首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of different cytochrome P450 enzymes on the metabolism of 3-methylindole (3MI) was investigated using selective chemical inhibitors. Eight chemical inhibitors of P450 enzymes were screened for their inhibitory specificity towards 3MI metabolism in porcine microsomes: alpha-naphthoflavone (CYP1A1/2), 8-methoxypsoralen (CYP2A6), menthofuran (CYP2A6), diethyldithiocarbamate (CYP2A6), 4-methylpyrazole (CYP2E1), sulphaphenazole (CYP2C9), quinidine (CYP2D6), and troleandomycin (CYP3A4). The production of 3MI metabolites was only affected by the presence of inhibitors of CYP2A6 and CYP2E1 in the microsomal incubations. In a second experiment, a set of porcine microsomes (n = 30) was analyzed for CYP2A6 content by protein immunoblot analysis and for their coumarin 7-hydroxylation activity (CYP2A6 activity). Both CYP2A6 content and enzymatic activity were found to be highly and negatively correlated with 3MI fat content. The results of the present study indicate that the CYP2A6 porcine ortholog plays an important role in the metabolism of 3MI and that measurement of CYP2A6 levels and/or activity could be a useful marker for 3MI-induced boar taint.  相似文献   

2.
A study was conducted to investigate qualitative and quantitative aspects of the phase I metabolism of 3-methylindole (3MI) by porcine liver microsomes. Microsomal suspensions were prepared from the liver of 30 intact (uncastrated) male pigs. Metabolites produced in microsomal incubations were identified and quantitated with HPLC-UV, HPLC-fluorescence, and UV-spectral analysis; liquid chromatography-mass spectrometry (LC-MS) and NMR were used for the identification of a metabolite for which a reference compound was not available. The results showed that seven major metabolites of 3MI are produced by porcine microsomes, three of which had already been identified in pigs (3-OH-3-methyloxindole, 5-OH-3-methylindole, and 6-OH-3-methylindole). The other four major 3MI metabolites identified were 3-OH-3-methylindolenine, 3-methyloxindole, indole-3-carbinol, and 2-aminoacetophenone. On average, the metabolite that was produced in larger amounts was 3-OH-3-methylindolenine (45.1%), followed by the two oxindoles 3-methyloxindole (27.9%) and 3-OH-3-methyloxindole (18.5%). Average percentage of production of 6-OH-3-methylindole was 4.9%, whereas indole-3-carbinol accounted for 2.7% of all metabolites produced; 2-amino-acetophenone and 5-OH-3-methylindole were the metabolites produced in lesser amounts (0.5 and 0.3%, respectively). Large interindividual differences in the rate of production of all metabolites were observed. This variation could be attributed to differences in the activity and/or level of expression of phase I biotransformation enzymes and this issue should be further investigated.  相似文献   

3.
3-Methylindole (3MI) is a naturally occurring pulmonary toxin that requires metabolic activation. Previous studies have shown that 3MI-induced pneumotoxicity resulted from cytochrome P-450-catalyzed dehydrogenation of 3MI to an electrophilic methylene imine (3-methyleneindolenine), which covalently bound to cellular macromolecules. Multiple cytochrome P-450s are capable of metabolizing 3MI to several different metabolites, including oxygenated products. In the present study, the role of human CYP2F1 in the metabolism of 3MI was examined to determine whether it catalyzes dehydrogenation rather than hydroxylation or ring oxidation. Metabolism was examined using microsomal fractions from human lymphoblastoid cells that expressed the recombinant human CYP2F1 P-450 enzyme. Expression of CYP2F1 in the lymphoblastoid cells proved to be an appropriate expression system for this enzyme. Products were analyzed using HPLC and the mercapturate, 3-[(N-acetylcystein-S-yl)methyl]indole, of the reactive intermediate was identified and quantified. Product analysis showed that human CYP2F1 efficiently catalyzed the dehydrogenation of 3MI to the methylene imine without detectable formation of indole-3-carbinol or 3-methyloxindole. High substrate concentrations of 3MI strongly inhibited production of the dehydrogenated product, a result that may indicate the existence of mechanism-based inhibition of CYP2F1 by 3MI. Recombinant CYP2F1 demonstrated remarkable selectivity for the bioactivation of 3MI to the putative dehydrogenated reactive electrophile. Bioactivation of naphthalene to its pneumotoxic epoxide by CYP2F1 was also demonstrated.  相似文献   

