首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1 Metformin lowers blood glucose levels in type 2 diabetic patients. To evaluate the insulin sensitizing action of metformin on skeletal muscle cells, we have used C2C12 skeletal muscle cells differentiated in chronic presence or absence of insulin. 2 Metformin was added during the last 24 h of differentiation of the C2C12 myotubes. Insulin-stimulated tyrosine phosphorylation of insulin receptor (IR) and insulin receptor substrate-1 (IRS-1) was determined. 3 Chronic insulin treatment resulted in 60 and 40% reduction in insulin-stimulated tyrosine phosphorylation of IR and IRS-1, respectively. Treatment with metformin was able to increase the tyrosine phosphorylation of IR and IRS-1 by 100 and 90% respectively. 4 Chronic insulin treatment drastically reduced (45%) insulin-stimulated phosphatidyl inositol 3-kinase (PI 3-kinase) activity. Metformin treatment restored PI 3-kinase activity in insulin-resistant myotubes. 5 Insulin-stimulated glucose uptake was impaired in chronically insulin-treated myotubes. Metformin increased basal glucose uptake to significant levels (P<0.05), but metformin did not increase insulin-stimulated glucose transport. 6 All the three mitogen-activated protein kinases (MAPK) were activated by insulin in sensitive myotubes. The activation of p38 MAPK was impaired in resistant myotubes, while ERK and JNK were unaffected. Treatment with metformin enhanced the basal activation levels of p38 in both sensitive and resistant myotubes, but insulin did not further stimulate p38 activation in metformin treated cells. 7 Treatment of cells with p38 inhibitor, SB203580, blocked insulin- and metformin-stimulated glucose uptake as well as p38 activation. 8 Since the effect of metformin on glucose uptake corresponded to p38 MAPK activation, this suggests the potential role p38 in glucose uptake. 9 These data demonstrate the direct insulin sensitizing action of metformin on skeletal muscle cells.  相似文献   

2.
1. The effect of the biguanide metformin on hexose transport activity was studied in bovine cultured aortic endothelial (BEC) and smooth muscle cells (BSMC). 2. Metformin elevated the rate of hexose transport determined with 2-deoxyglucose (2DG) in a dose- and time-dependent manner in both cell types. Similar ED50 values (0.8-1.0 mM) were determined for the effect of metformin on 2DG uptake in both BEC and BSMC following 24 h exposure to increasing concentrations of metformin, with maximal stimulation at 2 mM. 3. In BEC, metformin increased the hexose transport rate 2-3 fold at all glucose concentrations tested (3.3-22.2 mM). In BSMC incubated with 22.2 mM glucose, metformin elevated the hexose transport approximately 2 fold. The drug was also effective at lower glucose levels, but did not exceed the maximal transport rate observed in glucose-deprived cells. 4. Similar results were obtained when the effect of metformin on hexose transport activity was assessed with the non-metabolizable hexose analogue, 3-O-methylglucose, suggesting that the drug affects primarily the rate of hexose transport rather than its subsequent phosphorylation. 5. The metformin-induced increase in hexose transport in BSMC treated for 24 h with the drug correlated with increased abundance of GLUT1 protein in the plasma membrane, as determined by Western blot analysis. 6. These data indicate that in addition to its known effects on hexose metabolism in insulin responsive tissues, metformin also affects the hexose transport system in vascular cells. This may contribute to its blood glucose lowering capacity in patients with Type 2, non-insulin-dependent diabetes mellitus.  相似文献   

