首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
近年来,随着医学影像技术的快速发展,医学图像分析步入大数据时代,如何从海量的医学图像数据中挖掘出有用信息,对医学图像识别带来巨大的挑战。深度学习是机器学习的一个新领域,传统的机器学习方法不能有效地挖掘到医学图像中蕴含的丰富信息,而深度学习通过模拟人脑建立分层模型,具有强大的自动特征提取、复杂模型构建以及高效的特征表达能力,更重要的是深度学习方法能从像素级的原始数据中逐级提取从底层到高层的特征,这为解决医学图像识别面临的新问题提供了新思路。首先阐述深度学习方法,列举深度学习方法的三种常见的实现模型,并介绍深度学习的训练过程;随后总结了深度学习方法在疾病检测与分类和病变识别两方面的应用情况,以及深度学习应用在医学图像识别中的两个共性问题;最后对深度学习在医学图像识别中存在的问题进行分析及展望.  相似文献   

2.
由于医学图像数据爆炸式增长,传统依靠医生人工对医学图像进行分析诊断,不仅工作效率低下,工作量大,还容易误诊、漏诊。随着人工智能(artificial intelligence,AI)技术的发展与应用,机器学习(machine learning,ML),尤其是深度学习(deep learning,DL)在医学图像分析领域发挥着越来越重要的作用。本文对DL在医学图像自动分割和分类识别中的研究进展进行综述,为DL在解决医学图像分析诊断方面提供有益参考。  相似文献   

3.
随着深度学习的出现,图像处理不再局限于人工提取特征,转而对图像进行端到端的预测,实现了人工智能在图像处理领域的又一历史性飞越。作为人工智能医疗领域的热点应用,内镜图像异常检测能够准确快速地筛选整个消化道的异常,为医生提供诊断帮助。该文围绕消化道图像最为常见的息肉、出血、溃疡等异常,对其智能诊断方法展开研究,并探讨机器学习在消化内镜异常检测的应用现状,最后展望了未来消化道内窥镜病灶智能诊断的研究方向。  相似文献   

4.
医学图像语义概念识别是医学图像知识表示的重要技术环节。研究医学图像语义概念识别方法,有助于机器理解和学习医学图像中的潜在医学知识,在影像辅助诊断和智能读片等应用中发挥重要作用。将医学图像的高频概念识别问题转化为多标签分类任务,利用基于卷积神经网络的深度迁移学习方法,识别有限数量的高频医学概念;同时利用基于图像检索的主题建模方法,从给定医学图像的相似图像中提取语义相关概念。国际跨语言图像检索论坛ImageCLEF于2018年5月组织ImageCLEFcaption 2018评测,其子任务“概念检测”的目标是给定222 314张训练图片和9 938张测试图片,识别111 156个语义概念。上述两种方法的实验结果已被提交。实验结果表明,利用基于卷积神经网络的深度迁移学习方法识别医学图像高频概念,F1值为0.092 8,在提交团队中排名第二;基于图像检索的主题模型可召回部分低频相关概念,F1值为0.090 7,然而其性能依赖于图像检索结果的质量。基于卷积神经网络的深度迁移学习方法识别医学图像高频概念的鲁棒性优于基于图像检索方法的鲁棒性,但在大规模开放语义概念的识别技术研究上仍需进一步完善。  相似文献   

5.
医学图像融合方法可以将有用的信息整合到一张图上,提高单张图像的信息量。对多模态医学图像进行融合时,如何对图像进行有效的变换,提取到不同图像中独有的特征,并施以适当的融合规则是医学图像融合领域研究的重点。近年随着深度学习的快速发展,深度学习被广泛应用于医学图像领域,代替传统方法中的一些人工操作,并在图像表示、图像特征提取以及融合规则的选择方面显示出独特优势。本文针对基于深度学习的医学图像融合进展予以探讨,介绍了卷积神经网络、卷积稀疏表示、深度自编码和深度信念网络这些常用于医学图像融合的框架,对一些应用于融合过程不同步骤的深度学习方法进行分析和总结,最后,分析了当前基于深度学习的融合方法的不足并展望了未来的研究方向。  相似文献   

