首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
3.
Fgfr1 regulates patterning of the pharyngeal region   总被引:3,自引:0,他引:3  
Development of the pharyngeal region depends on the interaction and integration of different cell populations, including surface ectoderm, foregut endoderm, paraxial mesoderm, and neural crest. Mice homozygous for a hypomorphic allele of Fgfr1 have craniofacial defects, some of which appeared to result from a failure in the early development of the second branchial arch. A stream of neural crest cells was found to originate from the rhombomere 4 region and migrate toward the second branchial arch in the mutants. Neural crest cells mostly failed to enter the second arch, however, but accumulated in a region proximal to it. Both rescue of the hypomorphic Fgfr1 allele and inactivation of a conditional Fgfr1 allele specifically in neural crest cells indicated that Fgfr1 regulates the entry of neural crest cells into the second branchial arch non-cell-autonomously. Gene expression in the pharyngeal ectoderm overlying the developing second branchial arch was affected in the hypomorphic Fgfr1 mutants at a stage prior to neural crest entry. Our results indicate that Fgfr1 patterns the pharyngeal region to create a permissive environment for neural crest cell migration.  相似文献   

4.
The development of melanocytes from neural crest‐derived precursors that migrate along the dorsolateral pathway has been attributed to the selection of this route by cells that are fate‐restricted to the melanocyte lineage. Alternatively, melanocytes could arise from nonspecified cells that develop in response to signals encountered while these cells migrate, or at their final destinations. In most animals, the bowel, which is colonized by crest‐derived cells that migrate through the caudal branchial arches, contains no melanocytes; however, the enteric microenvironment does not prevent melanocytes from developing from crest‐derived precursors placed experimentally into the bowel wall. To test the hypothesis that the branchial arches remove the melanogenic potential from the crest‐derived population that colonizes the gut, the Silky fowl (in which the viscera are pigmented) was studied. Sources of crest included Silky fowl and quail vagal and truncal neural folds/tubes, which were cultured or explanted to chorioallantoic membranes alone or together with branchial arches or limb buds from Silky fowl, White Leghorn, or quail embryos. Crest and mesenchyme‐derived cells were distinguished by using the quail nuclear marker. Melanocytes developed from Silky fowl and quail crest‐derived cells. Melanocyte development from both sources was inhibited by quail and White Leghorn branchial arches (and limb buds), but melanocyte development was unaffected by branchial arch (and limb buds) from Silky fowl. These observations suggest that a factor(s) that is normally expressed in the branchial arches, and is lacking in animals with the Silky mutation, prevents cells with a melanogenic potential from colonizing the bowel. Anat Rec 268:16–26, 2002. © 2002 Wiley‐Liss, Inc.  相似文献   

5.
6.
It has been demonstrated that the septation of the outflow tract of the heart is formed by the cardiac neural crest. Ablation of this region of the neural crest prior to its migration from the neural fold results in anomalies of the outflow and inflow tracts of the heart and the aortic arch arteries. The objective of this study was to examine the migration and distribution of these neural crest cells from the pharyngeal arches into the outflow region of the heart during avian embryonic development. Chimeras were constructed in which each region of the premigratory cardiac neural crest from quail embryos was implanted into the corresponding area in chick embryos. The transplantations were done unilaterally on each side and bilaterally. The quail-chick chimeras were sacrificed between Hamburger-Hamilton stages 18 and 25, and the pharyngeal region and outflow tract were examined in serial paraffin sections to determine the distribution pattern of quail cells at each stage. The neural crest cells derived from the presumptive arch 3 and 4 regions of the neuraxis occupied mainly pharyngeal arches 3 and 4 respectively, although minor populations could be seen in pharyngeal arches 2 and 6. The neural crest cells migrating from the presumptive arch 6 region were seen mainly in pharyngeal arch 6, but they also populated pharyngeal arches 3 and 4. Clusters of quail neural crest cells were found in the distal outflow tract at stage 23.  相似文献   

7.
8.
目的 探讨迁移中的细胞视黄酸结合蛋白1(CRABP1)阳性神经嵴细胞、胰岛因子1(ISL-1)、阳性心肌前体细胞与小鼠胚胎心流出道发育的关系.方法 36只胚龄8.5~13d小鼠胚胎心连续石蜡切片,选用抗α-平滑肌肌动蛋白(α-SMA)、抗心肌肌球蛋白重链(MHC)、抗转录因子ISL-1、抗CRABP1和抗磷酸化组蛋白H3(PHH3)抗体,进行免疫组织化学及免疫荧光染色.结果 胚龄8.5~10d,ISL-1阳性心肌前体细胞相继出现在心背系膜、原始咽两侧、头面部、鳃弓核心间充质和心包腔背侧壁间充质,构成心管流出道发育的第二生心区.胚龄11~13d,ISL-1阳性细胞在咽前方聚集,形成特征性锥体形结构,并向升主动脉、肺动脉干及主肺动脉隔延伸.胚龄9d前,神经嵴细胞散在分布于ISL-1阳性细胞之间,流出道远侧端可见少量CRABP1和ISL-1双阳性细胞.胚龄10d,CRABP1阳性神经嵴细胞分布在ISL-1阳性鳃弓核心间充质周围.随着发育,弓动脉等处的神经嵴细胞逐渐失去CRABP1表达,开始表达α-SMA.结论 ISL-1阳性第二生心区是动态结构,胚龄8.5~10d时,在神经嵴细胞配合下,向心管动脉端添加心肌细胞;胚龄11d后,开始向平滑肌方向分化,参与升主动脉、肺动脉干和主肺动脉隔的发育.  相似文献   

