首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Information technology (IT), long taken for granted in commercial settings, is now being utilized for healthcare applications. Medical imaging has lagged comparatively due to the extremely vast data content of each frame; thus, the requirement for expensive high-end components. Further, IT in radiology has evolved from two distinctly separate camps—information systems, known as RIS (radiology information systems) and PACS (picture archiving and communications systems). Both RIS and PACS applications have migrated to the PC environment, enabling cost-effective implementation, but from two backgrounds: RIS from vendors using conventional information systems platforms and products, and PACS from radiographic film and modality vendors. The radiology department at Texas Tech University has assembled a seamlessly integrated, enterprise-wide RIS/PACS/teleradiology intranet. The design criteria include user-friendliness, flexibility to respond to changing needs, and open modular architecture to assure interoperability, cost-effectiveness, and future-proofing of investment. Since no single venor could provide an integrated system meeting our specifications, we decided to assume the burden of constructing our own system. As the system integrator, we embrace open architecture, thus enabling the incorporation of industry-standard-compliant, COTS (commercially off the shelf) products as modules. Microsoft Windows NT operating system, Visual C++ programming language, TCP/IP (transmission control protocol/internetworking protocol), relational SQL (structured query language) database, ODBC (open database connectivity), HL-7 (health level seven) and DICOM (digital imaging and communications in medicine) interfaces are utilized. The usage of COTS components reduces the cost to very affordable levels. With this approach, any module in our system can be replaced when outmoded, without affecting other modules in our system, making it truly future-proof. Construction and evolution of our system (TECHRAD) is reviewed.  相似文献   

2.
The purpose of this literature review is to present the concepts surrounding the issue of communication between imaging systems and information systems in radiology and the literature about them. Picture archiving and communication systems (PACS) were developed to combine viewing of modality images, archiving, and distribution of images. When PACS is integrated/interfaced with radiology information systems (RIS) or hospital information systems (HIS), it can merge patient demographics, medical records, and images. To address several issues surrounding communication between PACS and HIS/RIS and to make interface development easier and faster, various organizations have developed standards for the formatting and transfer of clinical data. Additional work continues to better handle these issues. Communication protocol Health Level 7 (HL7) is a standard application protocol used for electronic text data exchange in health care by most HIS/RIS. The imaging communication protocol for PACS is the Digital Imaging and Communications in Medicine (DICOM) standard specification protocol that describes the means of formatting and exchanging images and associated information.  相似文献   

3.
DICOM Modality Worklist: An essential component in a PACS environment   总被引:1,自引:0,他引:1  
The development and acceptance of the digital communication in medicine (DICOM) standard has become a basic requirement for the implementation of electronic imaging in radiology. DICOM is now evolving to provide a standard for electronic communication between radiology and other parts of the hospital enterprise. In a completely integrated filmless radiology department, there are 3 core computer systems, the picture archiving and communication system (PACS), the hospital or radiology information system (HIS, RIS), and the acquisition modality. Ideally, each would have bidirectional communication with the other 2 systems. At a minimum, a PACS must be able to receive and acknowledge receipt of image and demographic data from the modalities. Similarly, the modalities must be able to send images and demographic data to the PACS. Now that basic DICOM communication protocols for query or retrieval, storage, and print classes have become established through both conformance statements and intervendor testing, there has been an increase in interest in enhancing the functionality of communication between the 3 computers. Historically, demographic data passed to the PACS have been generated manually at the modality despite the existence of the same data on the HIS or RIS. In more current sophisticated implementations, acquisition modalities are able to receive patient and study-related data from the HIS or RIS. DICOM Modality Worklist is the missing electronic link that transfers this critical information between the acquisition modalities and the HIS or RIS. This report describes the concepts, issues, and impact of DICOM Modality Worklist implementation in a PACS environment.  相似文献   

4.
The benefits of an integrated picture archiving and communication system/radiology information system (PACS/RIS) archive built with open source tools and methods are 2-fold. Open source permits an inexpensive development model where interfaces can be updated as needed, and the code is peer reviewed by many eyes (analogous to the scientific model). Integration of PACS/RIS functionality reduces the risk of inconsistent data by reducing interfaces among databases that contain largely redundant information. Also, wide adoption would promote standard data mining tools—reducing user needs to learn multiple methods to perform the same task. A model has been constructed capable of accepting HL7 orders, performing examination and resource scheduling, providing digital imaging and communications in medicine (DICOM) worklist information to modalities, archiving studies, and supporting DICOM query/retrieve from third party viewing software. The multitiered architecture uses a single database communicating via an ODBC bridge to a Linux server with HL7, DICOM, and HTTP connections. Human interaction is supported via a web browser, whereas automated informatics services communicate over the HL7 and DICOM links. The system is still under development, but the primary database schema is complete as well as key pieces of the web user interface. Additional work is needed on the DICOM/HL7 interface broker and completion of the base DICOM service classes.  相似文献   

