首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transferrin gene expression and secretion by rat brain cells in vitro   总被引:3,自引:0,他引:3  
We have previously shown by immunocytochemistry in rat primary glial cultures that transferrin (Tf) is an early developmental marker for oligodendrocytes. The present work addresses the issue of Tf gene expression and synthesis by neural cells in vitro. For this purpose, we used rat embryonic neuronal cultures and newborn glial cultures of astrocytes and oligodendrocytes. Cultured fibroblasts and C6 glioma cells were used as negative controls. We found that Tf mRNA is present in oligodendrocytes, astrocytes, and neurons. However, oligodendrocytes and astrocytes, but not neurons, were shown to synthesize and secrete Tf. Neither fibroblasts nor C6 glioma cells expressed detectable amounts of Tf mRNA. Tf mRNA levels in astrocyte cultures appeared to be under hormonal control since hydrocortisone markedly reduced message levels. These results show that both astrocytes and oligodendrocytes can synthesize and secrete Tf under cell culture conditions. However, epigenetic factors, such as hydrocortisone, may repress the expression of Tf in astrocytes in vivo.  相似文献   

2.
We have used 4 cell-type-specific markers to identify individual glial and neuronal cells in dissociated cell cultures of neonatal rat sciatic nerve, dorsal root ganglia (DRG), optic nerve, cerebellum, corpus callosum, cerebral cortex and leptomeninges. Schwann cells were identified with antibodies against rat neural antigen-1 (Ran-1), neurons with tetanus toxin, astrocytes with antibody against the glial fibrillary acidic protein (GFAP) and oligodendrocytes with antibody against galactocerebroside. All of these ligands react with cell surface molecules except for anti-GFAP antibody which binds to intracellular glial filaments. Using two-fluorochrome immunofluorescence we have studied the distribution of various glycoproteins and glycolipids on these 4 major neural cell types in short-term cultures. We have found that (1) although Ran-1 is expressed on glial and neuronal tumours, it was not found on normal astrocytes, oligodendrocytes or neurons; (2) Thy-1 was present on fibroblasts and some neurons but not on the majority of leptomeningeal cells or on oligodendrocytes or astrocytes in short-term cultures (however, it was expressed on some astrocytes in longer term cultures); (3) the 'large external transformation sensitive' (LETS) protein could be detected on fibroblasts and leptomeningeal cells but not on neurons or glial cells; (4) GM1 was present on all neurons, most oligodendrocytes and approx. 50% of other cell types; sulfatide and GM3 were only detectable on oligodendrocytes, while globoside was only found on some neurons. In addition, we were able to identify putative microglial cells by the presence of cell surface receptors for IgG and by their phagocytic activity; they did not express and of the cell-type-specific defining markers.  相似文献   

3.
F Dutly  M E Schwab 《Glia》1991,4(6):559-571
To investigate the possible role of neurons and astrocytes for oligodendrocyte development we prepared a pure population of precursor cells positive for the precursor marker GD3 with the help of fluorescence-activated cell sorting (FACS). Large numbers of highly purified cells were obtained from postnatal day 1 rat brainstems and cultured in different media and sera, and in conditioned media. As described in the literature for optic nerve O-2A progenitors, GD3-sorted brainstem cells cultured in medium containing 10% fetal calf serum (FCS) acquired a star-shaped morphology and differentiated into GD3- and GFAP-positive type-2 astrocytes. On the other hand, in serum-free medium, most of the cells differentiated into oligodendrocytes (O1-/galactocerebroside-positive). Sensory neuron conditioned media promoted survival and proliferation of the precursor cells. The spontaneous differentiation of progenitor cells into oligodendrocytes was retarded by the mitogen. Antibodies against platelet-derived growth factor (PDGF) completely blocked the mitotic effect and allowed spontaneous oligodendrocyte differentiation to occur. Cultured astrocytes also secreted PDGF as a mitogen. However, postnatal astrocytes also released a potent signal promoting oligodendrocyte differentiation. The type of factor(s) released depended on the age of the astrocytes, since only conditioned medium of postnatal but not of embryonic astrocytes promoted oligodendrocyte differentiation, suggesting that astrocyte maturation directly influences oligodendrocyte differentiation. Different concentrations of PDGF could not reproduce this differentiation-inducing effect. This study suggests that interactions between O-2A progenitor cells, neurons, and astrocytes could be required to regulate and complete the oligodendrocyte developmental pathway. Astrocytes, themselves possibly under neuronal influences, might regulate first the proliferation of the precursor cells, and, later in development, the differentiation into mature oligodendrocytes or type-2 astrocytes.  相似文献   

