首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
BACKGROUND: Changes in synaptic plasticity might underlie senile dementia, and might be the neurobiological basis for learning and memory dysfunctions in patients with Alzheimer's Disease. OBJECTIVE: To investigate the effects of water maze training on hippocampal neuronal synaptic plasticity in rats with senile dementia, and to compare changes in synaptic plasticity between short- and long-term water maze training sessions. DESIGN, TIME AND SETTING: A randomized, controlled, neuromorphological observation with animal models of senile dementia was performed at the laboratory of College of Pharmacy, Chongqing Medical University between November 2006 and April 2007. MATERIALS: Fifty male, Sprague Dawley rats were randomized into five groups, with 10 rats per group: model, control, sham-operated, short-term water maze training, and long-term water maze training. METHODS: In the model group, senile dementia was induced by fimbria-fornix lesion method. The control rats remained untreated. In the sham-operated group, water maze training was performed without fimbria-fomix lesion induction. Rats from the short-term water maze training group underwent 20-day water maze training from day 26 after fimbria-fornix lesion induction. The long-term water maze training group underwent 40-day water maze training beginning at day 6 following fimbria-fornix lesion induction. Beginning at day 41, each group underwent 5-day spatial learning and memory training. MAIN OUTCOME MEASURES: Following experimentation, the morphological parameters of synapses, including synaptic numerical density, synaptic surface density, and the average synapse size were stereologically measured. Through the use of an electron microscope, synaptic morphological changes in the hippocampal CA3 region were observed. RESULTS: Compared with the control group, synaptic numerical and surface densities were significantly decreased in the model group (P 〈 0.01). Synaptic numerical and surface densities significantly increased in the short- an  相似文献   

2.
BACKGROUND: It has been previously shown that the muscarinic (M) receptor is involved in brain arousal and selective attention, mood, and motor coordination.
OBJECTIVE: To explore the effects of various intragastric Daicong doses on hippocampal MI and M3 receptor gene expression in a rat model of Alzheimer's disease.
DESIGN, TIME AND SETTING: A randomized cellular and molecular biology experiment, conducted at the Molecular Immunology Laboratory in Shandong between October 2006 and April 2007.
MATERIALS: Fifty 22-month old Sprague Dawley rats, weighing 250-300 g were used for this experiment. Kainic acid was used to lesion the nucleus basalis to establish a rat model of Alzheimer's disease. The components of Daicong solution were as follows: ginseng, rehmannia dride rhizome, anemarrhena, and radix astragali. The solution was provided by the Affiliated Hospital to Weifang Medical College, according to preparation techniques of extracting liquid for traditional Chinese medicine (1 g crude drug/mL solution). Kainic acid was provided by Professor Xiuyan Li at Weifang Medical College.
METHODS: The rats were randomly divided into 5 groups, 10 rats in each group. Four groups were used for model establishment, and the fifth group served as a normal control group. Three of the model groups were intragastrically administered 5, 10, and 20 g/kg/d Daicong solution, and an additional model group and normal control group received normal saline (10 mL/kg/d). Drugs were administered over a time period of one month.
MAIN OUTCOME MEASURES: Four days after model establishment, Morris water maze was used to measure learning and memory capabilities. RT-PCR was used to detect the effect of Daicong solution on mRNA expression of M1 and M3 receptor in the hippocampus of all groups. RESULTS: Fifty rats were included in the final analysis, without any loss. M1 and M3 receptor mRNA expression was decreased in the model group, compared to the normal control group (P 〈 0.05). Upon Daicong admin  相似文献   