3.
Theasinensins, dimeric catechins, have been reported to possess anti-hyperglycemic activity, but the underlying mechanism for this activity remains unknown. In this study, the effect of theasinensins A and B on glucose uptake into rat skeletal muscle cells (L6 myotubes) was investigated. A glucose uptake study using 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG) indicated that both theasinensins A and B stimulated glucose uptake in a concentration-dependent manner and translocation of glucose transporter 4 (GLUT4) to the plasma membrane. In addition, inhibition studies measuring 2-NBDG uptake in L6 cells revealed that compound C (AMP-activated protein kinase inhibitor) suppressed theasinensin-stimulated glucose uptake, whereas genistein (insulin receptor tyrosine kinase inhibitor) and wortmannin (phosphatidylinositol 3-kinase inhibitor) were inactive. Subsequent experiments on GLUT4-related signaling pathways in L6 cells demonstrated that theasinensins promoted the phosphorylation of AMPK, but not that of Akt, and that the theasinensin-promoted glucose uptake was blocked in the presence of a CaMKK inhibitor. The promotion of AMPK phosphorylation by theasinensins was not blocked in LKB1-knockdown cells. Consequently, it was concluded that theasinensins A and B did in fact promote GLUT4 translocation to the plasma membrane in L6 myotubes through the CaMKK/AMPK signaling pathway, but not through the PI3K/Akt pathway.  相似文献   

4.
An ethanol extract of rhubarb rhizome exhibited marked glucose transport activity in differentiated L6 rat myotubes. Activity-guided fractionation resulted in the isolation of two anthraquinones, chrysophanol-8-O-beta-D-glucopyranoside (1) and chrysophanol (2). The anti-diabetic effect was examined by glucose transport activity, glucose transporter 4 (Glut4) expression in myotubes, and the level of insulin receptor (IR) tyrosine phosphorylation as influenced by tyrosine phosphatase 1B, each of which is a major target of diabetes treatment. Chrysophanol-8-O-beta-D-glucopyranoside up to 25 microM dose-dependently activated glucose transport in insulin-stimulated myotubes. Increased tyrosine phosphorylation of IR due to tyrosine phosphatase 1B inhibitory activity with an IC50 value of 18.34+/-0.29 microM and unchanged Glut4 mRNA levels was observed following chrysophanol-8-O-beta-D-glucopyranoside treatment. Chrysophanol up to 100 microM exerted mild glucose transport activity and elevated the tyrosine phosphorylation of IR via tyrosine phosphatase 1B inhibition (IC50=79.86+/-0.12 microM); Glut4 mRNA expression was also significantly increased by 100 microM. The ED50 values of the two compounds were 59.38+/-0.66 and 79.69+/-0.03 microM, respectively. Therefore, these two anthraquinones from rhubarb rhizome, chrysophanol-8-O-beta-D-glucopyranoside and chrysophanol, have mild cytotoxicity and anti-diabetic properties and could play metabolic roles in the insulin-stimulated glucose transport pathway.  相似文献   

5.
The mechanisms of metformin effects on glucose transport and metabolism were investigated in human adipocytes. Human preadipocytes obtained from surgical biopsies were differentiated in vitro into adipocytes and the effects of metformin on glucose uptake, glucose oxidation and the involved signaling pathways were analyzed. Metformin (1 mM, 24 h) increased glucose uptake 2.3 ± 0.2-fold (p < 0.001 vs. basal) in human adipocytes, without altering cell viability and oxygen consumption. Metformin did not alter GLUT-1 mRNA expression and protein content but increased GLUT-4 mRNA expression and cellular protein content, leading to increased GLUT-4 protein content in the plasma membrane. Neither basal nor insulin-induced phosphorylation of Akt at Ser-473 and AS160 (Akt substrate of 160 kDa) at Thr-642 were enhanced by metformin. Suppression of metformin-induced AMP-activated protein kinase (AMPK) activity by AMPKα1 silencing, however, reduced metformin-associated GLUT-4 expression and stimulation of glucose uptake. In addition, metformin induced glucose oxidation. In conclusion, activation of AMPKα1 without impairment of cell respiration is crucial for metformin-mediated increase in GLUT-4 protein content and glucose uptake in human adipocytes.  相似文献   

6.
Glucose phosphorylation as a barrier to muscle glucose uptake   总被引:3,自引:0,他引:3  
1. Glucose phosphorylation is the first irreversible step of the muscle glucose uptake pathway and is catalysed by a hexokinase isozyme. 2. While glucose transport is the primary barrier to muscle glucose uptake during basal conditions, glucose phosphorylation becomes an important barrier to muscle glucose uptake during stimulated conditions such as hyperinsulinaemia or exercise. 3. High fat feeding markedly impairs insulin- and exercise-stimulated muscle glucose uptake. As hexokinase II overexpression corrects this dietary-induced deficit during exercise, glucose phosphorylation is a site of impairment following high fat feeding. 4. Exercise is an important tool for diagnosing deficits in glucose phosphorylation.  相似文献   