4.
Recent studies suggest that heterotypic cell-cell interactions influence gliogenesis in the developing rat central nervous system. CNS neuron-derived factors have been hypothesized to exist, and several have been identified and partially characterized which affect the number of oligodendrocytes in vitro. In order to study further the role of neurons in gliogenesis, we have used serum-free culture conditions, the B104 CNS neuronal cell line as a source of soluble factors, and dissociated neonatal rat brain cells as a source of glial cells. We have analyzed the response of the glial cells to serum-free B104 conditioned medium using morphological, immunocytochemical, autoradiographic, and enzymatic methods. Dose-dependent increases in the number of morphologically identified oligodendrocytes occur in response to this conditioned medium. Galactocerebroside (GalC) is a specific marker for oligodendrocytes, and the A2B5 antigen marks bipotential glial progenitor cells and their progeny: immature oligodendrocytes and type 2 astrocytes. In the presence of conditioned medium, the number of cells expressing GalC and/or A2B5 antigen increases over time when measured at 4, 8, and 12 days in vitro. A significantly weaker effect is seen if serum is also present. Since the vast majority of A2B5-positive cells in conditioned medium treated cultures lack glial fibrillary acidic protein (GFA), indicative of type 2 astrocytes, they represent glial progenitors and immature oligodendrocytes. Double immunostaining combined with autoradiography suggests that the latter cell types are the target cells for the oligodendrocyte-promoting activity. In addition, the conditioned medium markedly increases 2',3' cyclic nucleotide 3'-phosphodiesterase (an oligodendrocyte marker) and to a lesser extent enhances glutamine synthetase activity (an astrocyte marker). Type 1 astrocytes are also more morphologically differentiated in this condition, and their percentage is decreased simultaneously. Conditioned medium from other donor neural cells either has no activity or is much less effective than B104 conditioned medium. The active factors are soluble, sensitive to both trypsin and 100 degrees C treatment for 20 min, and appear to be 30-100 kilodaltons by stirred cell ultrafiltration. In summary, we have identified a potent source of growth-stimulating factors that produce increased numbers of glial progenitor cells and oligodendrocytes; the same conditioned medium also appears to inhibit type 1 astrocyte proliferation.  相似文献   

5.
A cellular preparation of highly enriched oligodendrocytes was obtained from adult human spinal cord by Percoll gradient centrifugation followed by either differential adhesion or fluorescence-activated cell sorting after immunostaining with an antibody against galactocerebroside (Ol). The adherent and O1-negative cell fractions were 96% microglia. The non-adherent and O1-positive fractions were 96% positive for the oligodendrocyte markers O4 and O1, 0–2% positive for glial fibrillary acidic protein, and were devoid of neuronal or microglial markers. If the oligodendrocyte fraction was co-cultured with purified dissociated rat dorsal root ganglion neurons, the oligodendrocytes adhered to the axons and their numbers increased over a 4 week period. However, myelin sheaths were not produced around axons in these cultures. In contrast, if the oligodendrocyte cell fraction was grown alone in culture for 3 weeks, the number of oligodendrocytes decreased and a layer of astrocytes developed underneath the oligodendrocytes. The oligodendrocytes could be eliminated from these cultures by subsequent passaging, thus producing cultures of pure astrocytes. The astrocytes accumulated both K+ and glutamate with kinetic properties similar to those reported for rodent astrocytes. We suggest that these astrocytes arose in part from an O4/O1-positive precursor which did not initially express glial fibrillary acidic protein. These results define a relatively simple method by which highly enriched populations of oligodendrocytes, astrocytes and microglia can be obtained from adult human spinal cord.  相似文献   

