首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The expression of CCL5/Rantes by Hodgkin (H) and Reed-Sternberg (RS) cells has been recently documented. In the present study we demonstrated that the CCL5 receptor (CCR5) is constitutively expressed by Hodgkin Lymphoma (HL)-derived cell lines (i.e. L-428, KM-H2, L-1236 and L-540) as shown by immunohistochemistry, flow cytometry and western blotting and also detected by immunohistochemistry on primary H-RS cells from lymph node tissues. sCD40L never significantly affected CCR5 expression, whereas a short exposure to doxorubicin down regulated its expression. CCR5 receptors on HL cell lines were functionally active, since neutralizing anti-CCL5 monoclonal antibodies inhibited basal proliferation of HL-derived cell lines and recombinant CCR5 ligands (CCL3/Mip-1 alpha, CCL4/Mip1 beta and CCL5/Rantes) increased their clonogenic growth. CCL5 secretion by L-1236, L-428 and KM-H2 cells was stimulated by CD40 engagement and also by coculturing L-1236 cells on primary stromal fibroblasts from HL-involved lymph nodes (HLF). Coculture experiments indicated that a direct contact of H-RS cells induces HLF cells to produce CCL5. Supernatants from L-1236, L-428 and KM-H2 cells stimulated migration of purified CD4+ T-cells and eosinophils in vitro. The migratory response to HL-cell lines supernatants was only partially neutralized (CD4+ cells: 70%; esinophils: 36%) by anti-CCL5 antibodies, reinforcing the notion that multiple chemokines are involved in the recruitment of nonmalignant reactive cells in HL tissues. Taken together, our results indicate a possible involvement of the CCR5/CCR5-ligands signaling in the regulation of H-RS cells growth and in the formation/maintenance of the typical tissue microenvironment of HL.  相似文献   

3.
4.
5.
The inflammatory chemokines CCL2 and CCL5 in breast cancer   总被引:1,自引:0,他引:1  
Soria G  Ben-Baruch A 《Cancer letters》2008,267(2):271-285
A causal role was recently attributed to inflammation in many malignant diseases, including breast cancer. The different inflammatory mediators that are involved in this disease include cells, cytokines and chemokines. Of these, many studies have addressed the involvement and roles of the inflammatory chemokines CCL2 (MCP-1) and CCL5 (RANTES) in breast malignancy. While minimally expressed by normal breast epithelial duct cells, both chemokines are highly expressed by breast tumor cells at primary tumor sites, indicating that CCL2 and CCL5 expression is acquired in the course of malignant transformation, and suggesting that the two chemokines play a role in breast cancer development and/or progression. Supporting this possibility are findings showing significant associations between CCL2 and CCL5 and more advanced disease course and progression. Furthermore, studies in animal model systems have shown active and causative roles for the two chemokines in this disease. In line with the tumor-promoting roles of CCL2 and CCL5 in breast cancer, the two chemokines were shown to mediate many types of tumor-promoting cross-talks between the tumor cells and cells of the tumor microenvironment: (1) they shift the balance at the tumor site between different leukocyte cell types by increasing the presence of deleterious tumor-associated macrophages (TAM) and inhibiting potential anti-tumor T cell activities; (2) of the two chemokines, mainly CCL2 promotes angiogenesis; (3) CCL2 and CCL5 which are expressed by cells of the tumor microenvironment osteoblasts and mesenchymal stem cells play a role in breast metastatic processes. In addition, both chemokines act directly on the tumor cells to promote their pro-malignancy phenotype, by increasing their migratory and invasion-related properties. Together, the overall current information suggests that CCL2 and CCL5 are inflammatory mediators with pro-malignancy activities in breast cancer, and that they should be considered as potential therapeutic targets for the limitation of this disease.  相似文献   

