首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We determined the nucleotide sequences of the outer capsid glycoprotein (VP7) genes of 38 porcine group B rotaviruses (GBRs) from feces of pigs at 27 farms in Japan between 2000 and 2007. Substantial diversity among porcine GBR VP7 genes was observed, with up to 42.4% difference in nucleotides and 49.8% in amino acids. On comparison of VP7 genes, porcine GBRs were clearly distinct from the published corresponding genes from human, bovine and murine GBRs (53.7–70.8% identity in nucleotides and 45.8–73.4% identity in amino acids). Phylogenetic analysis showed that the VP7s of GBRs could be divided into five genotypes: the murine strain was genotype 1, human strains were genotype 2, bovine and some porcine strains were genotype 3, and other porcine strains belonged to genotype 4 or 5. In addition, GBR VP7s in genotypes 3 and 5 were further divided into four and five clusters, respectively. No relationship between VP7 genotype and double-stranded RNA migration patterns of porcine GBRs in polyacrylamide gel electrophoresis were observed. However, an antigen enzyme-linked immunosorbent assay using antiserum to recombinant bovine GBR VP6 did not react with fecal samples containing one cluster of genotype 5 of porcine GBRs. The abundant divergence of porcine GBR VP7 genes suggests that porcine species might be an original natural host of GBR infection and that different serotypes might exist among porcine GBRs. To our knowledge, this is the first report to describe the gene sequences and typing of porcine GBR VP7s.  相似文献   

2.
We report the detection and molecular characterization of a rotavirus strain, 10733, isolated from the feces of a buffalo calf affected with diarrhea in Italy. Strain 10733 was classified as a P[3] rotavirus, as the VP8* trypsin cleavage product of the VP4 protein revealed a high amino acid identity (96.2%) with that of rhesus rotavirus strain RRV (P5B[3]), used as the recipient virus in the human-simian reassortant vaccine. Analysis of the VP7 gene product revealed that strain 10733 possessed G6 serotype specificity, a type common in ruminants, with an amino acid identity to G6 rotavirus strains ranging from 88 to 98%, to Venezuelan bovine strain BRV033, and Hungarian human strain Hun4. Phylogenetic analysis based on the VP7 gene of G6 rotaviruses identified at least four lineages and an apparent linkage between each lineage and the VP4 specificity, suggesting the occurrence of repeated interspecies transmissions and genetic reassortment events between ruminant and human rotaviruses. Moreover, strain 10733 displayed a bovine-like NSP4 and NSP5/6 and a subgroup I VP6 specificity, as well as a long electropherotype pattern. The detection of the rare P[3] genotype in ruminants provides additional evidence for the wide genetic and antigenic diversity of group A rotaviruses.  相似文献   

3.
Yi J  Liu C 《Archives of virology》2011,156(11):2045-2052
A new rotavirus strain, sh0902, was detected in diarrheic piglets on a farm in Shanghai, China, and its genotype was characterized as G1P[7]. Analysis of the VP4, VP7 and NSP4 genes demonstrated VP4 homology to bovine and swine rotavirus strains; the nucleotide (nt) and amino acid (aa) identities were 99.7% and 99.5%, respectively. The VP7 gene was highly homologous to that of a giant panda rotavirus strain, with 98.5% similarity at the nt level and 99% similarity at the aa level. The nucleotide sequence of the NSP4 gene displayed high homology to human rotavirus strain R479, with 99.7% identity at the nt level and 99.3% identity at the aa level. This is the first report of an unusual porcine rotavirus strain with VP4, VP7 and NSP4 genes that are highly homologous to bovine, swine, giant panda and human strains isolated at geographically distant sites (South Korea, China and India). Our data indicate that rotaviruses have circulated among humans and animals and undergone genome reassortment.  相似文献   