4.
The aim of this study was to determine whether mouse CYP2A5 and CYP2F2 play critical roles in the bioactivation of 3-methylindole (3MI), a tissue-selective toxicant, in the target tissues, the nasal olfactory mucosa (OM) and lung. Five metabolites of 3MI were identified in NADPH- and GSH-fortified microsomal reactions, including 3-glutathionyl-S-methylindole (GS-A1), 3-methyl-2-glutathionyl-S-indole (GS-A2), 3-hydroxy-3-methyleneindolenine (HMI), indole-3-carbinol (I-3-C), and 3-methyloxindole (MOI). The metabolite profiles and enzyme kinetics of the reactions were compared between OM and lung, and among wild-type, Cyp2a5-null, and Cyp2f2-null mice. In lung reactions, GS-A1, GS-A2, and HMI were detected as major products, and I-3-C and MOI, as minor metabolites. In OM reactions, all five metabolites were detected in ample amounts. The loss of CYP2F2 affected formation of all 3MI metabolites in the lung and formation of HMI, GS-A1, and GS-A2 in the OM. In contrast, loss of CYP2A5 did not affect formation of 3MI metabolites in the lung but caused substantial decreases in I-3-C and MOI formation in the OM. Thus, whereas CYP2F2 plays a critical role in the 3MI metabolism in the lung, both CYP2A5 and CYP2F2 play important roles in 3MI metabolism in the OM. Furthermore, the fate of the reactive metabolites produced by the two enzymes through common dehydrogenation and epoxidation pathways seemed to differ with CYP2A5 supporting direct conversion to stable metabolites and CYP2F2 supporting further formation of reactive iminium ions. These results provide the basis for understanding the respective roles of CYP2A5 and CYP2F2 in 3MI's toxicity in the respiratory tract.  相似文献   

5.
1. The Phase II in vitro metabolism of 3-methylindole (3MI) metabolites was investigated in pigs to determine the possible relationship between 3MI Phase II metabolism and 3MI accumulation in fat. Sulphation and glucuronidation of five of the seven major metabolites found to be produced by porcine microsomes was investigated using porcine cytosol and microsomes, respectively. The possible formation of glutathione conjugates was also investigated using microsomally activated 3MI intermediate(s). 2. No sulphation or glucuronidation was observed for metabolites 3-hydroxy-3-methyloxindole, 3-methyloxindole, indole-3-carbinol or 2-aminoacetophenone; however, 5-hydroxy-3-methylindole (5-OH-3MI) was conjugated with both sulphate and glucuronic acid. 3. The enzyme responsible for sulphation of 5-OH-3MI was identified as the thermostable form of phenol-sulphotransferase (TS-PST) based on its susceptibility to TS-PST inhibitors and the correlation between sulphation of 5-OH-3MI and sulphation of the prototype substrate p-nitrophenol (r = 0.94, p < 0.001). 4. A 3MI-glutathione adduct was identified in microsomal incubations containing 3MI and glutathione. 5. Sulphation of 5-OH-3MI was high in pigs with low levels of 3MI in fat. No relationship was observed between 3MI levels in fat and either glutathione transferase or glucuronidation activities in liver.  相似文献   

6.
3-Methylindole (3 MI) is a selective pulmonary toxicant, and cytochrome P450 (P450) bioactivation of 3 MI, through hydroxylation, epoxidation, or dehydrogenation pathways, is a prerequisite for toxicity. CYP2F1 and CYP2F3 exclusively catalyze the dehydrogenation of 3 MI to 3-methyleneindolenine, without detectable formation of the hydroxylation or epoxidation products. It was not known whether 3 MI is simply an excellent dehydrogenation substrate for all P450 enzymes, or whether certain cytochrome P450s responsible for 3 MI bioactivation have unique active sites that only catalyze the dehydrogenation of the molecule, while other P450s would catalyze only the oxygenation of 3 MI. Therefore, the kinetics of product formation by the CYP2F1 and CYP2F3 enzymes were compared with other cytochrome P450 enzymes. The enzymes tested were CYP1A1, CYP1A2, CYP1B1, and CYP2E1. The CYP1A1 and CYP1A2 enzymes produced all three 3 MI metabolites: the dehydrogenation product, 3-methyleneindolenine (V(max)/K(m) = 4 and 22, respectively); the hydroxylation product, indole-3-carbinol (V(max)/K(m) = 42 and 100, respectively); and the epoxidation product, 3-methyloxindole (V(max)/K(m) = 4 and 72, respectively). These CYP1A enzymes catalyzed oxygenation of 3 MI at much faster rates than dehydrogenation. CYP1B1 produced indole-3-carbinol (V(max)/K(m) = 85) and 3-methyloxindole (V(max)/K(m) = 7), and CYP2E1 only produced 3-methyloxindole (V(max)/K(m) = 98), but neither enzyme catalyzed the formation of the dehydrogenated product. Six additional P450 enzymes that were tested formed none of the dehydrogenation product. The ability of the various CYP1 family enzymes to catalyze the formation of all three major 3 MI metabolites, along with the specific oxygenation by CYP2E1, illustrates that dehydrogenation of 3 MI is not a substrate-directed process, but that the members of the CYP2F family possess unique active sites that specifically catalyze only the dehydrogenation mechanism.  相似文献   