6.
We established selective primary cultures of neurons, astrocytes, and microglial cells from cryopreserved fetal cerebral cortex of cynomolgus monkeys (Macaca fascicularis). At 14 days in serum-containing medium, the cell cultures of the fetal cerebral cortex consisted primarily of neurons, astrocytes, and floating microglial cells. At 21 days, we observed a small number of myelin basic protein (MBP)-positive oligodendrocytes. The addition of cytosine arabinoside (a selective DNA synthesis inhibitor) at 2 days in culture eliminated proliferative glial cells, allowing adequate numbers of neurons to survive selectively. A chemically defined serum-free medium successfully supported neuronal survival at a level equivalent to that supported by the serum-containing medium. Brain-derived neurotrophic factor (BDNF) significantly affected the survival of primate neurons. Glutamate induced a significant degree of neuronal cell death against primate neurons and MK-801, a selective N-methyl-D-aspartate receptor (NMDAR) antagonist, blocked cell death, which suggests that primate cortical neurons have NMDAR and the glutamate-induced cell toxicity is mediated by NMDAR. In the serum-free medium, type-1 astrocytes responded to dibutyryl cyclic AMP and showed a process-bearing morphology. The growth of type-1 astrocytes in the serum-free medium was stimulated by epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and hydrocortisone, which are known growth factors in rat type-1 astrocytes. Cultured microglial cells expressed CD68, a monocyte marker. Macrophage-colony stimulating factor (M-CSF) stimulated microglial cell growth in the serum-free medium. These selective primary culture systems of primate cerebral cortical cells will be useful in issues involving species specificity in neuroscience.  相似文献   

7.
The discovery of molecular markers which are selectively expressed during the development of specific classes of rat central nervous system macroglia has greatly advanced our understanding of how these cells are related. In particular, it has been shown in tissue culture that oligodendrocytes and some astrocytes (type-2) may be derived from a common progenitor cell (O-2A progenitor). However, the existence of type-2 astrocytes in vivo has yet to be unequivocally established. Recently, it has been reported that the neural-specific growth-associated protein-43 (GAP-43, otherwise known as B-50, F1, pp46 and neuromodulin) may be expressed by cells of the O-2A lineage in vitro. We set out to examine the cellular specificity of GAP-43 in O-2A progenitors and their descendants in vitro and in vivo. Using a polyclonal antiserum against a GAP-43 fusion protein we have shown the presence of immunoreactive GAP-43 in the membranes of bipotential O-2A glial progenitor cells and type-2 astrocytes by Western blotting and immunocytochemistry of cells in culture. In contrast to previous studies, double labelling with mature oligodendrocyte markers showed that GAP-43 is down-regulated during oligodendrocyte differentiation in vitro. Immunohistochemical staining of sections of developing rat brain demonstrated the same developmental regulation of GAP-43, suggesting that oligodendrocytes only express GAP-43 at immature stages. In addition, normal and reactive astrocytes in tissue sections were not labelled with GAP-43.  相似文献   