4.
Summary. Molecular characterization of two porcine group A rotavirus strains (HP113 and HP140), detected from eastern India, revealed a VP7 closely related to those of human G6P[14] strains, VP4 with a borderline P[13] genotype, and VP6 related to bovine and human SGI strains rather than porcine SGI and/or SGII group A rotaviruses. Both strains had NSP4 and NSP5 of porcine origin. Therefore, to our knowledge, the present study is the first report of detection of group A rotavirus strains with G6P[13] genotype specificities and provides evidence for independent segregation of the VP6- and NSP4-encoding genes in porcine group A rotaviruses.  相似文献   

5.
An unusual strain of human rotavirus G3P[10] (CMH079/05) was detected in a stool sample of a 2‐year‐old child admitted to the hospital with severe diarrhea in Chiang Mai, Thailand. Analysis of the VP7 gene sequence revealed highest identities with unusual human rotavirus G3 strain CMH222 at 98.7% on the nucleotide and 99.6% on the amino acid levels. Phylogenetic analysis of the VP7 sequence confirmed that the CMH079/05 strain formed a cluster with G3 rotavirus reference strains and showed the closest lineage with the CMH222 strain. Analysis of partial VP4 gene of CMH079/05 revealed highest degree of sequence identities with P[10] rotavirus prototype strain 69M at nucleotide and amino acid levels of 92.9% and 94.6%, respectively. Phylogenetic analysis of the VP4 sequence revealed that CMH079/05 and 69M clustered closely together in a monophyletic branch separated from other rotavirus genotypes. To our knowledge, this is a novel G–P combination of G3 and P[10] genotypes. In addition, analyses of VP6, NSP4, and NSP5/6 genes revealed these uncommon genetic characteristics: (i) the VP6 gene differed from the four other known subgroups; (ii) the NSP4 gene was identified as NSP4 genetic group C, an uncommon group in humans; and (iii) the NSP5/6 gene was most closely related with T152, a G12P[9] rotavirus previously isolated in Thailand. The finding of uncommon G3P[10] rotavirus in this pediatric patient provided additional evidence of the genetic diversity of human group A rotaviruses in Chiang Mai, Thailand. J. Med. Virol. 81:176–182, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

6.
Summary. Long electropherotype with Subgroup I specificity is a common feature of animal rotaviruses. In an epidemic of infantile gastroenteritis in Manipur, India, long but SG I strains predominated in the outbreak in the year 1987–88. One such strain isolated from that region, following the outbreak had G9P [19] specificity. As this is a rare combination, the gene sequences encoding VP4, VP6, VP7, NSP1, NSP2, NSP3, NSP4 and NSP5 of this strain were analyzed. All these genes except VP7 were closely related to porcine rotaviruses (95–99% identity at amino acid level) and clustered with the porcine strains in phylogenetic analysis. In addition, it had subgroup I nature and belonged to NSP4 genotype B which is characteristic of animal rotaviruses. This is the first report of a rotavirus with VP6 and NSP4, two crucial proteins thought to be involved in host range restriction and pathogenicity, were of porcine origin and caused diarrhoea in a human host. Among the genes of this strain sequenced so far, only VP7 had highest identity to human strains at amino acid level. This study suggests reassortment may be occurring between human and other animal strains and some of the reassortant viruses may be virulent to humans.  相似文献   

7.
Long electropherotype with Subgroup I specificity is a common feature of animal rotaviruses. In an epidemic of infantile gastroenteritis in Manipur, India, long but SG I strains predominated in the outbreak in the year 1987-88. One such strain isolated from that region, following the outbreak had G9P [19] specificity. As this is a rare combination, the gene sequences encoding VP4, VP6, VP7, NSP1, NSP2, NSP3, NSP4 and NSP5 of this strain were analyzed. All these genes except VP7 were closely related to porcine rotaviruses (95-99% identity at amino acid level) and clustered with the porcine strains in phylogenetic analysis. In addition, it had subgroup I nature and belonged to NSP4 genotype B which is characteristic of animal rotaviruses. This is the first report of a rotavirus with VP6 and NSP4, two crucial proteins thought to be involved in host range restriction and pathogenicity, were of porcine origin and caused diarrhoea in a human host. Among the genes of this strain sequenced so far, only VP7 had highest identity to human strains at amino acid level. This study suggests reassortment may be occurring between human and other animal strains and some of the reassortant viruses may be virulent to humans.  相似文献   