7.
KST48 [(2R,5SR)3-(2-chlorobenzoyl)-5-(4-chlorophenoxymethyl)-2-(3,4-dichlorophenyl)oxazolidine] is an oxazolidine derivative that showed significant stimulating effects on glucose transport in L6 myocytes. The effects of KST48 on glucose uptake were assayed by measuring the transport of 2-deoxyglucose in L6 myocytes. The translocation of glucose transport-4 (GLUT-4) was examined by western blot analysis. KST48 enhanced glucose transport in a concentration dependent manner and the maximum effect was observed at 50 micromol/L. The stimulation of glucose transport was characterized as the increase in Vmax without any significant change of Km value. This enhanced glucose transport was found to be decreased by the treatment with phenylarsine oxide and genistein, but not by the treatment with wortmannin and tyrphostin 25. KST48 was also proved to increase the GLUT-4 translocation. These results suggest that KST48 increases glucose transport in L6 myocytes by stimulating the translocation of GLUT4 to plasma membrane and this action might be mediated by protein tyrosine kinase but not by phosphatidyl inositol 3-kinase.  相似文献   

8.
Rottlerin: an inappropriate and ineffective inhibitor of PKCdelta   总被引:4,自引:0,他引:4  
Rottlerin has been used as a protein kinase Cdelta (PKCdelta)-selective inhibitor in hundreds of studies, on the basis of initial substrate phosphorylation studies in vitro. However, in more recent studies, rottlerin did not block PKCdelta activity but did block other kinase and non-kinase proteins in vitro and activated multiple Ca(2+)-sensitive K(+) channels with high potency. Rottlerin uncouples mitochondria, and this uncoupling depolarizes the mitochondrial membrane potential, reduces cellular ATP levels, activates 5'-AMP-activated protein kinase (AMPK) and affects mitochondrial production of reactive oxygen species (ROS). Classical mitochondrial uncouplers also produce these secondary changes, and reductions in ATP can block PKCdelta tyrosine phosphorylation and activation and generate effects resembling those produced by direct inhibition of kinase. Rottlerin also has effects in cells in which PKCdelta is downregulated or genetically deleted. These findings indicate that there have been gross misinterpretations in studies using rottlerin as a pharmacological tool to identify PKCdelta-dependent cellular events and indicate that rottlerin should not be used to determine the involvement of PKCdelta in biological processes.  相似文献   

9.
10.
This review presents some therapeutic interventions actually considered in prostate cancer therapy to compensate constitutive activation of the PI3K/Akt signalling pathway induced, particularly, by mutations of PTEN gene. Special emphasis is placed on applicability of EGF-R tyrosine kinase, COX-2, PDK-1, mTOR and farnesyltransferase inhibitors.  相似文献   

11.
AIM: To assess the effects and mechanisms of the action of resistin on basal and insulin-stimulated glucose uptake in rat skeletal muscle cells. METHODS: Rat myoblasts (L6) were cultured and differentiated into myotubes followed by stimulation with single commercial resistin (130 ng/mL, 0-24 h) or cultured supernatant from 293-T cells transfected with resistin-expressing vectors (130 ng/mL, 0-24 h). Liquid scintillation counting was used to quantitate [3H] 2-deoxyglucose uptake. The translocation of insulin-sensitive glucose transporters GLUT4 and GLUT1, synaptosomal-associated protein 23 (SNAP23) and GLUT protein content, as well as the tyrosine phosphorylation status and protein content of insulin receptor substrate (IRS)-1, were assessed by Western blotting. RESULTS: Treatment of L6 myotubes with single resistin or cultured supernatant containing recombinant resistin reduced basal and insulin-stimulated 2-deoxyglucose uptake and impaired insulin-stimulated GLUT4 translocation. While SNAP23 protein content was decreased, no effects were noted in GLUT4 or GLUT1 protein content. Resistin also diminished insulin-stimulated IRS-1 tyrosine phosphorylation levels without affecting its protein content. The effects of recombinant resistin from 293-T cells transfected with resistin-expressing vectors were greater than that of single resistin treatment. CONCLUSION: Resistin regulated IRS-1 function and decreased GLUT4 translocation and glucose uptake in response to insulin. The downregulated expression of SNAP23 may have been partly attributed to the decrease of glucose uptake by resistin treatment. These observations highlight the potential role of resistin in the pathophysiology of type 2 diabetes related to obesity.  相似文献   