9.
10.
目的 探讨小鼠胚胎心神经嵴细胞的形成、分布模式及其在心血管系统发育过程中的作用。方法 选用抗细胞视黄酸结合蛋白1(CRABP1)、抗α-平滑肌肌动蛋白(α-SMA)、抗心肌肌球蛋白重链(MHC)、抗胰岛因子1(Isl-1)抗体,对45只胚龄8~12d小鼠胚胎连续切片进行免疫
组织化学染色。结果 胚龄8d,CRABP1在神经褶的外胚层未见阳性表达。胚龄8.5~9d,在心管与鳃弓水平,神经褶开始出现CRABP1阳性细胞,且有部分细胞从神经褶背侧分离进入邻近间充质。胚龄10d,神经管两侧间充质内的CRABP1阳性细胞迁移至鳃弓、弓动脉壁内皮周围以及流出道
心胶质内。胚龄11~12d,弓动脉内皮周围、流出道心内膜垫内CRABP1表达明显下降,但弓动脉管壁α-SMA阳性平滑肌细胞数量增加。主肺动脉隔及其分隔形成的升主动脉和肺动脉干管壁内均可见Isl-1阳性细胞,但未见CRABP1表达。结论 小鼠胚胎CRABP1阳性神经嵴细胞形成的时间窗
限定在胚龄8.5~9d。胚龄10d后,CRABP1阳性神经嵴细胞经过迁移,参与弓动脉中膜平滑肌和流出道心内膜垫的形成。CRABP1不能用于标记迁移后的神经嵴细胞。  相似文献   

11.
The cephalic neural crest produces streams of migrating cells that populate pharyngeal arches and a more rostral, premandibular domain, to give rise to an extensive ectomesenchyme in the embryonic vertebrate head. The crest cells forming the trigeminal stream are the major source of the craniofacial skeleton; however, there is no clear distinction between the mandibular arch and the premandibular domain in this ectomesenchyme. The question regarding the evolution of the gnathostome jaw is, in part, a question about the differentiation of the mandibular arch, the rostralmost component of the pharynx, and in part a question about the developmental fate of the premandibular domain. We address the developmental definition of the mandibular arch in connection with the developmental origin of the trabeculae, paired cartilaginous elements generally believed to develop in the premandibular domain, and also of enigmatic cartilaginous elements called polar cartilages. Based on comparative embryology, we propose that the mandibular arch ectomesenchyme in gnathostomes can be defined as a Dlx1-positive domain, and that the polar cartilages, which develop from the Dlx1-negative premandibular ectomesenchyme, would represent merely posterior parts of the trabeculae. We also show, in the lamprey embryo, early migration of mandibular arch mesenchyme into the premandibular domain, and propose an updated version of the heterotopy theory on the origin of the jaw.  相似文献   

12.
13.
Regulation and function of Dlx3 in vertebrate development.   总被引:1,自引:0,他引:1  
  相似文献   

14.
15.
Genetic disruption of endothelin (ET) 1, endothelin-converting enzyme (ECE) 1, and endothelin receptor A (ET(A)) in "knockout" or mutant mouse models result in defects in branchial arch derived craniofacial tissues and in cardiac outflow and great vessel structures. Interestingly, certain types of human congenital cardiovascular malformations such as Catch 22 syndrome and type B interruption of the aortic arch strongly resemble defects seen in knockout animal models. To better address the exact involvement of the ET system in heart formation we explored the spatiotemporal pattern of expression of the components of the ET system during critical phases of cardiogenesis in the human embryo (3-6 weeks of development; Carnegie stages 10-17) by in situ hybridization. We detected high ET-1 mRNA expression in endocardial cells lining the heart outflow tract in the region where the future aortic valves will form. No hybridization signal corresponding to pre-pro-ET-3 was observed in the heart. At the same location, the underlying myocytes express ET(A) mRNA. Whereas a functional role of ET in the valve formation can be proposed because of the simultaneous presence of all the components of the endothelin system (ET-1/ECE-1/ET(A)), this seems not to be the case for the formation of the ventricular septum where endocardial cells do not express ET-1, and only a weak ET(A) hybridization signal was detected in the surrounding myocardium. An abnormal hemodynamism indirectly due to valve malformation may be the indirect cause of this septal defect. The results of this study suggest an important role for the ET system in the formation of certain anatomical structures of the developing human heart.  相似文献   