6.
Hodgkin's lymphoma (HL) is separated into the classical (c) and lymphocyte-predominance (lp) forms. Whereas classical Hodgkin-Reed/Sternberg (HRS) cells carry mutated immunoglobulin (Ig) gene rearrangements that are often "crippled" and lack intraclonal diversity, and are likely derived from preapoptotic germinal center (GC) B cells, the lymphocytic and histiocytic cells of lpHL are presumably derived from selected GC B cells and often show ongoing somatic hypermutation. The recently identified lymphocyte-rich classical (lrc) HL is characterized by HRS cells with the immunophenotype of classical HRS cells (CD30(+)CD15(+)CD20(-)CD45(-)) but an infiltrate similar to lpHL and a clinical behavior resembling lpHL. To identify the histogenetic origin of the HRS cells in lrcHL and to determine the relationship to the lymphoma cells of cHL and lpHL we characterized seven cases of lrcHL by immunohistochemistry and sequenced the rearranged Ig genes of single micromanipulated HRS cells. The expression patterns of BCL6, CD138, Oct2, and BOB1 in HRS cells of lrcHL showed differences to those of both cHL and lpHL. Analyses of rearranged Ig genes identified clonal HRS cell expansions carrying mutated Ig rearrangements without significant intraclonal diversity in all seven of the cases. In two cases crippling mutations, rendering originally functional V gene rearrangements nonfunctional, were observed. Thus, the mutation pattern of rearranged Ig genes of HRS cells in lrcHL is clearly different from those in lymphocytic and histiocytic cells of lpHL, and resembles the pattern in HRS cells of cHL, suggesting that HRS cells in lrcHL derive from (preapoptotic) GC B cells that silenced hypermutation. In one case in addition to the dominant HRS cell clone, CD30(+) EBV-infected HRS-like cells unrelated to the tumor clone were observed, suggesting development of an expanded population of EBV-harboring HRS-like cells in the microenvironment of HL.  相似文献   

7.
The hallmark of Hodgkin's lymphoma (HL) are mononucleated Hodgkin's cells and multinucleated Reed-Sternberg (HRS) cells, which usually account for only about 1% of cells in the tumor tissue. The majority of HRS cells in classical HL are derived from germinal centre B cells that have acquired disadvantageous Ig variable chain gene mutations and escaped from apoptosis. Due to reprogramming of gene expression, these lymphoma cells have lost the expression of most B-cell specific genes and acquired expression of multiple genes that are typical for other hematopoietic cells. HRS cells attract various cells of immune system into lymphoma tissue resulting in an inflammatory microenvironment. Moreover, HRS cells are dependent on microenvironment, especially on survival signals from other cells. Despite the loss of BCR?- the master-regulator of B cell fate, HRS cells express a number of receptors that regulate tumor cell survival. The rescue of HRS cells from apoptosis is a key event in HL pathogenesis. These cells express at least six receptors that belong to TNF receptor family: CD30, CD40, CD95, TACI, BCMA and RANK, co-stimulatory receptors CD80 and CD86, and E-selectins ligand CD15. Due to the mutations in genes encoding proteins of CD95-mediated apoptotic signaling pathway, it is not functional in HRS cells. Ligands of TNF family receptors on cells in HL microenvironment contribute to the activation of canonical and non-canonical NF-κB signaling pathways and survival program of HRS cells. Moreover, in HRS cells a number of multiple mutations in negative NF-κB regulators, and also gains and amplifications of positive regulators, cooperate in deregulating these pathways. All TNF receptors may be linked to the activation of prosurvival gene expression programs via Akt and ERK pathways. HRS cells also express CD150 receptor with specific ITSM motifs in the cytoplasmic tail. Ligation of this receptor on HRS cells induced activation of Akt and ERK pathways, and moreover, it triggered activation of JNK signaling cascade. Conclusion: The review presents the current views on the role of cell surface receptors in maintenance of HL microenvironment favorable for HRS cells survival.  相似文献   

8.
We microdissected Hodgkin and Reed-Sternberg (HRS) cells from 14 Hodgkin's lymphoma tissue samples (nodular sclerosis = 5; mixed cellularity = 9), and after isolation and amplification of mRNA, analyzed the expression profile of 140 genes of chemokines, cytokines and their receptors by cDNA microarray methods. We also compared the profile with those of germinal center (GC) cells in reactive lymphadenitis. Unsupervised clustering revealed a relatively homogeneous expression profile in HRS cells. HRS cells tended to express mainly Th2 T cell-associated molecules rather than those of Th1, compared with GC cells. Interleukin-11 receptor alpha (IL-11Ralpha), a previously unknown HRS cell-specific gene, was detected in addition to known genes. Immunohistochemical staining confirmed the expression of IL-11Ralpha at the protein level. In contrast, only few cases were positive for IL-11Ralpha in B cell lymphoma, diffuse large cell lymphoma and follicular lymphoma. This is the first analysis report of tissue HRS cells with cDNA microarray technique.  相似文献   