12.
Berberine activates GLUT1-mediated glucose uptake in 3T3-L1 adipocytes   总被引:1,自引:0,他引:1  
It has recently been known that berberine, an alkaloid of medicinal plants, has anti-hyperglycemic effects. To explore the mechanism underlying this effect, we used 3T3-L1 adipocytes for analyzing the signaling pathways that contribute to glucose transport. Treatment of berberine to 3T3-L1 adipocytes for 6 h enhanced basal glucose uptake both in normal and in insulin-resistant state, but the insulin-stimulated glucose uptake was not augmented significantly. Inhibition of phosphatidylinositol 3-kinase (PI 3-K) by wortmannin did not affect the berberine effect on basal glucose uptake. Berberine did not augment tyrosine phosphorylation of insulin receptor (IR) and insulin receptor substrate (IRS)-1. Further, berberine had no effect on the activity of the insulin-sensitive downstream kinase, atypical protein kinase C (PKCzeta/lambda). However, interestingly, extracellular signal-regulated kinases (ERKs), which have been known to be responsible for the expression of glucose transporter (GLUT)1, were significantly activated in berberine-treated 3T3-L1 cells. As expected, the level of GLUT1 protein was increased both in normal and insulin-resistant cells in response to berberine. But berberine affected the expression of GLUT4 neither in normal nor in insulin-resistant cells. In addition, berberine treatment increased AMP-activated protein kinase (AMPK) activity in 3T3-L1 cells, which has been reported to be associated with GLUT1-mediated glucose uptake. Together, we concluded that berberine increases glucose transport activity of 3T3-L1 adipocytes by enhancing GLUT1 expression and also stimulates the GLUT1-mediated glucose uptake by activating GLUT1, a result of AMPK stimulation.  相似文献   

13.
The signaling pathway of protein kinase C (PKC) is known to play a role in mediating the action of various cytokines. Here we examined the signal transduction pathway of PKC activation and the role of PKC isoforms in interleukin-1beta (IL-1beta)-mediated cyclooxygenase-2 (COX-2) expression in human pulmonary epithelial cell line (A549). The tyrosine kinase inhibitors (genistein and tyrphostin AG126) and phosphatidylcholine-phospholipase C inhibitor (D-609) prevented IL-1beta-induced prostaglandin E(2) (PGE(2)) release and COX-2 expression, whereas U-73122 (a phosphatidylinositol-phospholipase C inhibitor) and propranolol (a phosphatidate phosphohydrolase inhibitor) had no effect. The PKC inhibitors (Go 6976 and Ro 31-8220) and NF-kappaB inhibitor, pyrrolidine dithiocarbamate, also attenuated IL-1beta-induced PGE(2) release and COX-2 expression. Western blot analysis using PKC isoenzyme-specific antibodies indicated that A549 cells expressed PKC-alpha, -gamma, -iota, -lambda, -zeta, and -micro. IL-1beta caused the translocation of PKC-gamma but not other isoforms from cytosol to the membrane fraction. Moreover, the translocation of PKC-gamma was inhibited by genistein or D-609, but not by U-73122. IL-1beta caused the translocation of p65 NF-kappaB from cytosol to the nucleus as well as the degradation of IkappaB-alpha in cytosol. Furthermore, the translocation of p65 NF-kappaB was inhibited by genistein, Go 6976, Ro 31-8220, or pyrrolidine dithiocarbamate. These results indicate that in human pulmonary epithelial cells, IL-1beta might activate phosphatidylcholine-phospholipase C through an upstream tyrosine phosphorylation to elicit PKC activation, which in turn initiates NF-kappaB activation, and finally induces COX-2 expression and PGE(2) release. Of the PKC isoforms present in A549 cells, only activation of PKC-gamma is involved in regulating IL-1beta-induced responses.  相似文献   