8.
The ability of A7 Semliki Forest Virus (SFV) to infect primary brain cell cultures has been examined using cultures prepared from 1-2-day neonatal rat cerebral hemispheres. These cultures, characterised immunocytochemically using cell-specified markers, contain mainly GFAP+ protoplasmic astrocytes and smaller multiprocessed A2B5+ cells, probably fibrous astrocytes. 10% of the cells are GC+ oligodendrocytes and some neurones are also present. These cultures support virus growth and a cytopathic effect was observed. Using double labelling techniques with the cell-specific markers and anti-SFV antibody A7 has been shown to readily infect cells which carry either the A2B5+ antigen or galactocerebroside marker. Protoplasmic astrocytes (GFAP+/A2B5-) are not readily infected under the conditions used. The protein labelling studies using [35S]methionine show that host cell protein synthesis is not completely shut off and continues in the astrocyte protein region. These results suggest that cells derived from a common A2B5+, GFAP-, GC- progenitor glial cell, i.e. GC+ oligodendrocytes and A2B5+/GFAP+ fibrous astrocytes, are more readily infected than other brain cell types including the protoplasmic astrocytes.  相似文献   

9.
The tissue- and cell-specific expression of three neutral glycosphingolipids, gangliotetraosylceramide (GA1), gangliopentaosylceramide (GalNAc-GA1), and the novel 3-O-acetyl-sphingosine-series glycolipid (FMC-5), were examined with monospecific polyclonal antibodies. Immunohistochemical studies of rodent brain cross-sections indicated that both GA1 and FMC-5 antibodies stained myelin. In contrast, GalNAc-GA1 antibody distinctly stained neurons in cerebral cortex, but only partially delineated Purkinje cells and other neurons in cerebellum. Preliminary studies of mixed glial cultures suggested the following: 1) both FMC-5 and GA1 antibodies stained oligodendrocytes and oligo progenitors, and 2) GalNAc-GA1 antibody did not stain any cells in the culture. Because the GalNAc-GA1 was associated with neurons, we examined the immunoreactivity of GalNAc-GA1 antibody in primary neuronal cultures. Further studies using primary cultures of rat brain oligodendrocytes, and dissociated cerebellar neuronal cultures indicated that both GA1 and FMC-5 are specifically expressed by oligodendrocytes, whereas GalNAc-GA1 is primarily localized in interneurons and to some extent in Purkinje neurons.  相似文献   

10.
A range of cell-specific markers have been employed with immunocytochemical methods to characterise and quantitate the cell types present in mixed brain cell cultures derived from dissociated 1-2-day post-natal rat cerebral hemispheres and grown in the presence of FCS. Protoplasmic astrocytes (GFAP+, A2B5-) were the major cell type to develop in culture, a confluent monolayer forming in 5-8 days. A population of smaller round cells of oligodendrocyte-like morphology appeared on this astrocyte layer. Greater than 70% of these smaller cells were GC- and thus were not oligodendrocytes. The GC- cells were A2B5+ and, in early cultures, may therefore be progenitor glial cells. Examination of GFAP and A2B5 co-expression by these smaller cells was difficult due to the dense underlying GFAP+ astrocyte layer. In less dense areas of older cultures these smaller cells with processes were GFAP+ and A2B5+: these are Type 2, fibrous astrocytes. GC+ oligodendrocytes, comprising 5-10% of the total identified cell population, were initially distributed over the astrocyte monolayer; in older cultures (after about 8 days) GC+ cells were observed in clumps over places where NF+ cells were identifiable. Such GC+ cells mostly became MBP+. Neurones accounted for about 6% of the identifiable cells in early cultures but a lower percentage in older cultures. Minor populations of ependymal cells and macrophages were present; cells displaying fibronectin, fibroblasts, were rarely identified. Use of horse serum in place of FCS gave lower yields of GC+ cells in cultures, slowed down astrocyte development, and resulted in the formation of trunks of GFAP+ cells throughout cultures. Other sera gave lower numbers of GC+ cells.  相似文献   