9.
Lymphocytes are frequently observed in human malignant glioma, the mechanism(s) underlying their appearance is not fully understood. To clarify tumor immunity in malignant gliomas, we analyzed the expression of 8 novel lymphocyte-specific chemokines in human glioma cell lines and glioma tissues by RT-PCR, Northern blot, immunoblot and immunohistochemistry, and examined the correlation with the infiltration of various subsets of lymphocytes. For the 8 chemokines examined (LARC, TARC, ELC, SLC, PARC, LEC, HCC-2, and SCM-1alpha), expression of LARC was clearly detectable in all 12 glioma cell lines by RT-PCR. Additionally, expression of TARC and SCM-1alpha was detectable in the majority of glioma cell lines. However, the expression level of most chemokines was low, so that Northern blot analysis could not demonstrate their expression with the exception of LARC in 2 cell lines. Expression of LARC mRNA and LARC protein was strongly induced by phorbol myristate ester in U87 MG cells. The production of LARC protein was demonstrated in 4 of 8 glioblastoma tissues by immunoblotting, and 9 of 33 samples (27.3%) by immunohistochemistry. Interestingly, the positivity of LARC staining was significantly correlated with the infiltration of CD8-, CD4-, and CD45R0-positive cells (p<0.001). Although the constitutive expression level of LARC is low, certain stimulations could strongly induce its expression, and play a crucial role in the tumor immunity of human malignant glioma.  相似文献   

10.
Primary central nervous system lymphomas (PCNSL) are aggressive malignancies confined to the CNS, mostly of diffuse large B‐cell histotype. Despite improved understanding of the malignant B cells, little is known on the tumor microenvironment and on the response of the adaptive immunity against PCNSL. We investigated the phenotype of tumor infiltrating lymphocytes (TILs), and the expression of chemokines that could affect malignant B cells and trafficking of TILs. TILs and chemokine expression were evaluated by immunohistochemistry and in situ hybridization. Furthermore, we performed in vitro migration assays to analyze the migratory capacity of lymphocytes and malignant B cells toward chemokines and chemokine heterocomplexes. We show in 22 cases of PCNSL from immunocompetent patients that CD8+ T cells represent the majority of TILs in the tumor mass. They tend to accumulate in perivascular areas, show Granzyme B expression and proliferate in situ. Their localization and density correlates with the expression of the inflammatory chemokine CXCL9, which is transcribed and translated by perivascular macrophages and pericytes in the perivascular microenvironment. Moreover, CXCL9 and CXCL12 are coexpressed on the tumor vasculature and form heterocomplexes. In the presence of CXCL9, CXCL12‐induced migration is enhanced not only on CXCR4+/CXCR3+/CD8+ T cells but also on CXCR4+/CXCR3? malignant B cells. These findings indicate the presence of a strong chemoattractant stimulus in the perivascular microenvironment, which might serve as regulator for the recruitment of TILs and for the angiocentric positioning of malignant B cells in the perivascular cuff.  相似文献   

11.
The level of serum CCL5, a C-C chemokine, is reportedly correlated with tumor progression in several cancers. We herein investigated the mechanisms by which CCL5 might contribute to tumor progression in gastric cancer. Serum CCL5 levels significantly correlated with tumor progression and prognosis in patients with gastric cancer. Immunohistochemistry showed that tumor-infiltrating lymphocytes expressed CCL5, while the tumor cells expressed the CCL5 receptors. Fluorescent double staining showed that tumor-infiltrating CD4+ cells rather than CD8+ cells preferentially expressed CCL5. Using gastric cancer cell lines (MKN45, KATO III), we examined CCL5 production by coculturing whole peripheral blood mononuclear cells (PBMCs), CD4+ cells, or CD8+ cells, with tumor cells. CD4+ cells cocultured with tumor cells remarkably enhanced CCL5 production in a direct cell-cell contact manner over other cocultured PBMCs, including CD8+ cells. Gastric cancer cell lines expressed CCL5 receptors and augmented their proliferation in response to CCL5 stimulation. Furthermore, we examined the effect of CCL5-treated cancer cells on the cocultured PBMCs, focusing on the CD4+/CD8+ proportion and apoptosis. Coculture of CCL5-treated gastric cancer cells with PBMCs resulted in a significant decrease in the proportion of CD8+ cells but not CD4+ cells, suggesting Fas-FasL-mediated apoptosis in CD8+ cells. In immunodeficient mice coinjected with KATO III and PBMCs, neutralization of CCL5 significantly suppressed tumor progression, resulting in a favorable outcome. In conclusion, gastric cancer cells might thus induce CD4+ T cells to secrete CCL5 and exploit it for their progression, as well as to aid in the prevention of CD8+ T cell-involved tumor elimination.  相似文献   