3.
BACKGROUND: Modem pharmacological studies have demonstrated that Panax notoginseng saponins (PNS) can ameliorate and protect from neuropathological impairment. Whether PNS can improve the abnormality in memory and behavior of rats with Alzheimer's disease (AD) remains unclear. OBJECTIVE: Based on a Morris water maze test, this study aimed to measure improvements of spatial learning and memory by PNS in a rat model of AD, and to compare effects with huperzine A. DESIGN: A completely randomized grouping design, controlled animal experiment. SETTING: Center of Research & Development of New Drugs, Guangxi Traditional Chinese Medical University. MATERIALS: Ninety healthy Wistar rats of both genders, 15-month-old (n =75) and 3-month-old rats as young controls (n =15), were used for this study. The study was performed in accordance with animal ethics guidelines for the use and care of animals. PNS was provided by Weihe Pharmaceutical Co., Ltd (permission No. Z53021485, Yuxi, Yunan Province, China). Morris water maze equipment was provided by the Institute of Physiology, Chinese Academy of Science. METHODS: This study was performed at the Center of Research & Development of New Drugs, Guangxi Traditional Chinese Medical University from June 2003 to April 2005. Of the included rats, 15 healthy aged rats were randomly chosen as aged controls, and the remaining 60 aged rats were randomly divided into 4 groups with 15 rats in each: model group, PNS high- and low-dose groups, and an huperzine A group. Rats in the model group and the 3 treated groups were treated with intraperitoneal infusion of 9.6 g/L D-galactose (5 mL/kg) every day for 6 weeks successively to induce a subacute aging model. During week 7, animals received 1 μ L ibotenic acid (5 g/L) bilaterally into the nucleus basalis of Meynert to create a rat model of AD. The young and old rat controls received, in parallel, a corresponding volume of saline. Two weeks later, rats in the PNS high- and low-dose groups were ga  相似文献   

4.
BACKGROUND:Noxa, a pro-apoptotic member of the Bcl-2 protein family, has been shown to induce the mitochondrial pathway of apoptosis and to mediate hypoxic cell death in a rat model of cerebral ischemia. This suggests that Noxa could participate in apoptosis during vascular dementia (VD). OBJECTIVE: To detect Noxa and caspase-3 expression after electro-acupuncture in VD rats to further validate the mechanism of electro-acupuncture-induced effects in the treatment of VD. DESIGN, TIME AND SETTING: A randomize...  相似文献   

5.
BACKGROUND: Recently study indicates a potentially important link between cholesterol, Aβ deposit, and clinicopathological manifestation of Alzheimer's disease (AD). OBJECTIVE: To study the effect of high cholesterol diet on cognitive function and neuronal loss of hippocampal dentate gyrus in AD model rats. DESIGN, TIME AND SETTING: A randomized controlled animal study, which was performed in the Laboratory of Stem Cells, Department of Pathology, Third Military Medical University of Chinese PLA from February 2006 to March 2007. MATERIALS: Twenty healthy, male, Wistar rats, aged 3-4 months and weighing (300 ± 20) g, were selected for this study. A β 1- 40 was provided by Sigma Company, USA. Standard diet and high cholesterol diet mixed with cholesterol (5%), sodium hypocholic acid (1%), lard (10%), and ordinary rat food (84%) were provided by Experimental Animal Center, Institute of Field Surgery, Daping Hospital, Third Military Medical University of Chinese PLA. METHODS: Rats were fed on high cholesterol diet or standard diet for eight successive weeks. Then, rats were randomly divided into cholesterol diet +A β, high cholesterol diet + phosphate buffered saline(PBS), standard diet + A β, and standard diet + PBS group, with five rats in each group. AD rat models were established by local injection of A β 1-40 solution (10 μ L) into the hippocampal dentate gyrus. Rats in the control group were injected with the same volume of PBS. After injection, rat were fed for two weeks MAIN OUTCOME MEASURES: Neuronal cells in the hippocampal dentate gyrus were detected by Nissl staining; spatial navigation and spatial probe were detected by Morris water maze to reflect learning and memory. RESULTS: Twenty rats were included in the final analysis, without any loss. (1) Neuronal numbers: neuronal loss in the high cholesterol diet + A β and standard diet + A β groups was significantly higher than in the PBS groups (P 〈 0.01). In particular, loss of  相似文献   