8.
Ciarlet M  Hyser JM  Estes MK 《Virus genes》2002,24(2):107-118
The bovine rotavirus (BRV) WC3 serves as the background strain in the development of a multivalent reassortant vaccine against rotavirus gastroenteritis in infants. The genes encoding the outer capsid spike protein VP4, the inner capsid protein VP6, the outer capsid glycoprotein VP7, and the viral enterotoxin NSP4 of BRV WC3 were sequenced. Comparative analysis of the deduced amino acids of the sequenced genes indicated that the BRV WC3 strain shares a high degree of amino acid identity with serotype P7[5] VP4 (93–96%), serotype G6 VP7 (91–97%), subgroup (SG) I VP6 (96–99%), and NSP4 genogroup A (96–98%) BRV strains. Our results confirm and extend previous studies which suggested that the VP4 of BRV WC3 was closely related to that of the P7[5] prototype, BRV UK. In addition, the VP6 and VP7 of BRV WC3 were very similar to the VP6 and VP7 of both SG I and G6 BRV NCDV and UK strains. However, the NSP4 of BRV WC3 was more closely related to that BRV NCDV, the P6[1] prototype, than to that of BRV UK.  相似文献   

9.
10.
11.
During a surveillance study (November 2001-March 2005), one rare G15P[11] and two rare G15P[21] bovine group A rotavirus strains were detected in diarrhoeic calves in Eastern India. Sequence analysis of the VP8*, VP6, NSP4 and NSP5 genes of the G15P[11] strain confirmed its bovine origin. Although the NSP4 and NSP5 genes of the two G15P[21] strains were of bovine origin, their VP6 genes shared higher nucleotide and amino acid identities with simian strain SA11 (92.5-93.1% and 98.5-98.7%) than bovine strains (88.5-88.9% and 97-97.2%), and by phylogenetic analysis, exhibited clustering with SA11, distantly related to bovine strains. All these pointed towards a possible reassortment event of VP6 gene between bovine and simian (SA11-like) strains. Therefore, the present study provided molecular evidence for bovine origin of G15 strains and revealed a rare instance of genetic diversity in the bovine VP6 gene, otherwise conserved in group A rotavirus strains from cattle.  相似文献   

12.
The genes encoding the glycoprotein VP7, the VP8* trypsin-cleavage product of the protein VP4, a fragment of the protein VP6 associated with subgroup (SG) specificity, and the enterotoxin NSP4 of rotavirus strains identified in diarrheic fecal samples of rabbits in Italy were sequenced. The Italian lapine rotavirus (LRV) strains possessed a G3 VP7, SG I VP6, and KUN-like NSP4, a gene constellation typical of LRVs. One LRV strain (30/96), isolated in 1996, shared the closest amino acid (aa) identity (87-96%) with the P[14] genotype, composed of human and LRV strains. Conversely, three LRV strains (160/01, 229/01, and 308/01), identified in 2001, were highly identical (90-95%) among each other, but showed low aa identity (34-77%) to the VP8* genotype-specific sequences of representative rotavirus strains of all remaining P genotypes. This report confirms the worldwide genetic constellations of LRVs and identifies a novel VP4 genotype in rabbits, tentatively proposed as genotype P[22].  相似文献   

13.
During the surveillance of rotavirus strains that were circulating in Argentinean children from 2000 to 2004, seven rotaviruses were detected bearing the genotype combination G9P[8]. The molecular characterization of the VP7 and NSP4 genes and the RNA migration patterns support the hypothesis that rotaviruses G9 could have been reintroduced into Argentina as a novel G9P[8] strain, rather than represent VP7 gene reassortants from G9P[6] strains that had been circulating previously in this country.  相似文献   