5.
In this report we present an integrated picture archiving and communication system (PACS)-radiology information system (RIS) which runs as part of the daily routine in the Department of Radiology at the University of Graz. Although the PACS and the RIS have been developed independently, the two systems are interfaced to ensure a unified and consistent long-term archive. The configuration connects four computer tomography scanners (one of them situated at a distance of 1 km), a magnetic resonance imaging scanner, a digital subtraction angiography unit, an evaluation console, a diagnostic console, an image display console, an archive with two optical disk drives, and several RIS terminals. The configuration allows the routine archiving of all examinations on optical disks independent of reporting. The management of the optical disks is performed by the RIS. Images can be selected for retrieval via the RIS by using patient identification or medical criteria. A special software process (PACS-MONITOR) enables the user to survey and manage image communication, archiving, and retrieval as well as to get information about the status of the system at any time and handle the different procedures in the PACS. The system is active 24 hours a day. To make the PACS operation as independent as possible from the permanent presence of a system manager (electronic data processing expert), a rule-based expert system (OPERAS; OPERating ASsistant) is in use to localize and eliminate malfunctions that occur during routine work. The PACS-RIS reduces labor and speeds access to images within radiology and clinical departments.  相似文献   

6.
In radiology departments with multiple geographically separated reporting areas, locating radiologists can be challenging. We have developed an in-house solution to minimise the time spent looking for radiologists utilising near real-time data stored with our radiology information system (RIS). An auto updating Extensible Markup Language (XML) data feed from our RIS provider provides information about users logged into the RIS. It includes user names, their contact details and specialty interests, their location within the department, and a time stamp of last recorded dictation or report verification. The information is then displayed on our internal intranet and on a self-refreshing screen in our main department corridor. In order to estimate time savings made through the tools creation, usage statistics were calculated and combined with assessments of time taken to find a named radiologist prior to the tools implementation. Over the month of April 2009, there were 2,798 hits on the locator page. Radiologists were responsible for 1,248 hits and radiology administration staff for 1,550 hits. The average time for using the tool was calculated at 5 s. Reviewing a roster and calling/paging a radiologist took on average 30 s, and a full walk around of the department took 195 s. Through utilisation of near real-time data available within our RIS system and display of these data in an accessible form, we have developed a tool that has realised savings of up to 16 h of radiologist reporting time per week.  相似文献   

7.
Monitoring complications and diagnostic yield for image-guided procedures is an important component of maintaining high quality patient care promoted by professional societies in radiology and accreditation organizations such as the American College of Radiology (ACR) and Joint Commission. These outcome metrics can be used as part of a comprehensive quality assurance/quality improvement program to reduce variation in clinical practice, provide opportunities to engage in practice quality improvement, and contribute to developing national benchmarks and standards. The purpose of this article is to describe the development and successful implementation of an automated web-based software application to monitor procedural outcomes for US- and CT-guided procedures in an academic radiology department. The open source tools PHP: Hypertext Preprocessor (PHP) and MySQL were used to extract relevant procedural information from the Radiology Information System (RIS), auto-populate the procedure log database, and develop a user interface that generates real-time reports of complication rates and diagnostic yield by site and by operator. Utilizing structured radiology report templates resulted in significantly improved accuracy of information auto-populated from radiology reports, as well as greater compliance with manual data entry. An automated web-based procedure log database is an effective tool to reliably track complication rates and diagnostic yield for US- and CT-guided procedures performed in a radiology department.  相似文献   

8.
Traditionally, radiology has been conceived as a support department providing patient scanning services to the other clinical departments in a hospital. However, recent advancements in networking technology and related information systems such as picture archiving and communication system (PACS) and radiology information system (RIS) provide new opportunities for inventing different types of diagnostic imaging businesses such as teleradiology. In this article, we examined the business processes of currently operating imaging centers and proposed a prototype of an information system that can facilitate their workflows in a more efficient way. The principal component of our proposed system is a report management module built on extensible markup language (XML) technologies that allows much flexibility and convenience for both imaging technicians and radiologists.  相似文献   

