the substantia innominata. The data point to GABA-IR neurons being a characteristic feature of the central extended amygdala and that GABA-IR neurons participate in the long intrinsic connections linking the major components of this structure. Since lesions of the stria terminalis and basolateral amygdaloid nucleus failed to deplete GABA-IR terminals in the central nucleus, the role of GABA in local and short intrinsic connections in the central extended amygdala is discussed. Further, physiological findings implicating the intrinsic GABAergic system of the central extended amygdala in the tonic inhibition of brainstem efferents are reviewed.  相似文献   

18.
Neurons of the entopeduncular nucleus projecting to the ventral anterior, ventral lateral and centromedian nuclei of the thalamus were identified on the contralateral, as well as the ipsilateral side, by the retrograde transport of horseradish peroxidase in the cat.  相似文献   

19.
The primary objective of this study is to identify the totality of input to the centromedian and parafascicular (CM-Pf) thalamic nuclear complex. The subcortical projections upon the CM-Pf complex were studied in the cat with three different retrograde tracers. The tracers used were unconjugated horseradish peroxidase (HRP), horseradish peroxidase conjugated to wheat germ agglutinin (WGA-HRP), and rhodamine-labeled fluorescent latex microspheres (RFM). Numerous subcortical structures or substructures contained labeled neurons with all three tracing techniques. These labeled structures included the central nucleus of the amygdala; the entopeduncular nucleus; the globus pallidus; the reticular and ventral lateral geniculate nuclei of the thalamus; parts of the hypothalamus including the dorsal, lateral, and posterior hypothalamic areas and the ventromedial and parvicellular nuclei; the zona incerta and fields of Forel; parts of the substantia nigra including the pars reticularis and pars lateralis, and the retrorubral area; the pretectum; the intermediate and deep layers of the superior colliculus; the periaqueductal gray; the dorsal nucleus of the raphe; portions of the reticular formation, including the mesencephalic, pontis oralis, pontis caudalis, gigantocellularis, ventralis, and lateralis reticular nuclei; the nucleus cuneiformis; the marginal nucleus of the brachium conjunctivum; the locus coeruleus; portions of the trigeminal complex, including the principal sensory and spinal nuclei; portions of the vestibular complex, including the lateral division of the superior nucleus and the medial nucleus; deep cerebellar nuclei, including the medial and lateral cerebellar nuclei; and lamina VII of the cervical spinal cord. Moreover, the WGA-HRP and rhodamine methods (known to be more sensitive than the HRP method) revealed several afferent sources not shown by HRP: the anterior hypothalamic area, ventral tegmental area, lateral division of the superior vestibular nucleus, nucleus interpositus, and the nucleus praepositus hypoglossi. Also, the rhodamine method revealed labeled neurons in laminae V and VI of the cervical spinal cord.  相似文献   

20.
Connections of a posteromedial region of the ventral nucleus of the lateral lemniscus were examined in the cat using the autoradiographic tracing method. This sub-collicular region previously had been shown, using retrograde transport of horseradish peroxidase, to send axons to the superior colliculus10. The autoradiographic findings revealed that many axons from the posteromedial region of the ventral nucleus of the lateral lemniscus that entered the superior colliculus continued into the midbrain reticular formation. Moreover, other axons traced rostral to the inferior colliculus into the thalamus ended in the medial geniculate nucleus, bilaterally. Experiments in which horseradish peroxidase was placed in the medial geniculate nucleus retrogradely labeled the large neurons in the posteromedial region supporting the autoradiographic observations. Other sub-collicular regions also contained labeled cells in these cases, including the main body of the ventral nucleus of the lateral lemnicus and scattered cell groups around the superior olivary complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号