6.
BACKGROUND: Exogenous ganglioside-1 (GM1) can cross the blood-brain barrier and play a protective role against hypoxia-ischemia-induced brain damage. OBJECTIVE: To examine the possible mechanisms of exogenous GM1 protection in hypoxia-ischemia-induced brain damage in a neonatal rat model by measuring changes in brain mass, pathological morphology, growth-associated protein-43 expression, and neurobehavioral manifestations. DESIGN, TIME AND SETTING: A randomized block-design study was performed at the Immunohistochemistry Laboratory of the Pediatric Research Institute, Children’s Hospital of Chongqing Medical University from August 2005 to August 2006. MATERIALS: A total of 36 neonatal, 7-day-old, Sprague Dawley rats were used in this experiment. The hypoxia-ischemia-induced brain damage model was established by permanently occluding the right carotid artery, followed by oxygen inhalation at a low concentration (8% O2, 92% N2) for 2 hours. METHODS: All rats were randomly divided into the following groups: GM1, model, and sham operation, with 12 rats each group. Rats in the GM1 and model groups received hypoxic/ischemic-induced brain damage. Rats in the GM1 group received injections of GM1 (i.p., 20 mg/kg) at 0, 24, 48, 72, 96, 120, and 144 hours following models established, and rats in the model group were administered (i.p.) the same amount of saline. The right carotid artery was separated, but not ligated, in the sham operation group rats. MAIN OUTCOME MEASURES: At 1 week after surgery, expression of growth-associated protein-43, a marker of neural development and plasticity, was detected in the hippocampal CA3 region by immunohistochemistry. Brain mass was measured, and the pathological morphology was observed. At 4 weeks after surgery, behavioral changes in the remaining rats were tested by Morris water maze, and growth-associated protein-43 expression was measured. RESULTS: (1) In the GM1 and sham operation groups, growth-associated protein-43 expression was greater in the hippocampal CA3 region compared to the model group 1 week after surgery (P < 0.05). In all three groups, brain weight of the right hemisphere was significantly less than the left hemisphere, in particular in the model group (P < 0.05). In the GM1 group, the weight difference between two hemispheres, as well as the extent of damage in the right hemisphere, was less than the model group (P < 0.01). In the sham operation group, brain tissue consisted of integrated structures and ordered cells. In the model group, the cerebral cortex layers of the right hemisphere were not defined, neurons were damaged, and neurons were disarranged in the hippocampal area. In the GM1 group, neurons were dense in the right cerebral cortex and hippocampal area, with no significant change in glial proliferation. (2) The average time of escape latency in the GM1 group was shortened 4 weeks after surgery, and significantly less than the model group (P < 0.05). In addition, the frequency platform passing in the GM1 group was significantly greater than the model group (P < 0.01). CONCLUSION: Exogenous GM1 may reduce brain injury and improve learning and memory in hypoxia-ischemia-induced brain damage rats. This protection may be associated with increased growth-associated protein-43 expression, which is involved in neuronal remodeling processes. Key Words: ganglioside; growth-associated protein-43; hypoxia-ischemia brain damage; Morris water maze  相似文献   

7.
BACKGROUND: Exogenous ganglioside-1 (GM1) can cross the blood-brain barrier and play a protective role against hypoxia-ischemia-induced brain damage. OBJECTIVE: To examine the possible mechanisms of exogenous GM1 protection in hypoxia-ischemia-induced brain damage in a neonatal rat model by measuring changes in brain mass, pathological morphology, growth-associated protein-43 expression, and neurobehavioral manifestations. DESIGN, TIME AND SETTING: A randomized block-design study was performed at the Immunohistochemistry Laboratory of the Pediatric Research Institute, Children’s Hospital of Chongqing Medical University from August 2005 to August 2006. MATERIALS: A total of 36 neonatal, 7-day-old, Sprague Dawley rats were used in this experiment. The hypoxia-ischemia-induced brain damage model was established by permanently occluding the right carotid artery, followed by oxygen inhalation at a low concentration (8% O2, 92% N2) for 2 hours. METHODS: All rats were randomly divided into the following groups: GM1, model, and sham operation, with 12 rats each group. Rats in the GM1 and model groups received hypoxic/ischemic-induced brain damage. Rats in the GM1 group received injections of GM1 (i.p., 20 mg/kg) at 0, 24, 48, 72, 96, 120, and 144 hours following models established, and rats in the model group were administered (i.p.) the same amount of saline. The right carotid artery was separated, but not ligated, in the sham operation group rats. MAIN OUTCOME MEASURES: At 1 week after surgery, expression of growth-associated protein-43, a marker of neural development and plasticity, was detected in the hippocampal CA3 region by immunohistochemistry. Brain mass was measured, and the pathological morphology was observed. At 4 weeks after surgery, behavioral changes in the remaining rats were tested by Morris water maze, and growth-associated protein-43 expression was measured. RESULTS: (1) In the GM1 and sham operation groups, growth-associated protein-43 expression was greater in the hippocampal CA3 region compared to the model group 1 week after surgery (P < 0.05). In all three groups, brain weight of the right hemisphere was significantly less than the left hemisphere, in particular in the model group (P < 0.05). In the GM1 group, the weight difference between two hemispheres, as well as the extent of damage in the right hemisphere, was less than the model group (P < 0.01). In the sham operation group, brain tissue consisted of integrated structures and ordered cells. In the model group, the cerebral cortex layers of the right hemisphere were not defined, neurons were damaged, and neurons were disarranged in the hippocampal area. In the GM1 group, neurons were dense in the right cerebral cortex and hippocampal area, with no significant change in glial proliferation. (2) The average time of escape latency in the GM1 group was shortened 4 weeks after surgery, and significantly less than the model group (P < 0.05). In addition, the frequency platform passing in the GM1 group was significantly greater than the model group (P < 0.01). CONCLUSION: Exogenous GM1 may reduce brain injury and improve learning and memory in hypoxia-ischemia-induced brain damage rats. This protection may be associated with increased growth-associated protein-43 expression, which is involved in neuronal remodeling processes. Key Words: ganglioside; growth-associated protein-43; hypoxia-ischemia brain damage; Morris water maze  相似文献   