6.
Deep learning is an important new area of machine learning which encompasses a wide range of neural network architectures designed to complete various tasks. In the medical imaging domain, example tasks include organ segmentation, lesion detection, and tumor classification. The most popular network architecture for deep learning for images is the convolutional neural network (CNN). Whereas traditional machine learning requires determination and calculation of features from which the algorithm learns, deep learning approaches learn the important features as well as the proper weighting of those features to make predictions for new data. In this paper, we will describe some of the libraries and tools that are available to aid in the construction and efficient execution of deep learning as applied to medical images.  相似文献   

7.
磁共振(MR)成像是当前应用于临床医学诊断的重要医学成像手段之一。如何缩短扫描时间进行快速成像一直以来都是MR成像领域中的热门研究问题。近年来,随着深度学习的兴起和快速发展,深度学习被广泛应用于医学图像处理领域中。目前基于深度学习的MR成像方法作为MR成像的新兴方向,相应的研究已取得了一系列进展。本文对几种常见的基于深度学习的MR成像方法进行归纳和简要分析,并对其研究前景进行了展望。  相似文献   

8.
深度学习是基于多层神经网络计算模型发现数据内复杂特征的一种深度网络,较多应用于医学图像的分割与分类中,在各类脑胶质瘤的研究中也有许多成果。本文就深度学习在脑胶质瘤的准确分割定位、组织遗传学特征预测及预后评估等方面展开综述,总结深度学习在脑胶质瘤影像图像分割与分类的研究进展,从而为胶质瘤患者的精准诊断、个体化治疗提供新思路。  相似文献   

9.

Artificial or augmented intelligence, machine learning, and deep learning will be an increasingly important part of clinical practice for the next generation of radiologists. It is therefore critical that radiology residents develop a practical understanding of deep learning in medical imaging. Certain aspects of deep learning are not intuitive and may be better understood through hands-on experience; however, the technical requirements for setting up a programming and computing environment for deep learning can pose a high barrier to entry for individuals with limited experience in computer programming and limited access to GPU-accelerated computing. To address these concerns, we implemented an introductory module for deep learning in medical imaging within a self-contained, web-hosted development environment. Our initial experience established the feasibility of guiding radiology trainees through the module within a 45-min period typical of educational conferences.

  相似文献   

10.
基于深度学习网络的医学核磁共振(MR)图像超分辨重建实验研究,提出并构建一个大规模的高质量用于MR图像超分辨的数据集,涵盖了头颅、膝盖、乳房以及头颈4个部位。通过数据质量筛选和不同低分辨率图像生成方式,在原始图像的高分辨率基础下,以×2、×3、×4的下采样尺度,原始MRI图像形成3种不同尺度下的MR图像数据集,同时给出不同部位超分辨难易程度分析。采用7个在自然图像的超分辨率领域中取得最好效果的深度学习网络,将它们迁移到MR图像中,学习低分辨率MR图像到高低分辨MR图像的映射关系,并对比分析这些深度学习网络在自然图像的超分辨效果。通过实验可以看出,深度学习网络在MR图像超分辨取得了比传统算法更好的效果,部分结果不亚于自然图像;不同部位的超分辨效果差异较大,难以以一个深度学习网络使不同部位均具有更好的超分辨效果。深度学习网络在MR图像超分辨将具有重要的应用价值和理论意义。  相似文献   

11.
医学图像增强的目的是通过图像增强的方法得到优化的医学图像,以帮助医生从图像中获得更多细节信息,进一步做出更加客观的诊断及制定更全面的治疗方案,在一定程度上可提高临床诊断的准确性。本文首先归纳总结当前应用较为广泛的医学图像增强处理技术,包括传统的图像增强方法、改进的图像增强方法、融合的图像增强方法以及深度学习方法,然后对这些方法的原理、优缺点加以分析和总结。最后指出无论是传统方法还是现代图像增强方法,都应在最大限度保留其优势的情况下进行融合,取长补短,注重简单化和时效性,使提高图像的视觉质量同时更具有实用性。  相似文献   