14.
The SHPTP1 protein tyrosine phosphatase is activated by the c-Abl and Lyn tyrosine kinases in the cellular response to genotoxic stress. However, signaling mechanisms involved in the negative regulation of SHPTP1 are unknown. This study demonstrates that protein kinase C delta (PKCdelta) associates with SHPTP1. The PKCdelta catalytic domain binds directly to SHPTP1. The results also demonstrate that PKCdelta is required, at least in part, for phosphorylation and inactivation of SHPTP1. The phosphatase activity of SHPTP1 was attenuated by coincubation with PKCdelta in vitro. In addition, treatment of U-937 human myeloid leukemia cells with 1-beta-D-arabinofuranosylcytosine (ara-C) was associated with induction of the PKCdelta kinase function and inhibition of SHPTP1 activity. Down-regulation of SHPTP1 by ara-C was blocked by the PKCdelta inhibitor rottlerin but not by the PKCalpha and -beta inhibitor G?6976. Moreover, transient coexpression studies with a dominant-negative mutant of PKCdelta demonstrate that the kinase activity of PKCdelta is required for the down-regulation of SHPTP1. These findings support the functional interaction between PKCdelta and SHPTP1 in the cellular response to DNA damage.  相似文献   

15.
Organic anion transporting polypeptides (OATP)1B1 and OATP1B3 mediate hepatic uptake of many drugs including lipid-lowering statins. Current studies determined the OATP1B1/1B3-mediated drug-drug interaction (DDI) potential of mammalian target of rapamycin (mTOR) inhibitors, everolimus and sirolimus, using R-value and physiologically based pharmacokinetic models. Preincubation with everolimus and sirolimus significantly decreased OATP1B1/1B3-mediated transport even after washing and decreased inhibition constant values up to 8.3- and 2.9-fold for OATP1B1 and both 2.7-fold for OATP1B3, respectively. R-values of everolimus, but not sirolimus, were greater than the FDA-recommended cutoff value of 1.1. Physiologically based pharmacokinetic models predict that everolimus and sirolimus have low OATP1B1/1B3-mediated DDI potential against pravastatin. OATP1B1/1B3-mediated transport was not affected by preincubation with INK-128 (10 μM, 1 h), which does however abolish mTOR kinase activity. The preincubation effects of everolimus and sirolimus on OATP1B1/1B3-mediated transport were similar in cells before preincubation with vehicle control or INK-128, suggesting that inhibition of mTOR activity is not a prerequisite for the preincubation effects observed for everolimus and sirolimus. Nine potential phosphorylation sites of OATP1B1 were identified by phosphoproteomics; none of these are the predicted mTOR phosphorylation sites. We report the everolimus/sirolimus-preincubation-induced inhibitory effects on OATP1B1/1B3 and relatively low OATP1B1/1B3-mediated DDI potential of everolimus and sirolimus.  相似文献   

16.
Agonist activation of endogenous angiotensin II (Ang II) AT(1) receptors expressed in hepatic C9 cells markedly stimulated inositol phosphate production, phosphorylation of the proline-rich tyrosine kinase PyK-2, and ERK activation. Ang II caused activation of protein kinase C delta (PKCdelta) in C9 cells, and its stimulatory actions on Pyk2 and extracellularly regulated kinase (ERK) phosphorylation were abolished by PKC depletion and selective inhibition of PKCdelta by rottlerin, but not by Ca(2+)-chelators. These effects, and the similar actions of the Src kinase inhibitor PP2 indicate the involvement of PKCdelta and Src kinase in ERK activation. In C9 cells, phorbol-12-myristate-13-acetate (PMA) caused much greater phosphorylation of Pyk2 and ERK than the Ca(2+) ionophore ionomycin, and the effects of PMA and Ang II were abolished in PKC-depleted cells. Ang II increased the association of Pyk2 with Src and with the epidermal growth factor receptor (EGF-R). EGF caused much greater tyrosine phosphorylation of the EGF-R than Ang II and PMA. Ang II-induced activation of ERK, but not Pyk2, was prevented by inhibition of EGF receptor phosphorylation by AG 1478 and of Src kinase by PP1. Ang II also increased the association of the adaptor protein Grb2 with the EGF-R. These findings indicate that Src and Pyk2 act upstream of the EGF-R and that the majority of Ang II-induced ERK phosphorylation is dependent on trans-activation of the EGF-R. Ang II-induced ERK activation in C9 cells is initiated by a PKCdelta-dependent but Ca(2+)-independent mechanism and is mediated by the Src/Pyk2 complex through trans-activation of the EGF-R.  相似文献   