8.
BACKGROUND:Previous studies have demonstrated that acupuncture treatment could ameliorate impaired motor function,and these positive effects might be due to neural plasticity.OBJECTIVE:Myelin basic protein(MBP),microtubule-associated protein 2(MAP2),growth-associated protein-43(GAP-43),and synaptophysin(SYN) were selected as markers of neural remodeling,and expression of these markers was evaluated with regard to altered motor function following brain injury and acupuncture treatment.DESIGN,TIME AND SETTING:A completely randomized experiment was performed at the Central Laboratory of Peking University First Hospital from November 2006 to May 2007.MATERIALS:Twenty-four Sprague Dawley rat pups,aged 7 days,were selected for the present experiment.The left common carotid artery was ligated to establish a rat model of ischemic-hypoxic brain injury.METHODS:All animals were randomly divided into three groups:sham operation,model,and electro-acupuncture treatment,with 8 rats in each group.Rats in the model and electro-acupuncture treatment group underwent establishment of ischemic-hypoxic brain injury.Upon model established,rats underwent hypobaric oxygen intervention for 24 hours.Only the left common carotid artery was exposed in rats of the sham operation group,without model establishment or oxygen intervention.The rats in the electro-acupuncture treatment group were treated with electro-acupuncture.One acupuncture needle electrode was inserted into the subcutaneous layer at the Baihui and Dazhui acupoint.The stimulation condition of the electro-acupuncture simulator was set to an amplitude-modulated wave of 0-100% and alternative frequency of 100 cycles/second,as well as frequency-modulated wave of 2-100 Hz and an alternative frequency of 3 cycles/second.Maximal current through the two electrodes was limited to 3-5 mA.The stimulation lasted for 30 minutes per day for 2 weeks.Rats in the sham operation and model groups were not treated with electro-acupuncture,but only fixed to the table for  相似文献   

9.
BACKGROUND: Stellate ganglion block (SGB) plays a protective role on the brain, but the precise mechanism of action is not clear. OBJECTIVE: To simulate SGB by transection of the cervical sympathetic trunk (TCST) and to investigate the TCST effects on changes in cerebral infarct volume and oxygen free radical levels in rats with focal cerebral ischemia/reperfusion injury. DESIGN, TIME AND SETTING: A complete randomized control animal experiment was performed at the Institute of Neurological Diseases of Taihe Hospital, Yunyang Medical College from February to December 2005. MATERIALS: A total of 101 healthy Wistar rats, weighing 280-320 g, of both genders, aged 17-18 weeks, were used in this study. 2, 3, 5-triphenyltetrazolium chloride (TTC) was purchased from Changsha Hongyuan Biological Company. Superoxide dismutase (SOD), malondialdehyde (MDA) and nitric oxide (NO) assay kits were provided by Nanjing Jiancheng Bioengineering Institute. METHODS: Rats were randomly divided into a TCST group, a model group and a sham operation group. Successful models were included in the final analysis, with at least 20 rats in each group. After TCST, rat models of focal cerebral ischemia/reperfusion injury were established in the TCST group by receiving middle cerebral artery occlusion (MCAO) by the intraluminal suture method for 2 hours, followed by 24 hours of reperfusion. Rat models of focal cerebral ischemia/reperfusion injury were made in the model group. Rats in the sham operation group underwent experimental procedures as for the model group, threading depth of 10 mm, and middle cerebral artery was not ligated. MAIN OUTCOME MEASURES: Brain tissue sections of ten rats from each group were used to measure cerebral infarct volume by TTC staining. Brain tissue homogenate of another ten rats from each group was used to detect SOD activities, MDA contents and NO levels. Rat neurological function was assessed by neurobehavioral measures. RESULTS: Cerebral infarct volume was bigger in the  相似文献   