12.
Chemokines, which regulate leukocyte trafficking and infiltration of local sites, are attractive candidates for improving the efficacy of cancer immunotherapy by enhancing the accumulation of immune cells in tumor tissue. Herein, we evaluated the antitumor effects of intratumoral injection of RGD fiber-mutant adenoviral vectors (AdRGDs) encoding the chemokines CCL17, CCL19, CCL20, CCL21, CCL22, CCL27, XCL1 or CX3CL1 in a murine model of preexisting CT26 colon carcinoma. Among these 8 chemokine-expressing AdRGDs, injection of AdRGD-CCL17 most effectively induced tumor regression and generated specific immunity in rechallenge experiments. Tumor elimination activity by intratumoral injection of AdRGD-CCL17 depended on both the vector dose and the number of injections, and mainly required CD8+ CTLs in an effector phase as confirmed by analysis using BALB/c nude mice and an in vivo depletion assay. In addition, CCL17 gene transduction induced significant increases in the number of infiltrating macrophages and CD8+ T cells in CT26 tumors, and changed the tumor microenvironment to an immunologic activation state in which there was enhanced expression of lymphocyte activation markers and cell adhesion molecules. Thus, our data provide evidence that CCL17 gene transduction of local tumor sites is a promising approach for the development of a cancer immunogene therapy that can recruit activated tumor-infiltrating immune effector cells.  相似文献   

13.
We investigated CD4 and CD8 double-positive thymocytes, CD4(+) T cells from typical patients with T-cell lineage acute lymphocytic leukemia (T-ALL) and T cell lineage chronic lymphocytic leukemia (T-CLL), and MOLT4 T cells in terms of CC chemokine ligand 25 (CCL25) functions of induction of resistance to tumor necrosis factor alpha (TNF-alpha)-mediated apoptosis. We found that CCL25 selectively enhanced resistance to TNF-alpha-mediated apoptosis in T-ALL and T-CLL CD4(+) T cells as well as in MOLT4 T cells, but CD4 and CD8 double-positive thymocytes did not. One member protein of the inhibitor of apoptosis protein (IAP) family, Livin, was selectively expressed in the malignant cells at higher levels, particularly in T-ALL CD4(+) T cells, in comparison with the expression in CD4 and CD8 double-positive thymocytes. After stimulation with CCL25 and apoptotic induction with TNF-alpha, the expression levels of Livin in these malignant cells were significantly increased. CCL25/thymus-expressed chemokine (TECK), by means of CC chemokine receptor 9 (CCR9) ligation, selectively activated Livin to enhance resistance to TNF-alpha-mediated apoptosis in c-jun-NH(2)-kinase 1 (JNK1) kinase-dependent manner. These findings suggested differential functions of CCR9/CCL25 in distinct types of cells. CD4 and CD8 double-positive thymocytes used CCR9/CCL25 for migration, homing, development, maturation, selection, cell homeostasis, whereas malignant cells, particularly T-ALL CD4(+) T cells, used CCR9/CCL25 for infiltration, resistance to apoptosis, and inappropriate proliferation.  相似文献   