11.
Pure astrocyte cultures derived from cells isolated from mature brain   总被引:1,自引:0,他引:1  
Enriched preparations of oligodendrocytes, isolated either from adult bovine brain or from 30-day-old rat brain, eventually yield cultures in MEM-15% calf serum that contain, in addition to oligodendrocytes, proliferating astrocytes and variable numbers of fibroblast-like cells. If these cultures are switched to a serum-free defined medium during the 1st week, mixed cultures containing only oligodendrocytes and astrocytes are obtained. Bovine cultures can be replated and purified by selective adhesion to yield cultures that are greater than 99% astrocytes; similar procedures were not successful with rat cultures. Cytoskeletal preparations of the purified astrocyte cultures from mature bovine brain contain both vimentin and glial fibrillary acidic protein (GFAP), but vimentin is by far the major intermediate filament protein. Thus, the intermediate filament composition of these astrocytes is similar to that of astrocytes in primary cultures obtained from neonatal rat brain. Immunofluorescent studies of these cultures at 24 hr in vitro show that there are no GFAP+ cells in cultures of either species; the bovine cultures contain greater than 95% GC+ cells; and the rat cultures contain 90% GC+ cells. After a few days in vitro flat cells appear that are vimentin+/GFAP-/GC-. In serum-free medium these cells eventually become vimentin+/GFAP+. We propose that the astrocytes that grow in these cultures arise from a population of glial precursor cells, which are present even in adult brain and are isolated together with oligodendroglia, and that they do not derive from contaminating mature astrocytes. Thus, the astrocytes in our cultures may have the same origin as astrocytes grown in culture from dissociated neonatal brain.  相似文献   

12.
S Nakamura  T Todo  Y Motoi  S Haga  T Aizawa  A Ueki  K Ikeda 《Glia》1999,28(1):53-65
We examined the expression of fibroblast growth factor (FGF)-9 in the rat central nervous system (CNS) by immunohistochemistry and in situ hybridization studies. FGF-9 immunoreactivity was conspicuous in motor neurons of the spinal cord, Purkinje cells, and neurons in the hippocampus and cerebral cortex. In addition to the neuronal localization of FGF-9 immunoreactivity that we reported previously, the present double-label immunohistochemistry clearly demonstrated that the immunoreactivity was present in glial fibrillary acidic protein (GFAP)-positive astrocytes preferentially present in the white matter of spinal cord and brainstem of adult rats and in CNPase-positive oligodendrocytes that were arranged between the fasciculi of nerve fibers in cerebellar white matter and corpus callosum of both adult and young rats. There was a tendency for FGF-9 immunoreactivity in oligodendrocytes to be more pronounced in young rats than in adult rats. The variation of oligodendrocyte FGF-9 immunoreactivity in adult rats was also more pronounced than that in young rats. With in situ hybridization, FGF-9 mRNA was observed in astrocytes in the white matter of rat spinal cord and oligodendrocytes in the white matter of cerebellum and corpus callosum of adult and young rats. The expression of FGF-9 mRNA in glial cells was lower than in neurons, and not all glial cells expressed FGF-9. In the present study, we demonstrated that FGF-9 was expressed not only in neurons but also in glial cells in the CNS. FGF-9 was considered to have important functions in adult and developing CNS.  相似文献   

13.
14.
Glial cells dissociated from newborn and aged mouse brain   总被引:3,自引:0,他引:3  
Changes occurring with days in culture and cell passage in cultured glial cells derived from newborn vs aged (18-mo) mouse cerebral hemispheres were compared. The activities of the enzymes glutamine synthetase (GS), an astrocyte marker, and 2',3'-cyclic nucleotide 3'- phosphohydrolase (CNP), an oligodendrocyte marker, were determined. In addition, glial fibrillary acidic protein (GFA) and glycerol phosphate dehydrogenase (GPDH) immunoreactivity was used to morphologically identify astrocytes and oligodendrocytes, respectively. In cultures derived from newborn mouse cerebral hemispheres, both GS and CNP activity and GFA-positive and GPDH-rhodamine-positive cells were present with cell passage. In general, GS activity did not change in early cell passage in cultures from either newborn or aged mouse; in passage 5, GS was high in both sources of cell populations. CNP activity increased with cell passage in cultures derived from newborn mouse; in cultures derived from aged mouse CNP was low in the primary cultures, increased with cell passages 2 and 3, and declined with passages 4 and 5. The survival of astrocytes as shown by GS and the decline in oligodendrocytes as shown by CNP was also supported by an increase in the proportions of GFA and GPDH immunoreactive cells. We interpret the increase in GS activity to parallel the astrogliosis observed in vivo in the aging brain. Moreover, the decline in oligodendrocytes in culture may represent a shift of balance between glial cell types that appears to be influenced by the age of brain tissue and time in culture.  相似文献   