10.
BACKGROUND: Infusion of kainic acid into the basal nuclei induces neuronal excitotoxicity, degeneration and necrosis, resulting in disturbed learning and memory functions. OBJECTIVE: To explore the effects of different doses of traditional Chinese medicine Daicong solution on brain ultrastructure in a rat model of Alzheimer's disease. DESIGN, TIME AND SETTING: The randomized, controlled, cellular morphology experiment was performed at the Shandong Provincial Key Laboratory of Molecular Immunology of Weifang Medical University, China from October 2006 to March 2007. MATERIALS: Fifty healthy, Sprague Dawley rats, aged 22-months, were used to establish rat models of Alzheimer's disease. The Morris water maze was prepared at the Pharmacometrics Key Laboratory of Weifang Medical University in Shandong Province of China. Traditional Chinese medicine Daicong solution (crude drug 1 g/mL), composed of radix ginseng, rehmannia dried rhizome, anemarrhenae and radix astragali, was produced by the Department of Pharmacy of Hospital Affiliated to Weifang Medical University. Kainic acid was provided by Professor Xiuyan Li from Weifang Medical University. METHODS: A total of 40 model rats were equally and randomly divided into four groups: dementia model, low-dose Daicong solution (5 g/kg/d), moderate-dose Daicong solution (10 g/kg/d), and high-dose Daicong solution (20 g/kg/d). An additional 10 healthy rats served as the normal control group. Rats in the dementia model and normal control groups received saline (10 mL/kg/d). MAIN OUTCOME MEASURES: Neural cell ultrastructure was observed utilizing electron microscopy after 1 month of respective treatments. RESULTS: Compared with the normal control group, electron density and the number of ribosomes were significantly reduced in neuronal cytoplasm, and many lipofuscin grains and vacuole-like changes were observed in mitochondria in the dementia model group. In addition, nuclear chromatin presented with different sizes of plaque-shaped degene  相似文献   

11.
Objective To investigate effects of K_ATP opener on the expressions of caspase-12 mRNA and protein, and to explore the role of endoplasmic reticulum (ER) stress pathway in the mechanism of K_ATP opener protecting against neuronal apoptosis after cerebral ischemia-reperfusion. Methods Two hundred rats were randomly divided into four groups: sham operation group, ischemia-reperfusion group, K_ATP opener group, and K_ATP blocker group. The middle cerebral artery occlusion (MCAO) model was established by intraluminal suture occlusion method; neuronal apoptosis was detected by TUNEL staining. The mRNA and protein expressions of caspase-12 were detected by semi-quantitative RT-PCR and immunohisto-chemical staining, respectively. Results In ischemia-reperfusion group, K_ATP opener group and K_ATP blocker group, the number of apoptotic cells and the mRNA and protein expressions of caspase-12 gradually increased following cerebral reperfusion, and reached the peak at 24 h. In K_ATP opener group, The number of apoptotic cells was significantly less than that in ischemia-reperfusion group and K_ATP blocker group at 12 h, 24 h, 48 h and 72 h (P 〈 0.05 or P 〈 0.01); while the mRNA and protein levels of caspase-12 were significantly less than those in ischemia-reperfusion group and K_ATP blocker group at all times (P 〈 0.05 or P〈0.01). There were no differences between the ischemia-reperfusion group and K_ATP blocker group at each time (P〉 0.05). Conclusion K_ATP opener may protect neurons from apoptosis following the cerebral ischemia-reperfusion by inhibiting ER stress pathway.  相似文献   