12.
Quantitative analysis of brain MRI is routine for many neurological diseases and conditions and relies on accurate segmentation of structures of interest. Deep learning-based segmentation approaches for brain MRI are gaining interest due to their self-learning and generalization ability over large amounts of data. As the deep learning architectures are becoming more mature, they gradually outperform previous state-of-the-art classical machine learning algorithms. This review aims to provide an overview of current deep learning-based segmentation approaches for quantitative brain MRI. First we review the current deep learning architectures used for segmentation of anatomical brain structures and brain lesions. Next, the performance, speed, and properties of deep learning approaches are summarized and discussed. Finally, we provide a critical assessment of the current state and identify likely future developments and trends.  相似文献   

13.
At the first annual Conference on Machine Intelligence in Medical Imaging (C-MIMI), held in September 2016, a conference session on medical image data and datasets for machine learning identified multiple issues. The common theme from attendees was that everyone participating in medical image evaluation with machine learning is data starved. There is an urgent need to find better ways to collect, annotate, and reuse medical imaging data. Unique domain issues with medical image datasets require further study, development, and dissemination of best practices and standards, and a coordinated effort among medical imaging domain experts, medical imaging informaticists, government and industry data scientists, and interested commercial, academic, and government entities. High-level attributes of reusable medical image datasets suitable to train, test, validate, verify, and regulate ML products should be better described. NIH and other government agencies should promote and, where applicable, enforce, access to medical image datasets. We should improve communication among medical imaging domain experts, medical imaging informaticists, academic clinical and basic science researchers, government and industry data scientists, and interested commercial entities.  相似文献   

14.

The advent of deep learning has engendered renewed and rapidly growing interest in artificial intelligence (AI) in radiology to analyze images, manipulate textual reports, and plan interventions. Applications of deep learning and other AI approaches must be guided by sound medical knowledge to assure that they are developed successfully and that they address important problems in biomedical research or patient care. To date, AI has been applied to a limited number of real-world radiology applications. As AI systems become more pervasive and are applied more broadly, they will benefit from medical knowledge on a larger scale, such as that available through computer-based approaches. A key approach to represent computer-based knowledge in a particular domain is an ontology. As defined in informatics, an ontology defines a domain’s terms through their relationships with other terms in the ontology. Those relationships, then, define the terms’ semantics, or “meaning.” Biomedical ontologies commonly define the relationships between terms and more general terms, and can express causal, part-whole, and anatomic relationships. Ontologies express knowledge in a form that is both human-readable and machine-computable. Some ontologies, such as RSNA’s RadLex radiology lexicon, have been applied to applications in clinical practice and research, and may be familiar to many radiologists. This article describes how ontologies can support research and guide emerging applications of AI in radiology, including natural language processing, image–based machine learning, radiomics, and planning.

  相似文献   

15.
主要阐述超声图像血管分割算法及其评价指标。基于特征提取的经典图像处理算法不能摆脱对人工的依赖,削弱了分割算法的泛化能力;但对于缺乏大样本超声血管图像的研究场景下,充分利用传统且成熟的技术方法却是一种可行的研究办法。基于机器学习的算法提高了分割算法的泛化能力,改善了传统方法的短板;但深度学习技术对数据的依赖性强、可解释性差,其算法的有效性、稳定性还需深入研究。血管分割评价算法的研究极其重要,研究适合超声图像血管分割的客观评价方法也是重要课题之一。总之,传统方法仍然是解决超声图像血管分割的有效方法,传统方法与深度学习技术的紧密结合是未来的发展趋势。  相似文献   

16.
In this paper, we propose a framework based deep learning for medical image translation using paired and unpaired training data. Initially, a deep neural network with an encoder-decoder structure is proposed for imageto-image translation using paired training data. A multi-scale context aggregation approach is then used to extract various features from different levels of encoding, which are used during the corresponding network decoding stage. At this point, we further propose an edge-guided ge...  相似文献   