14.
Summary.  In an epidemiological study of symptomatic human rotaviruses in Mysore, India during 1993 and 1994, isolates MP409 and MP480 were isolated from two children suffering from severe, acute dehydrating diarrhea. Both isolates exhibited ‘long’ RNA pattern and subgroup I specificity suggesting the likelihood of their animal origin. Both isolates did not react with monoclonal antibodies (MAbs) specific for serotypes G1 to G6 as well as G10. To determine the genetic origin of these isolates, complete nucleotide sequences of genes encoding the outer capsid proteins VP4 and VP7, nonstructural proteins NSP1 and NSP3 and viral enterotoxin protein NSP4 from MP409 and partial sequences of genes from MP480 were determined. Comparison of the 5′ and 3′ terminal sequences of 250 nucleotides revealed complete identity of the gene sequences in both strains suggesting that MP409 and MP480 are two different isolates of a single strain. Comparison of the nucleotide and deduced amino acid sequences of VP4, VP7, NSP1 and NSP3 of MP409 with published sequences of strains belonging to different serotypes revealed that both outer capsid proteins VP4 and VP7 and NSP1 are highly related to the respective proteins from the P6[1], G8 type bovine rotavirus A5 isolated from a calf with diarrhoea in Thailand and that the NSP3 is highly homologous to that of bovine rotaviruses. The NSP4 protein showed greatest sequence identity with NSP4s belonging to the KUN genetic group to which NSP4s from human G2 type strains and bovine rotaviruses belong. MP409 and MP480 likely signify interspecies transmission of P6[1], G8 type strains from cattle to humans and represent the first P6[1] type rotaviruses isolated in humans. These and our previous studies on the asymptomatic neonatal strain I321 are of evolutionary and epidemiological significance in the context of close association of majority of the Indian population with cattle. Received September 29, 1999 Accepted February 4  相似文献   

15.
Summary During longitudinal epidemiological studies of rotavirus infections in children in Melbourne, Australia human G3P2 rotavirus strains causing asymptomatic or symptomatic infections have been identified. Eleven strains (AS strains) associated with asymptomatic infection of newborn babies from 1974–1984, and five strains (S strains) associated with symptomatic infection of newborn babies (4) or a 22 week old infant (1) during 1980–1986 were studied. The entire nucleotide sequences of genes coding for VP4, VP7, NSP4 and VP6 were derived for representative AS and S strains. The nucleotide sequences of neutralization epitope regions present on the outer capsid proteins VP4 and VP7 (regions C and F) showed extensive conservation of nucleotide and deduced amino acid sequence in all strains. Minor variations were observed over the 12 year period in VP7 epitope regions A and B in some strains. Specific conserved amino acids differences between the asymptomatic and symptomatic strains were observed in the genes encoding VP4 at aa133 and 303 (asparagine or threonine) and 380 (serine or isoleucine), VP7 at aa27 (threonine or isoleucine), aa29 (isoleucine or threonine), aa42 (valine or alanine) and aa238 (asparagine or aspartic acid/serine) and NSP4 at aa135 (isoleucine or valine). No amino acid changes were identified in gene 6. The observed amino acid differences occurred in proteins that have been implicated in virulence, and correlate with differences in clinical symptoms of infants infected with these strains. These results permit speculation about the genetic basis for virulence of human strains.The sequence data reported in this paper have been deposited in GenBank nucleotide sequence database under numbers U16299 and U42628.  相似文献   