12.
BACKGROUND: Certain components of tetramethylpyrazine, a traditional Chinese medicine, exhibit protective effects against brain injury. OBJECTIVE: To investigate the effects of different Naoxintong doses on expression of nuclear factor-kappa B ( kB), interleukin-6, tumor necrosis factor-α, and complement 3 in rats following focal cerebral ischemia. DESIGN, TIME AND SETTING: The randomized experiment was performed at the Laboratory of Neurology, Second Hospital of Hebei Medical University from June 2004 to June 2006. MATERIALS: A total of 150 adult, healthy, male, Sprague Dawley rats, weighing 280-320g, were selected. Naoxintong powder (mainly comprising szechwan lovage rhizome, milkvetch root, danshen root, and radix angelicae sinensis) was obtained from Buchang Pharmacy Co., Ltd. in Xianyang City of Shanxi Province of China, lot number 040608. METHODS: The rats were randomly assigned into sham operation, saline, high-dose Naoxintong, moderate-dose Naoxintong, and low-dose Naoxintong groups, with 30 rats in each group. Rat models of middle cerebral artery occlusion were established using the suture method, with the exception of the sham operation group. Rats in the high-dose, moderate-dose and low-dose Naoxintong groups received 4, 2, and 1 g/kg Naoxintong respectively, by gavage. Rats in the saline group were treated with 1 mL saline by gavage All rats were administered by gavage at 5 and 23 hours following surgery, and subsequently, once per day. MAIN OUTCOME MEASURES: At 6, 24, 48, 72 hours, and 7 days following model establishment, brain water content was measured. Histopathological changes in brain tissues were detected using hematoxylin-eosin staining. Expression of nuclear factor- kB, interleukin-6, tumor necrosis factor- α, and complement 3 was examined by immunohistochemistry. RESULTS: A total of 150 rats were included in the final analysis with no loss. Brain water content was significantly increased in the ischemic hemisphere of rats from the saline, as well as the high-dose, mo  相似文献   

13.
早年创伤是一个全球普遍存在的问题,严重影响儿童、青少年的大脑发育,继而导致认知功能、人格水平、社会行为的改变。早年创伤主要是父母、监护人或其他年长者对孩子施加躯体虐待、躯体忽视、情感虐待、情感忽视或性虐待。美国一项调查显示:儿童虐待事件的发生率高达1.2%[1]。早年创伤影响认知功能的多个领域,包括学习/工作记忆、视觉空间能力、执行功能、言语智能、复杂推理搜决策、学业表现等比]。创伤造成的认知功能改变是目前国内外神经科学和精神医学领域研究的热点,但其发病机制仍不明确,鉴于早年创伤与认知功能的关系问题,现就早年创伤对大脑发育、神经认知的影响加以综述。  相似文献   

14.
BACKGROUND: Previous studies have demonstrated that appropriate interventions can alter brain electrical activity of epileptic patients prior to and during a seizure, leading to maintenance of a highly chaotic state, thereby inhibiting abnormal epileptic discharges, and eventually controlling epileptic seizure. OBJECTIVE: This study was designed to observe the effects of chaotic electrical stimulation to the subthalamic nucleus on mossy fiber sprouting, epileptic seizures, and electrical discharges, and to summarize the most suitable intervention. DESIGN, TIME AND SETTING: This randomized grouping, neuroelectrophysiological study was performed at the Laboratory of Neurology, Union Hospital Affiliated to Fujian Medical University in September 2007. MATERIALS: Fifty-five healthy, male, Sprague Dawley rats were subjected to an epileptic model by an intraperitoneal injection of pentylenetetrazol. The YC-2 programmed electrical stimulator was provided by Chengdu Instrument Factory, China; the video electroencephalographic system (KT-88-2400) and 24-hour active electroencephalographic system were products of Contec Medical System Co., Ltd., China; pentylenetetrazol was purchased from Sigma, USA. METHODS: The present interventional method consisted of electrical stimulation to the subthalamic nucleus with an intensity of 500 μA, pulse width 0.05 ms, frequency 30 Hz, and a duration of 20 minutes for 14 successive days. Fifty-five rats were divided into 6 groups: (1) pre-stimulation (n = 10), pentylenetetrazol was administered and 30 minutes later, chaotic electrical stimulation was performed; (2) synchronous stimulation (n = 10), rats received pentylenetetrazol and chaotic electrical stimulation concurrently; (3) post-administration stimulation (n = 10), after pentylenetetrazol administration, chaotic electrical stimulation was performed immediately after cessation of a seizure; (4) sham-stimulation (n = 10), following pentylenetetrazol administration, an electrode was con  相似文献   