17.
2D/3D配准在临床诊断和手术导航规划中有着广泛的应用,可解决医学图像领域中不同维度图像存在信息缺失的问题,能辅助医生在术中精准定位患者的病灶。常规的2D/3D配准方法主要依赖于图像的灰度进行配准,但非常耗时,不利于临床实时性的需求,并且配准过程中容易陷入局部最优值。提出用深度学习的方法来解决2D/3D医学图像配准问题。采用一个基于深度学习的卷积神经网络,通过网络对数字影像重建技术(DRR)进行训练并自动学习图像特征,预测X光图像所对应的参数,从而实现配准。以人体骨盆的模型骨为实验对象,根据骨盆的CT数据生成36000张DRR图像作为训练集,同时通过C臂采集模型骨的50张X光图像作为验证。结果显示,深度学习算法在相关系数、归一化互信息、欧式距离3个精度评价指标上的测试值分别为0.82±0.07、0.32±0.03、61.56±10.91,而常规2D/3D算法对应的测试值分别为0.79±0.07、0.29±0.03、37.92±7.24,说明深度学习算法的配准精度优于常规2D/3D算法的配准精度,且不存在陷入局部最优值的问题。同时,深度学习的配准时间约为0.03s,远低于常规2D/3D配准的时间,可满足临床对于实时配准的需求,未来将进一步开展临床数据的2D/3D配准研究。  相似文献   

18.
超声诊断是产科临床上应用最广泛的医学成像方式,与之相应的自动医学图像处理是提高诊断准确率与客观性的重要手段.本文首先介绍超声医学图像处理方法的原理及特点,讨论了若干技术及其涉及的算法,包括图像滤波、图像分割及机器学习技术等,浅析了设计可靠的超声医学图像处理方法的要点.其次,以产前超声医学为背景介绍了这些技术的应用,主要包括标准切面自动提取和生物学参数自动测量.最后,讨论了产前超声智能化诊断的发展方向.  相似文献   

19.
医学图像分割可以为临床诊疗和病理学研究提供可靠的依据,并能辅助医生对病人的病情做出准确的判断。基于深度学习的分割网络的出现解决了传统自动分割方法鲁棒性不强、准确率低等问题。U-Net凭借其出色的性能在众多的分割网络中脱颖而出,研究者以U-Net为基础相继提出了多种改进变体。以U-Net网络及其变体为主线,首先详细介绍U-Net的网络结构及常用改进方法;然后根据分割对象的不同,将U-Net变体网络进一步划分为泛用型分割网络及特定型分割网络,并就其在医学图像分割中的研究进展进行论述;最后,分析了目前研究中工作尚存在的难点与问题,并对今后的发展方向进行展望。  相似文献   

20.
Limited availability of medical imaging datasets is a vital limitation when using “data hungry” deep learning to gain performance improvements. Dealing with the issue, transfer learning has become a de facto standard, where a pre-trained convolution neural network (CNN), typically on natural images (e.g., ImageNet), is finetuned on medical images. Meanwhile, pre-trained transformers, which are self-attention-based models, have become de facto standard in natural language processing (NLP) and state of the art in image classification due to their powerful transfer learning abilities. Inspired by the success of transformers in NLP and image classification, large-scale transformers (such as vision transformer) are trained on natural images. Based on these recent developments, this research aims to explore the efficacy of pre-trained natural image transformers for medical images. Specifically, we analyze pre-trained vision transformer on CheXpert and pediatric pneumonia dataset. We use CNN standard models including VGGNet and ResNet as baseline models. By examining the acquired representations and results, we discover that transfer learning from the pre-trained vision transformer shows improved results as compared to pre-trained CNN which demonstrates a greater transfer ability of the transformers in medical imaging.Supplementary InformationThe online version contains supplementary material available at 10.1007/s10278-022-00666-z.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号