15.
The brain is isolated behind a blood-tissue barrier that restricts the access of circulating proteins to neural cells. There is evidence that some of these proteins are synthesized within the central nervous system. The present study examines the synthesis and secretion of such proteins by cultured macroglial cells. Primary glial cultures were derived from cortical and subcortical regions of neonatal rat brains, and subsequent secondary cultures were enriched in type-1 astrocytes, type-2 astrocytes, or oligodendrocytes. Newly synthesized proteins were immunoprecipitated from the culture media using antisera directed against whole rat serum. All three types of glial cells secreted a range of plasma proteins. In general, type-1 astrocytes secreted more of these proteins than did type-2 astrocytes or oligodendrocytes, although the one-dimensional polyacrylamide gel electrophoresis (PAGE) profiles were specific for each cell type. Antisera directed against specific plasma proteins identified three of the most abundant proteins secreted by type-1 astrocytes as transferrin, α-2-macroglobulin, and ceruloplasmin. Northern blot analysis of cellular RNA confirmed that type-1 astrocytes contained transferrin mRNA, and that it was more abundant in cultures derived from subcortical regions than from cortical regions. In situ hybridization studies revealed that virtually all type-1 and type-2 astrocytes contained transferrin mRNA. Since the proteins identified in this study have been proposed to have a variety of neurotrophic roles in the central nervous system, these data further extend the range of possible functions that glial cells may serve in the CNS.  相似文献   

16.
Transplantation of different glial cells into areas of demyelination made in the adult rat spinal cord allows insights into the cell-cell interaction necessary to reconstruct a glial environment around demyelinated axons. Such studies have shown that type-1 astrocytes are central to the exclusion of Schwann cells from areas of glia-free demyelination. However, for these cells to be established in a manner which prevents Schwann cell remyelination of CNS axons, cells of the O-2A lineage are also required. If cultures of isogeneic rat type-1 astrocytes and mouse O-2A cells are transplanted into lesions made in non-immunosuppressed animals. Schwann cell remyelination is limited and extensive oligodendrocyte remyelination is achieved. This paradigm creates a model of immune mediated demyelination in which the immune response is not primarily directed at oligodendrocyte specific epitopes.  相似文献   

17.
We have identified what is apparently a distinct type of astrocyte in primary cultures from several regions of the neonatal rat CNS. These cells express GD3 ganglioside for long periods in vitro, and are GFAP+, but do not express the oligodendrocyte antigens O4 or galactocerebroside (GC). The majority, but not all, are A2B5+. The cells grow in a flat, highly spread morphology with many thin cytoplasmic processes. Gene transfer with a replication-deficient retrovirus combined with immunostaining for astro- and oligodendroglial markers (antibodies to GFAP, GD3 ganglioside, GC, and the A2B5 and O4 antibodies) demonstrated that in the neonatal rat CNS cultures these cells are clonally separate from oligodendrocytes and from the majority of (GD3-) astrocytes. The clonal analysis suggests a distinct progenitor cell and a distinct developmental sequence for these astrocytes.  相似文献   