15.
氧化应激(Oxidative Stress)不仅在糖尿病、高血压病等身心疾病中起着重要作用,而且对阿尔茨海默病(AlzheimerDisease,AD)、帕金森病(Parkin-son Disease,PD)等神经精神障碍的认知功能也有一定影响。强烈或持续性的氧化应激可通过诱导细胞凋亡和炎性反应导致细胞、组织损害。流行病学及动物研究均表明,母孕期遭受应激可能会影响胎儿的神经心理发育过程,造成胎儿大脑某区域的缺陷,引起持续性认知改变、神经内分泌和行为反应,增加后代精神疾病的患病风险。现对氧化应激与认知功能障碍的机制进行综述。  相似文献   

16.
BACKGROUND:It has been reported that Ganoderma lucidum spore powder, a very well known Chinese traditional medicine, can affect immunoregulation, free radical scavenging, and anti-hypoxia responses. OBJECTIVE: To investigate the effect of Ganoderma lucidum spore powder on expression of insulin-like growth factor-1 (IGF-1), nuclear factor-κB (NF-κB) and neuronal apoptosis in rats with pentylenetetrazol (PTZ)-induced epilepsy. DESIGN, TIME AND SETTING: A cellular and molecular biology experiment with randomized controlled study design was performed at the Central Laboratory of Basic Medical College of Jiamusi University from June to August 2005. MATERIALS: Thirty healthy, adult, male, Wistar rats were selected and randomly divided into 3 groups (10 rats per group): control, epilepsy model, and Ganoderma lucidum spore powder. A sub-eclampsia PTZ dose (35 mg/kg) was intraperitoneally injected to induce epilepsy in the latter two groups. Wild Ganoderma lucidum spore powder (30 g/L) was provided by the wild Ganoderma lucidum plant nursery at Jiamusi, China. Immunohistochemical detection and terminal deoxynucleotidyl transferase-mediate dUTP nick end-labeling (TUNEL) kits were purchased from Wuhan Boster Biological Technology Co., Ltd., China. METHODS: Ganoderma lucidum spore powder was intragastrically administered at a dose of 10.0 mL/kg, once a day for 28 days. In the epilepsy and control groups, an equivalent volume of normal saline was intragastrically administered. MAIN OUTCOME MEASURES: Immunoreactivity for IGF-1 and NF-κB/P65 were detected by immunohistochemical staining. Neuronal apoptosis was detected using TUNEL methods. RESULTS: The hippocampus and cerebral cortex of rats with PTZ-induced epilepsy exhibited a higher number of apoptotic cells at high magnification (×400), compared with the control group. Expression of IGF-1 and NF-κB were higher in the epilepsy group, compared with the control group (P 〈 0.01). In Ganoderma lucidum spore-treated rats,  相似文献   

17.
BACKGROUND: p38 mitogen-activated protein kinase (MAPK) plays an instrumental role in signal transduction from the cell surface to the nucleus, while subcutaneous injection of formalin can induce increased activation of spinal p38 MAPK. However, the mechanisms underlying the formalin-induced activation of spinal p38 MAPK in rats are unclear. OBJECTIVE: To observe the effects of N-methyl-D-aspartic acid (NMDA) receptor antagonist MK-801 on the formalin-induced activation of spinal p38 MAPK in rats. DESIGN, TIME AND SETTING: This randomized grouping, controlled animal experiment was performed at the Department of Physiology and Neurobiology, Shanxi Medical University between May and November 2007. MATERIALS: Forty eight healthy, adult Wistar rats were randomly divided into two groups: formalin + normal saline (n = 12) and formalin + MK-801 (n = 36). The formalin + MK-801 group was further divided into three subgroups according to the dosage of MK-801 (10, 50, and 100 nmol/L, 12 rats for each subgroup) METHODS: Following anesthesia, polyethylene tubing filled with sterile normal saline was implanted into the subarachnoid cavity. On postoperative days 5-8, rats received a 15 minute perfusion of normal saline or MK-801 (10, 50, and 100 nmol/L) in the formalin + normal saline and formalin + MK-801 groups, respectively, followed by formalin injection for the induction of nociceptive behavior. MAIN OUTCOME MEASURES: Detection of total p38 MAPK and of phosphorylated p38 MAPK by western Blot analysis; observation of nociceptive behaviors in the 1 hour after formalin injection. RESULTS: Western Blot analysis revealed that injection of formalin had no effect on total p38 MAPK expression but resulted in increased phosphorylation of p38 MAPK in the spinal cord. This increase was apparent after 5 minutes, peaked at 20 minutes, and thereafter descended and reached control levels after 45 minutes. Pretreatment with MK-801 (10, 50, 100 nmol/L) resulted in a dose-dependent reduc  相似文献   