9.
The fragmentation of the electronic patient record among hospital information systems (HIS), radiology information systems (RIS), and picture archiving and communication systems (PACS) makes the viewing of the complete medical patient record inconvenient. The purpose of this report is to describe the system architecture, development tools, and implementation issues related to providing transparent access to HIS, RIS, and PACS information. A client-mediator-server architecture was implemented to facilitate the gathering and visualization of electronic medical records from these independent heterogeneous information systems. The architecture features intelligent data access agents, run-time determination of data access strategies, and an active patient cache. The development and management of the agents were facilitated by data integration CASE (computer-assisted software engineering) tools. HIS, RIS, and PACS data access and translation agents were successfully developed. All pathology, radiology, medical, laboratory, admissions, and radiology reports for a patient are available for review from a single integrated workstation interface. A data caching system provides fast access to active patient data. New network architectures are evolving that support the integration of heterogeneous software subsystems. Commercial tools are available to assist in the integration procedure.  相似文献   

10.
There are a number of models for the acquisition of digital image management systems. The specific details for development of a budget for a PACS/RIS acquisition will depend upon the acquisition model - although there are similarities in the overarching principles and general information, particularly concerning the radiology service requirements that will drive budget considerations.While budgeting for PACS/RIS should follow the same principles as budgeting for any new technology, it is important to understand how far the implementation of digital image management systems can reach in a healthcare setting. Accurate identification of those elements of the healthcare service that will be affected by a PACS/RIS implementation is a critical component of successful budget formation and of the success of any business case and subsequent project that relies on those budget estimates.A budget for a PACS/RIS capital acquisition project should contain capital and recurrent elements. The capital is associated with the acquisition of the system in a purchase model and capital budget may also be required for upgrade - depending upon a facility's financial management processes.The recurrent (or operational) cost component for the PACS/RIS is associated with maintaining the system(s) in a sustainable operational state.It is also important to consider the service efficiencies, cost savings and service quality improvements that PACS/RIS can generate and include these factors into the economic analysis of any proposal for a PACS/RIS project.  相似文献   

11.
This article highlights the experience of a single center institution undergoing a change in radiology information system (RIS) software platforms, transitioning to an electronic medical record-RIS driven workflow. Ten planning and execution topics with recommendations are presented in checklist form from the radiology department perspective. The build process of creating a site specific RIS takes many months, beginning with the organization of a steering committee. On Go-Live, several checklist items are offered to help streamline the troubleshooting process and improve communication throughout the radiology department. The groundwork of the group effort in creating the infrastructure of the build process can continue to be useful beyond Go-Live, as RIS features are continually optimized.  相似文献   

12.
The objectives are (1) to introduce a new concept of making a quantitative computed tomography (QCT) reporting system by using optical character recognition (OCR) and macro program and (2) to illustrate the practical usages of the QCT reporting system in radiology reading environment. This reporting system was created as a development tool by using an open-source OCR software and an open-source macro program. The main module was designed for OCR to report QCT images in radiology reading process. The principal processes are as follows: (1) to save a QCT report as a graphic file, (2) to recognize the characters from an image as a text, (3) to extract the T scores from the text, (4) to perform error correction, (5) to reformat the values into QCT radiology reporting template, and (6) to paste the reports into the electronic medical record (EMR) or picture archiving and communicating system (PACS). The accuracy test of OCR was performed on randomly selected QCTs. QCT as a radiology reporting tool successfully acted as OCR of QCT. The diagnosis of normal, osteopenia, or osteoporosis is also determined. Error correction of OCR is done with AutoHotkey-coded module. The results of T scores of femoral neck and lumbar vertebrae had an accuracy of 100 and 95.4 %, respectively. A convenient QCT reporting system could be established by utilizing open-source OCR software and open-source macro program. This method can be easily adapted for other QCT applications and PACS/EMR.  相似文献   

13.
The development of standard terminologies such as RadLex is becoming important in radiology applications, such as structured reporting, teaching file authoring, report indexing, and text mining. The development and maintenance of these terminologies are challenging, however, because there are few specialized tools to help developers to browse, visualize, and edit large taxonomies. Protégé (http://protege.stanford.edu) is an open-source tool that allows developers to create and to manage terminologies and ontologies. It is more than a terminology-editing tool, as it also provides a platform for developers to use the terminologies in end-user applications. There are more than 70,000 registered users of Protégé who are using the system to manage terminologies and ontologies in many different domains. The RadLex project has recently adopted Protégé for managing its radiology terminology. Protégé provides several features particularly useful to managing radiology terminologies: an intuitive graphical user interface for navigating large taxonomies, visualization components for viewing complex term relationships, and a programming interface so developers can create terminology-driven radiology applications. In addition, Protégé has an extensible plug-in architecture, and its large user community has contributed a rich library of components and extensions that provide much additional useful functionalities. In this report, we describe Protégé’s features and its particular advantages in the radiology domain in the creation, maintenance, and use of radiology terminology.  相似文献   