16.
The cranial neural crest (CNC) is a transient cell population that originates at the crest of the neural fold and gives rise to multiple cell types during craniofacial development. Traditionally, researchers have used tissue explants, such as the neural tube, to obtain primary neural crest cells for their studies. However, this approach has inevitably resulted in simultaneous isolation of neural and non-neural crest cells as both of these cells migrate away from tissue explants. Using the Wnt1-Cre/R26R mouse model, we have obtained a pure population of neural crest cells and established a primary CNC cell culture system in which the cell culture medium best supports the proliferation of E10.5 first branchial arch CNC cells and maintains these cells in their undifferentiated state. Differentiation of CNC cells can be initiated by switching to a differentiation medium. In this model, cultured CNC cells can give rise to neurons, glial cells, osteoblasts, and other cell types, faithfully mimicking the differentiation process of the post-migratory CNC cells in vivo. Taken together, our study shows that the Wnt1-Cre/R26R mouse first branchial arch provides an excellent model for obtaining post-migratory neural crest cells free of any mesodermal contaminants. The cultured neural crest cells are under sustained proliferative, undifferentiated, or lineage-enhanced conditions, hence, serving as a tool for the investigation of the regulatory mechanism of CNC cell fate determination in normal and abnormal craniofacial development.  相似文献   

17.
The development of melanocytes from neural crest-derived precursors that migrate along the dorsolateral pathway has been attributed to the selection of this route by cells that are fate-restricted to the melanocyte lineage. Alternatively, melanocytes could arise from nonspecified cells that develop in response to signals encountered while these cells migrate, or at their final destinations. In most animals, the bowel, which is colonized by crest-derived cells that migrate through the caudal branchial arches, contains no melanocytes; however, the enteric microenvironment does not prevent melanocytes from developing from crest-derived precursors placed experimentally into the bowel wall. To test the hypothesis that the branchial arches remove the melanogenic potential from the crest-derived population that colonizes the gut, the Silky fowl (in which the viscera are pigmented) was studied. Sources of crest included Silky fowl and quail vagal and truncal neural folds/tubes, which were cultured or explanted to chorioallantoic membranes alone or together with branchial arches or limb buds from Silky fowl, White Leghorn, or quail embryos. Crest and mesenchyme-derived cells were distinguished by using the quail nuclear marker. Melanocytes developed from Silky fowl and quail crest-derived cells. Melanocyte development from both sources was inhibited by quail and White Leghorn branchial arches (and limb buds), but melanocyte development was unaffected by branchial arch (and limb buds) from Silky fowl. These observations suggest that a factor(s) that is normally expressed in the branchial arches, and is lacking in animals with the Silky mutation, prevents cells with a melanogenic potential from colonizing the bowel.  相似文献   

18.
The role of cranial neural crest cells in the formation of visceral arch musculature was investigated in the Mexican axolotl, Ambystoma mexicanum. DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine, perchlorate) labeling and green fluorescent protein (GFP) mRNA injections combined with unilateral transplantations of neural folds showed that neural crest cells contribute to the connective tissues but not the myofibers of developing visceral arch muscles in the mandibular, hyoid, and branchial arches. Extirpations of individual cranial neural crest streams demonstrated that neural crest cells are necessary for correct morphogenesis of visceral arch muscles. These do, however, initially develop in their proper positions also in the absence of cranial neural crest. Visceral arch muscles forming in the absence of neural crest cells start to differentiate at their origins but fail to extend toward their insertions and may have a frayed appearance. Our data indicate that visceral arch muscle positioning is controlled by factors that do not have a neural crest origin. We suggest that the cranial neural crest-derived connective tissues provide directional guidance important for the proper extension of the cranial muscles and the subsequent attachment to the insertion on the correct cartilage. In a comparative context, our data from the Mexican axolotl support the view that the cranial neural crest plays a fundamental role in the development of not only the skeleton of the vertebrate head but also in the morphogenesis of the cranial muscles and that this might be a primitive feature of cranial development in vertebrates.  相似文献   

19.
Facial abnormalities in human SHH mutants have implicated the Hedgehog (Hh) pathway in craniofacial development, but early defects in mouse Shh mutants have precluded the experimental analysis of this phenotype. Here, we removed Hh-responsiveness specifically in neural crest cells (NCCs), the multipotent cell type that gives rise to much of the skeleton and connective tissue of the head. In these mutants, many of the NCC-derived skeletal and nonskeletal components are missing, but the NCC-derived neuronal cell types are unaffected. Although the initial formation of branchial arches (BAs) is normal, expression of several Fox genes, specific targets of Hh signaling in cranial NCCs, is lost in the mutant. The spatially restricted expression of Fox genes suggests that they may play an important role in BA patterning. Removing Hh signaling in NCCs also leads to increased apoptosis and decreased cell proliferation in the BAs, which results in facial truncation that is evident by embryonic day 11.5 (E11.5). Together, our results demonstrate that Hh signaling in NCCs is essential for normal patterning and growth of the face. Further, our analysis of Shh-Fox gene regulatory interactions leads us to propose that Fox genes mediate the action of Shh in facial development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号