17.
PURPOSE: The purpose of the present study is to explore whether a poly-L-arginine (poly-L-Arg)-induced increase in tight junctions (TJ) permeability of fluorescein isothiocyanate-labeled dextran (MW 4.4 kDa, FD-4) is associated with the Ca2+-dependent signaling and occurs following the phosphorylation/dephosphorylation of TJ proteins. METHODS: Excised rabbit nasal epithelium was mounted in an Ussing-type chamber for measurement of FD-4 transport and membrane conductance (Gt) in the presence of various inhibitors that are involved in the Ca2+-dependent pathway and the phosphorylation/dephosphorylation of TJ proteins. The resultant distribution of TJ proteins was observed using confocal laser scanning microscopy (CLSM) in an immunostaining. RESULTS: The increase in TJ permeability of FD4 induced by 0.2 mg/ml poly-L-Arg was not altered by treatment with inhibitors (of possible Ca2+ mobilization pathways followed by exposure of poly-L-Arg, suggesting that the promoting effect of poly-L-Arg is independent of Ca2+-related signaling. On the other hand, the protein kinase C (PKC) and tyrosine phosphatase inhibitors suppress the increase in TJ permeability by poly-L-Arg, indicating that serine/threonine phosphorylation by way of Ca2+-independent PKC and tyrosine dephosphorylation of junction proteins may have occurred. Furthermore, immunofluorescent monitoring of ZO-1, a TJ associated protein, and occludin, an integral membrane protein localizing at TJ, after preincubation with PKC and tyrosine phosphatase inhibitors followed by poly-L-Arg treatment has shown that the internalization of ZO-1 and occludin occurred by way of serine/threonine phosphorylation by PKC activation and by way of tyrosine dephosphorylation, respectively, providing TJ disassembly. CONCLUSIONS: We conclude that poly-L-Arg enhances the paracellular permeability of FD-4 (i.e., macromolecules), at least, by way of both serine/threonine phosphorylation of ZO-1 and tyrosine dephosphorylation of occludin in rabbit nasal epithelium.  相似文献   

18.
Interaction of physiological mechanisms in control of muscle glucose uptake   总被引:3,自引:0,他引:3  
1. Control of glucose uptake is distributed between three steps. These are the rate that glucose is delivered to cells, the rate of transport into cells, and the rate that glucose is phosphorylated within these same cells. The functional limitations to each one of these individual steps has been difficult to assess because they are so closely coupled to each other. Studies have been performed in recent years using complex isotopic techniques or transgenic mouse models to shed new light on the role that each step plays in overall control of muscle glucose uptake. 2. Membrane glucose transport is a major barrier and glucose delivery and glucose phosphorylation are minor barriers to muscle glucose uptake in the fasted, sedentary state. GLUT-4 is translocated to the muscle membrane during exercise and insulin-stimulation. The result of this is that it can become so permeable to glucose that it is only a minor barrier to glucose uptake. 3. In addition to increasing glucose transport, exercise and insulin-stimulation also increase muscle blood flow and capillary recruitment. This effectively increases muscle glucose delivery and by doing so, works to enhance muscle glucose uptake. 4. There is a growing body of data that suggests that insulin resistance to muscle glucose uptake can be because of impairments in any one or more of the three steps that comprise the process.  相似文献   