18.
A novel population of hippocampal precursor cells (HPCs) that can be induced to differentiate into astrocytes and oligodendrocytes can be derived from hippocampal cultures grown in serum-free media. The HPCs are PDGF-responsive, do not proliferate with bFGF, and grow as sheets of cells rather than gathering into neurospheres. The HPCs share many markers (A2B5, GD3, poly-sialylated neuronal common adhesion molecule (PSA-NCAM), and NG2) with oligodendrocyte precursor cells (OPCs). The HPCs do not express markers for mature neurons, astrocytes, or oligodendrocytes. Like OPCs, the HPCs differentiate into glial fibrillary acidic protein (GFAP)+ astrocytes and GalC+ oligodendrocytes with the addition of bone morphogenetic protein-4 (BMP-4) and triiodothyronine (T3), respectively. They do not differentiate into neurons with the addition or withdrawal of basic fibroblast growth factor (bFGF), brain-derived neurotrophic factor (BDNF), or retinoic acid (RA). These HPCs can be stimulated to differentiate into neuron-like cells by the induction of neuronal injury or cell death in nearby cultured neurons or by conditioned medium from injured neuronal cultures. Under these conditions, HPCs grow larger, develop more extensive dendritic processes, become microtubule-associated protein-2-immunoreactive, express large voltage-dependent sodium currents, and form synaptic connections. The conversion of endogenous pluripotent precursor cells into neurons in response to local brain injury may be an important component of central nervous system homeostasis.  相似文献   

19.
The growth-promoting activity of conditioned medium (CM) from the B104 CNS neuronal cell line was studied in glial cultures from neonatal rat brain. This CM at 33% (v/v; 8-12 micrograms protein/ml) produced large numbers of oligodendrocytes and multipolar glial progenitors after an 8 to 12-day treatment. At all times studied, cells of the oligodendrocyte/type 2 astrocyte (O-2A) lineage were increased due to CM-treatment, while type 1 astrocytes, microglia, and other cell types were not. Furthermore, we observed a large decrease in the percentage of oligodendrocytes in the O-2A lineage, suggesting a delay in differentiation of the progenitors. By 8 days in vitro (DIV), dose-dependent increases in numbers of galactocerebroside (GalC)-positive cells (oligodendrocytes) and A2B5-positive cells (immature oligodendrocytes and glial progenitors) occurred. In contrast, at 4 DIV only A2B5-positive cells were increased in a dose-dependent manner. The latter cells can differentiate primarily into oligodendrocytes or type 2 astrocytes depending on the culture conditions. Complement lysis studies confirmed that the A2B5-positive, but not the GalC-positive, population at 4 DIV was required for increases in oligodendrocytes to occur by 8 DIV. The [3H]thymidine labeling index of the A2B5-positive population also increased in response to CM in a dose-dependent manner, but the GalC-positive labeling index showed only small increases at 4 DIV and none at later times. Our results suggest that the delayed differentiation coupled with the selective stimulation of the bipotential glial progenitors produces the large increases in numbers of oligodendrocytes observed at 8-12 DIV.  相似文献   

20.
We have investigated the effects of cell passaging and time in culture on astrocyte morphology, transferrin expression and the expression of two main astrocyte markers, glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS; EC 6.3.1.2). When primary astrocytes were subcultured, giving rise to secondary and tertiary cultures, their morphology changed, regardless of the split ratio used to passage the cells. Correlating with this morphological change, a dramatic increase in the accumulation of GFAP and GS mRNAs was observed after cells had been passaged. This effect was in marked contrast to the moderate increase in the levels of GFAP and GS mRNAs observed over several weeks in primary culture. Hydrocortisone induction of GS gene expression was not affected by cell passage. Transferrin mRNA, which is not normally found in astrocytes in vivo, was expressed at a high level in primary cultures of astrocytes. However, transferring mRNA almost completely disappeared after the second passage. Astrocyte-conditioned media, or co-cultures with oligodendrocytes, modified transferrin gene expression. Taken together, these results show that subculturing of primary rat astrocytes leads to a dramatic change in the genetic expression of several proteins and provides a new approach to modify astrocyte differentiation in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号