7.
Metabolism and bioactivation of 3-methylindole (3MI) were investigated in human liver microsomes. The metabolism of two deuterium-labeled analogues of 3MI permitted a relatively unambiguous identification of multiple metabolites and glutathione (GSH) adducts of reactive intermediates. A total of eight oxidized metabolites were detected, five of which were assigned as previously identified 3-methyloxindole, 3-hydroxy-3-methylindolenine, 3-hydroxy-3-methyloxindole, 5-hydroxy-3-methylindole, and 6-hydroxy-3-methylindole. Among the three new metabolites, one was either 4- or 7-OH-3-methylindole, and the other two were derived from additional oxidation on the phenyl ring of 3-methyloxindole. When GSH was added to the microsomal incubations, seven conjugates that had molecular ions corresponding to the incorporation of GSH and an atom of oxygen at m/z 453 (group I) were produced, and two additional conjugates had molecular ions at m/z 437 that corresponded to the incorporation of GSH with no additional oxygen (group II). Two conjugates in group I (m/z 453) were apparently derived by GSH addition to the 5,6-epoxide metabolite of 3-methyloxindole. These two GSH adducts were tentatively identified as 5-(glutathione-S-yl)-3-methyloxindole and 6-(glutathione-S-yl)-3-methyloxindole. The most abundant conjugate in group I was identified as 3-(glutathione-S-yl)-3-methyloxindole, which substantiated the presence of the putative 2,3-epoxy-3-methylindole intermediate. The remaining four adducts in group I were likely formed by conjugation of GSH at different positions of the phenyl ring, possibly via oxidation of 5-hydroxy-3-methylindole and 6-hydroxy-3-methylindole to two very interesting new electrophilic benzoquinone imine intermediates. For the group II conjugates (m/z 437), two isomers were identified as 2-(glutathione-S-yl)-3-methylindole and 3-(glutathione-S-yl-methyl)-indole. The former adduct was primarily derived from the 2,3-epoxide intermediate by thiol conjugation followed by dehydration. The latter adduct was consistent with our previously published work on the dehydrogenation of 3MI. In those studies, we showed that the reactive intermediate, 3-methylenenindolenine, was formed by hydrogen abstraction at the methyl group and was trapped with GSH. The putative dehydrogenation bioactivation mechanism is also substantiated by the finding that CYP2E1 selectively generated 2-(glutathione-S-yl)-3-methylindole but did not produce 3-(glutathione-S-yl-methyl)-indole. In summary, the results not only confirmed the formation of 2,3-epoxide-3-methylindole in human liver microsomes but also suggested that the phenolic metabolites of 3-methylindole were dehydrogenated to previously uncharacterized reactive intermediates.  相似文献   

8.
The selective toxicity of chemicals to lung tissues is predominantly mediated by the selective expression of certain pulmonary cytochrome P450 enzymes. This report describes the purification, cloning, and characterization of a unique enzyme, CYP4B2, from goat lung. The purified P450 enzyme was isolated by multistep ion exchange chromatography to electrophoretic homogeneity with an apparent molecular mass of 55,000 Da. Western blotting studies demonstrated that CYP4B enzymes were selectively expressed in lung tissues of rabbits, rats, and mice. Two cDNAs, CYP4B2 and CYP4B2v, were cloned from goat lung tissue. CYP4B2 was predicted to be 511 amino acids and approximately 82% similar to the four known CYP4B1 proteins. Concurrently, a variant of the known human CYP4B1 cDNA, that contained a S207 insertion, was cloned from human lung tissue. The modified recombinant goat CYP4B2 was expressed in Escherichia coli and the enzyme catalyzed the N-hydroxylation of the prototypical substrate 2AF. CYP4B2 preferentially dehydrogenated, rather than hydroxylated, the pneumotoxicant 3-methylindole (3MI) (V(max) = 4.61 versus 0.83 nmol/nmol of P450/min, respectively). To investigate the relevance of covalent heme binding of CYP4 enzymes in CYP4B2-mediated metabolism of 3MI, a site-directed mutant (CYP4B2/A315E) was evaluated. The mutation had little effect on the V(max) of either dehydrogenation or hydroxylation but increased the K(m), which decreased the catalytic efficiency (V/K) for 3MI. The A315E mutation shifted the absorbance maximum of the enzyme from 448 to 451 nm, suggesting that the electron density of the heme was altered. These results demonstrate that CYP4B2 is highly specific for methyl group oxidation of 3MI, without formation of ring-oxidized metabolites, and seems to be predominately responsible for the highly organ-specific toxicity of 3MI in goats.  相似文献   