14.
Stromal cell-secreted chemokines including CCL2 have been implicated in the primary tumor microenvironment, as mediators of tumor cell migration, proliferation, and angiogenesis. Expression of CCL2 and its principal receptor CCR2 was analyzed by RQ-PCR in primary tumor cells and breast cancer cell lines. Breast cancer cell lines (MDA-MB-231, T47D) were co-cultured directly on a monolayer of primary breast tumor and normal stromal cells, retrieved using EpCAM+ magnetic beads, and changes in expression of CCL2, CCR2, MMP11, ELK1, VIL2, and Ki67 detected by RQ-PCR. Epithelial cell migration and proliferation in response to stromal cell-secreted factors was also analyzed. In vivo, tumor xenografts were formed by co-injecting T47D cells with primary tumor stromal cells. Following establishment, tumors were harvested and digested, epithelial cells retrieved and analyzed by RQ-PCR. Whole tumor tissue was also analyzed by immunohistochemistry for CD31 and the VIL2 encoded protein Ezrin. Tumor stromal cells expressed significantly higher levels of CCL2 than normal cells, with no CCR2 expression detected. Primary epithelial cells and breast cancer cell lines expressed elevated CCL2, with relative expression of CCR2 found to be higher than the ligand. Interaction of breast cancer epithelial cells with primary tumor, but not normal stromal cells, stimulated increased expression of CCL2 (8-fold), ELK1 (6-fold), VIL2 (6-fold), and MMP11 (17-fold). Factors secreted by stromal cells, including CCL2, stimulated a significant increase in epithelial cell migration, with no effect on cell proliferation in vitro observed. In vivo, the presence of stromal cells resulted in tumors of increased volume, mediated at least in part through neoangiogenesis demonstrated by immunohistochemistry (CD31). Admixed tumor xenografts exhibited increased expression of Ki67, MMP11, VIL2, and ELK1. Elevated Ezrin protein was also detected, with increased cytoplasmic localization. The results presented highlight mechanisms through which breast cancer epithelial cells can harness stromal cell biology to support tumor progression.  相似文献   

15.
Previous work from our laboratory has demonstrated overexpression of chemokines in head and neck cancer and the utility of targeting these proteins for tumor therapy in a preclinical model. However, the mechanisms involved are unexplored. Through gene expression analysis, we found that expression of vascular endothelial growth factor (VEGF-C) was elevated in HN12 cells expressing high levels of CXCL5. In the present study, we have investigated the contribution of VEGF-C to tumor cell growth and motility. RNAi-mediated knockdown of VEGF-C expression in HN12 cells, which express high levels of CXCL5, resulted in a decrease in proliferation. Conversely, forced expression of VEGF-C in HN4 tumor cells with low endogenous CXCL5 levels increased cell growth. Suppression of VEGF-C inhibited migration of HN12 cells. Similarly, HN4 cells showed reduced migration towards conditioned media collected from HN12 cells with VEGF-C knockdown compared to controls, while HN4/VEGF-C conditioned media stimulated cell migration. Moreover, tumor growth in vivo was markedly reduced when VEGF-C expression was blocked by shRNA. Finally, determination of VEGF-C expression in squamous carcinoma cell lines revealed universal overexpression compared to normal keratinocytes. These findings support a role for VEGF-C in head and neck squamous cell carcinogenesis.  相似文献   

16.
Impaired PTEN function is a genetic hallmark of aggressive prostate cancers (CaP) and is associated with increased CXCL8 expression and signaling. The current aim was to further characterize biological responses and mechanisms underpinning CXCL8-promoted progression of PTEN-depleted prostate cancer, focusing on characterizing the potential interplay between CXCL8 and other disease-promoting chemokines resident within the prostate tumor microenvironment. Autocrine CXCL8-stimulation (i) increased expression of CXCR1 and CXCR2 in PTEN-deficient CaP cells suggesting a self-potentiating signaling axis and (ii) induced expression of CXCR4 and CCR2 in PTEN-wild-type and PTEN-depleted CaP cells. In contrast, paracrine CXCL8 signaling induced expression and secretion of the chemokines CCL2 and CXCL12 from prostate stromal WPMY-1 fibroblasts and monocytic macrophage-like THP-1 cells. In vitro studies demonstrated functional co-operation of tumor-derived CXCL8 with stromal-derived chemokines. CXCL12-induced migration of PC3 cells and CCL2-induced proliferation of prostate cancer cells were dependent upon intrinsic CXCL8 signaling within the prostate cancer cells. For example, in co-culture experiments, CXCL12/CXCR4 signaling but not CCL2/CCR2 signaling supported fibroblast-mediated migration of PC3 cells while CXCL12/CXCR4 and CCL2/CCR2 signaling underpinned monocyte-enhanced migration of PC3 cells. Combined inhibition of both CXCL8 and CXCL12 signaling was more effective in inhibiting fibroblast-promoted cell motility while repression of CXCL8 attenuated CCL2-promoted proliferation of prostate cancer cells. We conclude that tumor-derived CXCL8 signaling from PTEN-deficient tumor cells increases the sensitivity and responsiveness of CaP cells to stromal chemokines by concurrently upregulating receptor expression in cancer cells and inducing stromal chemokine synthesis. Combined chemokine targeting may be required to inhibit their multi-faceted actions in promoting the invasion and proliferation of aggressive CaP.  相似文献   