16.
17.
Rotavirus genome segment 4, encoding the spike outer capsid VP4 protein, of a porcine rotavirus (PoRV) strain, 134/04-15, identified in Italy was sequenced, and the predicted amino acid (aa) sequence was compared to those of all known VP4 (P) genotypes. The aa sequence of the full-length VP4 protein of the PoRV strain 134/04-15 showed aa identity values ranging from 59.7% (bovine strain KK3, P8[11]) to 86.09% (porcine strain A46, P[13]) with those of the remaining 25 P genotypes. Moreover, aa sequence analysis of the corresponding VP8* trypsin cleavage fragment revealed that the PoRV strain 134/04-15 shared low identity, ranging from 37.52% (bovine strain 993/83, P[17]) to 73.6% (porcine strain MDR-13, P[13]), with those of the remaining 25 P genotypes. Phylogenetic relationships showed that the VP4 of the PoRV strain 134/04-15 shares a common evolutionary origin with porcine P[13] and lapine P[22] rotavirus strains. Additional sequence analyses of the VP7, VP6, and NSP4 genes of the PoRV strain 134/04-15 revealed the highest VP7 aa identity (95.9%) to G5 porcine strains, a porcine-like VP6 within VP6 genogroup I, and a Wa-like (genotype B) NSP4, respectively. Altogether, these results indicate that the PoRV strain 134/04-15 should be considered as prototype of a new VP4 genotype, P[26], and provide further evidence for the vast genetic and antigenic diversity of group A rotaviruses.  相似文献   

18.
Summary We have sequenced gene 5 encoding NSP1 for three human, two porcine, two bovine, one feline, and five equine rotavirus strains, and compared the nucleotide and deduced amino acid sequences with the published sequences for other various strains. Subgroup I human strains L26, 69M, and DS-1 were found to have a similar NSP1 sequence despite their different G serotypes, VP4 genotypes, and RNA patterns. The NSP1 sequence of the human strain K8 showed a high degree of homology to those of porcine strains OSU and YM. A high degree of homology was found among three equine strains (H2, FI-14, and FI23), but they differed from the other equine strains L338 and H1. The strain H1 was similar to the porcine strains. The feline strain Cat2 showed a high homology to bovine strains UK, RF, and A44. Thus, species-specific and interspecies relatedness of NSP1 sequences among human, porcine, bovine, feline and equine rotaviruses was found. Overall genomic relatedness of strains L26 and YM to various human and animal strains was also examined by RNA-RNA hybridization assay. The present and previous hybridization results showed that there is a good correlation in most strains between overall genomic property (or genogroup) and NSP1 sequence homology.Sequence data from this article have been deposited with the GSDB, DDBJ, EMBL and NCBI Data Libraries under Accession Nos. D38150 (strain L26), D38151 (strain 69M), D38152 (strain K8), D38153 (strain OSU), D38154 (strain YM), D38155 (strain FI-14), D38156 (strain FI23), D38157 (strain H2), D38158 (strain L338), U23726 (strain A44), D38148 (strain A5-13), U23727 (strain Cat2), and U23728 (strain H1).  相似文献   

19.
Three G3P[9] rotaviruses, detected in children hospitalized with gastroenteritis in Palermo, Italy, were found to be genetically related to strains of either human or feline origin in the VP7, VP4, and VP6 genes. In contrast, in the NSP4 gene the viruses resembled G2P[4] human strains, suggesting a reassortment between AU-1-like and Kun-like strains.  相似文献   

20.
Serotype G9 rotaviruses have emerged as one of the leading causes of gastroenteritis in children worldwide. We examined 29 representative G9 rotavirus isolates from a 6-year collection (1997-2002) and determined the level of variation in genes encoding non-structural proteins, NSP1 and NSP4. Northern hybridization analysis with a whole genome probe derived from the prototype G9 strain, F45, revealed that the NSP1 gene (gene 5) of two isolates (R1 and R14) did not exhibit significant homology. Complementary DNA probes of R1 and R14 genes 5 were used in Northern blot hybridization and indicated the presence of at least two gene 5 alleles among Melbourne G9 rotaviruses. Nucleotide sequence analysis revealed that isolates carrying the R14 gene 5 shared 94-98% sequence identities with one another, while sequence identity to R1 was 78%. Surprisingly, R1 displayed 96% nucleotide identity with the prototype serotype G1 strain, Wa. The detection of different alleles of NSP1 genes prompted us to investigate the level of variation in another non-structural protein, NSP4, a multifunctional protein and the first viral-encoded enterotoxin. Phylogenetic analysis indicated that while all isolates clustered into one group containing the Wa NSP4 allele (genotype 1), isolate R1 was most closely related to Wa. This study reveals new information about the diversity of non-structural proteins of G9 rotaviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号