14.
Information relevant to radiological applications is commonly managed by several autonomous medical information systems including hospital information systems (HIS), radiological information systems (RIS), and picture archiving and communications systems (PACS). In this report, we explain the need to coordinate these systems and to provide some framework in which they can exchange information. In the first half of this report, we describe the integration of a PACS system into a hospital operation. Next, we present the interfacing methods between the HIS and the RIS, and between the RIS and the PACS. Two methods are further detailed for the communication between the RIS and the PACS (1) the triggered database to database transfer, and (2) the query protocol. The implementation of the first method successfully allows RIS reports, procedure and patient demographic information to be displayed at the request of the user along with the associated images at a PACS workstation. The query protocol allows a PACS to dynamically query RIS information. It will be eventually integrated into the design of a scientific multimedia distributed medical database system built on top of the HIS, the RIS, and the PACS.  相似文献   

15.
Integration of a Radiology Information System (RIS) and a Picture Archiving and Communication System (PACS) reduces the risk of inconsistent data by reducing interfaces among databases that contain largely redundant information. Furthermore, RIS/PACS integration is the basis for a filmless radiology facility. Web technology is based on international standards and supplies the main features for the RIS/PACS integration task based on a client/server model. This article presents a web-based system developed to manage and distribute images and diagnostic information within the University Hospital of Ribeirão Preto (HCRP) at the University of São Paulo.  相似文献   

16.
17.
BackgroundRadiology processes are commonly supported by Radiology Information System (RIS), Picture Archiving and Communication System (PACS) and other software for radiology. However, these information technologies can present usability problems that affect the performance of radiologists and physicians, especially considering the complexity of the tasks involved.ObjectivesThe purpose of this study was to extract, classify and analyze qualitatively the usability problems in PACS, RIS and other software for radiology.MethodA systematic review was performed to extract usability problems reported in empirical usability studies in the literature. The usability problems were categorized as violations of Nielsen and Molich’s usability heuristics.ResultsThe qualitative analysis indicated the causes and the effects of the identified usability problems. From the 431 papers initially identified, 10 met the study criteria. The analysis of the papers identified 90 instances of usability problems, classified into categories corresponding to established usability heuristics. The five heuristics with the highest number of instances of usability problems were “Flexibility and efficiency of use”, “Consistency and standards”, “Match between system and the real world”, “Recognition rather than recall” and “Help and documentation”, respectively.ConclusionThese problems can make the interaction time consuming, causing delays in tasks, dissatisfaction, frustration, preventing users from enjoying all the benefits and functionalities of the system, as well as leading to more errors and difficulties in carrying out clinical analyses. Furthermore, the present paper showed a lack of studies performed on systems for radiology, especially usability evaluations using formal methods of evaluation involving the final users.  相似文献   

18.
Installation of a radiology information management system (RIS) is usually justified on the basis of improved departmental efficiency and improved charge capture. However, evaluation of the success of these expected improvements is often difficult. The installation and operation of such a system in a medium-sized tertiary care hospital has permitted the effects of the RIS on the operation of the department to be studied and the improvements in charge capture provided by the system to be quantitatively assessed. As a result of a side-by-side comparison with a conventional check-sheet manual billing system, it is apparent that the RIS reduces the errors inherent in manual systems. Subjectively, it is also apparent that personnel prefer the computerized system to the manual charge sheets.  相似文献   

19.
This paper presents an ethnographically inspired interpretive case study of the Electronic Medical Record (EMR) system at Sankara Nethralaya hospital in India. It presents challenges related to the adoption of the system and methods and strategies that were utilized in order to overcome these challenges and help the system be adopted successfully. One of the more notable challenges at the hospital was a user base that included skeptical users, those lacking computing skills, and that had a history of rejecting designs. Despite these barriers the hospital was able to adopt the EMR system successfully. Notable issues related to the success of the system include the design strategy that was eventually used, and critical technical and social features of the system intended to support skeptical users and those lacking IT skills. The study contributes to overall understanding of the environment at large hospitals in developing countries as it relates to the adoption of EMR systems, and helps inform on methods that can be used to improve the adoption of EMR systems in similar contexts in both developed and developing countries.  相似文献   

20.
Current digital information systems in radiology are insufficient to accommodate the retrieval needs of academicians. Significant efforts are required in retrieving clinical cases for teaching and research. We describe a prototype system that supports intelligent case retrieval based on a combined specification of patient demographics, radiologic findings, and pathologic diagnoses. The documents for these cases can be distributed among multiple heterogeneous data bases. The system features automatic indexing of radiology and pathology reports, a comprehensive lexicon for thoracic radiology, an interface to a hospital information system, radiology information system, and picture archiving and communication systems, and a graphical user interface for query formulation and results visualization. The prototype system was developed within the domain of thoracic radiology involving patients with lung cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号