17.
Glioblastoma multiforme (GBM) is the most aggressive primary human brain tumor. The relatively high amount of T regulatory lymphocytes present in the tumor, contributes to the establishment of an immunosuppressive microenvironment. Samples of peripheral blood were collected from GBM patients and healthy controls and a purified population of Treg (CD4+/CD25bright) was isolated using flow cytometric cell sorting. Treg migrating capacities toward human glioma cell line conditioned medium were evaluated through an in vitro migration test. Our data show that supernatants collected from GBM cell lines were more attractant to Treg when compared to complete standard medium. The addition of an anti-CCL2 antibody to conditioned medium decreased conditioned medium-depending Treg migration, suggesting that CCL2 (also known as Monocyte Chemoattractant Protein, MCP-1) is implicated in the process. The number of circulating CD4+/μL or Treg/μL was similar in GBM patients and controls. Specific Treg markers (FOXP3; CD127; Helios; GITR; CTLA4; CD95; CCR2, CCR4; CCR7) were screened in peripheral blood and no differences could be detected between the two populations. These data confirm that the tumor microenvironment is attractive to Treg, which tend to migrate toward the tumor region changing the immunological response. Though we provide evidence that CCL2 is implicated in Treg migration, other factors are needed as well to provide such effect.  相似文献   

18.
Immune responses against cancer rely upon leukocyte trafficking patterns that are coordinated by chemokines. CCR5, the receptor for chemotactic chemokines MIP1alpha, MIP1beta, and RANTES (CCL3, CCL4, CCL5), exerts major regulatory effects on CD4(+)- and CD8(+) T cell-mediated immunity. Although CCR5 and its ligands participate in the response to various pathogens, its relevance to tumoral immune control has been debated. Here, we report that CCR5 has a specific, ligand-dependent role in optimizing antitumor responses. In adoptive transfer studies, efficient tumor rejection required CCR5 expression by both CD4(+) and CD8(+) T cells. CCR5 activation in CD4(+) cells resulted in CD40L upregulation, leading to full maturation of antigen-presenting cells and enhanced CD8(+) T-cell crosspriming and tumor infiltration. CCR5 reduced chemical-induced fibrosarcoma incidence and growth, but did not affect the onset or progression of spontaneous breast cancers in tolerogenic Tg(MMTV-neu) mice. However, CCR5 was required for TLR9-mediated reactivation of antineu responses in these mice. Our results indicate that CCR5 boosts T-cell responses to tumors by modulating helper-dependent CD8(+) T-cell activation.  相似文献   

19.
20.
Esophageal squamous cell carcinoma (ESCC) is a very common malignant tumor with poor prognosis in China. Chemokines secreted by tumors are pivotal for the accumulation of CD8+ T lymphocytes within malignant lesions in several types of cancers, but the exact mechanism underlying CD8+ T lymphocyte homing is still unknown in ESCC. In this study, we revealed that, compared with marginal tissues, the expression of both chemokine (C-C motif) ligand 5 (CCL5) and (C-X-C motif) ligand 10 (CXCL10) was upregulated in ESCC tissues. CCL5 expression was positively associated with the overall survival of patients. Meanwhile, RT-PCR data showed that the expression of CCL5 and CXCL10 was positively correlated with the local expressions of the CD8+ T lymphocyte markers (CD8 and Granzyme B) in tumor tissues. Correspondingly, CD8+ T lymphocytes were more frequently CCR5- and CXCR3-positive in tumor than in peripheral blood. Transwell analysis showed both CCL5 and CXCL10 were important for the chemotactic movement of CD8+ T lymphocytes. Our data indicate that CCL5 and CXCL10 serve as the key chemokines to recruit CD8+ T lymphocytes into ESCC tissue and may play a role in patient survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号