19.
Abnormally high glucose levels may play an important role in early embryo development and function. In the present study, we investigated the effect of high glucose on 2-deoxyglucose (2-DG) uptake and its related signalling pathway in mouse embryonic stem (ES) cells. 2. 2-Deoxyglucose uptake was maximally inhibited by 25 mmol/L glucose after 24 h treatment. However, 25 mmol/L mannitol and dextran did not affect 2-DG uptake. Indeed, 25 mmol/L glucose decreased GLUT-1 mRNA and protein levels. The glucose (25 mmol/L)-induced inhibition of 2-DG uptake was blocked by pertussis toxin (a G(i)-protein inhibitor; 2 ng/mL), SQ 22,536 (an adenylate cyclase inhibitor; 10(-6) mol/L) and the protein kinase (PK) A inhibitor myristoylated PKI amide-(14-22) (10(-6) mol/L). Indeed, 25 mmol/L glucose increased intracellular cAMP content. 3. Furthermore, 25 mmol/L glucose-induced inhibition of 2-DG uptake was prevented by 10(-4) mol/L neomycin or 10(-6) mol/L U 73,122 (phospholipase C (PLC) inhibitors) and staurosporine or bisindolylmaleimide I (protein kinase (PK) C inhibitors). At 25 mmol/L, glucose increased translocation of PKC from the cytoplasmic fraction to the membrane fraction. The 25 mmol/L glucose-induced inhibition of 2-DG uptake and GLUT-1 protein levels was blocked by SQ 22,536, bisindolylmaleimide I or combined treatment. In addition, 25 mmol/L glucose increased cellular reactive oxygen species and the glucose-induced inhibition of 2-DG uptake were blocked by the anti-oxidants N-acetylcysteine (NAC; 10(-5) mol/L) or taurine (2 yen 10(-3) mol/L). 4. Glucose (25 mmol/L) activated p38 mitogen-activated protein kinase (MAPK) and p44/42 MAPK. Staurosporine (10(-6) mol/L), NAC (10(-5) mol/L) and PD 98059 (10(-7) mol/L) attenuated the phosphorylation of p44/42 MAPK. Both SB 203580 (a p38 MAPK inhibitor; 10(-7) mol/L) and PD 98059 (a p44/42 MAPK inhibitor; 10(-7) mol/L) blocked 25 mmol/L glucose-induced inhibition of 2-DG uptake. 5. In conclusion, high glucose inhibits 2-DG uptake through cAMP, PLC/PKC, oxidative stress or MAPK in mouse ES cells.  相似文献   

20.
RasGRP is a family of guanine nucleotide exchange factors that activate small GTPases and contain a C1 domain similar to the one present in protein kinase C (PKC). In this study, we examined the interaction of RasGRP3 and PKC in response to the phorbol ester PMA. In Chinese hamster ovary or LN-229 cells heterologously expressing RasGRP3, phorbol 12-myristate 13-acetate (PMA) induced translocation of RasGRP3 to the perinuclear region and a decrease in the electrophoretic mobility of RasGRP3. The mobility shift was associated with phosphorylation of RasGRP3 on serine residues and seemed to be PKCdelta-dependent because it was blocked by the PKCdelta inhibitor rottlerin as well as by a PKCdelta kinase-dead mutant. Using coimmunoprecipitation, we found that PMA induced the physical association of RasGRP3 with PKCdelta and, using in situ methods, we showed colocalization of PKCdelta and RasGRP3 in the perinuclear region. PKCdelta phosphorylated RasGRP3 in vitro. Previous studies suggest that ectopic expression of RasGRP3 increases activation of Erk1/2. We found that overexpression of either PKCdelta or RasGRP3 increased the activation of Erk1/2 by PMA. In contrast, coexpression of PKCdelta and RasGRP3 yielded a level of phosphorylation of Erk1/2 similar to that of control vector cells. Our results suggest that PKCdelta may act as an upstream kinase associating with and phosphorylating RasGRP3 in response to PMA. The interaction between RasGRP3 and PKCdelta points to the existence of complex cross-talk between various members of the phorbol ester receptors which can have important impact on major signal transduction pathways and cellular processes induced by phorbol esters or DAG  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号