18.
Objective To compare the cognitive effects of guqin (the oldest Chinese instrument) music and piano music. Methods Behavioral and event-related potential (ERP) data in a standard two-stimulus auditory oddball task were recorded and analyzed. Results This study replicated the previous results of culture-familiar music effect on Chinese subjects: the greater P300 amplitude in frontal areas in a culture-familiar music environment. At the same time, the difference between guqin music and piano music was observed in NI and later positive complex (LPC: including P300 and P500): a relatively higher participation of right anterior-temporal areas in Chinese subjects. Conclusion The results suggest that the special features of ERP responses to guqin music are the outcome of Chinese tonal language environments given the similarity between Guqin's tones and Mandarin lexical tones.  相似文献   

19.
Neuroimaging of cerebral glucose metabolism and blood flow is ideally suited to assay widely-distributed brain circuits as a result of local molecular events and behavioral modulation in the central nervous system. With the progress in novel analytical methodology, this endeavor has succeeded in unraveling the mechanisms underlying a wide spectrum of neurodegenerative diseases. In particular, statistical brain mapping studies have made significant strides in describing the pathophysiology of Parkinson's disease (PD) and related disorders by providing signature biomarkers to determine the systemic abnormalities in brain function and evaluate disease progression, therapeutic responses, and clinical correlates in patients. In this article, we review the relevant clinical applications in patients in relation to healthy volunteers with a focus on the generation of unique spatial covariance patterns associated with the motor and cognitive symptoms underlying PD. These characteristic biomarkers can be potentially used not only to improve patient recruitment but also to predict outcomes in clinical trials.  相似文献   

20.
BACKGROUND: α-asarone and acrous gramineus have been shown to play a necessary function in enhancing the reactivity and convulsant threshold to electric stimulation of immature rats. They have also been shown to effectively suppress epileptic seizures induced by pentylenetetrazol in young rats. However, the mechanisms for these roles have been still unclear. OBJECTIVE: To observe the effects in immature rats of acrous gramineus and α -asarone on apoptosis of hippocampal neurons after epileptic seizure at the protein level, and to analyze the mechanism for these effects. DESIGN: A randomized controlled animal experiment. SETTINGS: Department of Pediatrics, First Hospital of Jilin University; Department of Histology and Embryology, Norman Bethune Medical School of Jilin University; Department of Internal Medicine, Children's Hospital of Changchun City; Department of Neurology, First Clinical Hospital affiliated to Harbin Medical University. MATERIALS: Fifty 3-week old Wistar rats, 34-40 g, irrespective of gender, were provided by Gaoxin Research Center of Medical Animal Experiment, Changchun. The animals were treated according to the animal ethical standards. The following chemicals were used for this study: acrous gramineus powders or infusion (Batch No, 0307113, Tianjiang Medicine Company Limited, Jiangyin), α-asarone tablets (Batch No. 030219, Tianwei Pharmaceutical Factory, Shenyang), and phenobarbital sodium tablets (Batch No. 020608, Xinya Medicine Company Limited, Shanghai). The animals were divided into five groups randomly. First, ten rats were chosen as the normal controls. The remaining rats were treated with i.p. injections of pentylenetetrazol to stimulate an epileptic model. METHODS: The experiments were performed at the Neurological Laboratory of the First Hospital of Jilin University between October and December 2004. The rats were treated with i.p. injections of pentylenetetrazol (60 mg/kg) to establish an epileptic model. According to Racine' s standard, animal  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号