9.
评估淫羊藿总黄酮对大鼠肝细胞色素P450及其主要亚型活性的潜在影响。淫羊藿总黄酮以300mg/kg/d的剂量对SD大鼠进行连续灌胃处理15天,测定肝微粒体中cYP450含量与CYP1A2、CYP3A4和CYP2E1亚型活性,观察淫羊藿总黄酮的效应。CYP1A2的活性用荧光比色法进行测定,CYP3A4和CYP2E1的活性用紫外可见分光光度法测定。淫羊藿总黄酮处理后的大鼠肝脏CYP450含量及CYP1A2、CYP3A4和CYP2E1亚型活性均明显增高,其中CYP1A2和CYP2E1活性升高显著(P〈0.01)。淫羊藿总黄酮对大鼠肝脏CYP450及主要亚型CYP1A2、CYP3A4和CYP2E1活性均有诱导效应。  相似文献   

10.
The role of specific cytochrome P450 (P450) isoforms in the metabolism of ethinylestradiol (EE) was evaluated. The recombinant human P450 isozymes CYP1A1, CYP1A2, CYP2C9, CYP2C19, and CYP3A4 were found to be capable of catalyzing the metabolism of EE (1 microM). Without exception, the major metabolite was 2-hydroxy-EE. The highest catalytic efficiency (Vmax/Km) was observed with rCYP1A1, followed by rCYP3A4, rCYP2C9, and rCYP1A2. The P450 isoforms 3A4 and 2C9 were shown to play a significant role in the formation of 2-hydroxy-EE in a pool of human liver microsomes by using isoform-specific monoclonal antibodies, in which the inhibition of formation was approximately 54 and 24%, respectively. The involvement of CYP3A4 and CYP2C9 was further confirmed by using selective chemical inhibitors (i.e., ketoconazole and sulfaphenazole). The relative contribution of each P450 isoform to the 2-hydroxylation pathway was obtained from the catalytic efficiency of each isoform normalized by its relative abundance in the same pool of human liver microsomes, as determined by quantitative Western blot analysis. Collectively, these results suggested that multiple P450 isoforms were involved in the oxidative metabolism of EE in human liver microsomes, with CYP3A4 and CYP2C9 as the major contributing enzymes.  相似文献   

11.
Inhibition of CYP2E1 catalytic activity in vitro by S-adenosyl-L-methionine   总被引:1,自引:0,他引:1  
The objective of this work was to evaluate the possible in vitro interactions of S-adenosyl-l-methionine (SAM) and its metabolites S-(5'-Adenosyl)-l-homocysteine (SAH), 5'-Deoxy-5'-(methylthio)adenosine (MTA) and methionine with cytochrome P450 enzymes, in particular CYP2E1. SAM (but not SAH, MTA or methionine) produced a type II binding spectrum with liver microsomal cytochrome P450 from rats treated with acetone or isoniazid to induce CYP2E1. Binding was less effective for control microsomes. SAM did not alter the carbon monoxide binding spectrum of P450, nor denature P450 to P420, nor inhibit the activity of NADPH-P450 reductase. However, SAM inhibited the catalytic activity of CYP2E1 with typical substrates such as p-nitrophenol, ethanol, and dimethylnitrosamine, with an IC(50) around 1.5-5mM. SAM was a non-competitive inhibitor of CYP2E1 catalytic activity and its inhibitory actions could not be mimicked by methionine, SAH or MTA. However, SAM did not inhibit the oxidation of ethanol to alpha-hydroxyethyl radical, an assay for hydroxyl radical generation. In microsomes engineered to express individual human P450s, SAM produced a type II binding spectrum with CYP2E1-, but not with CYP3A4-expressing microsomes, and SAM was a weaker inhibitor against the metabolism of a specific CYP3A4 substrate than a specific CYP2E1 substrate. SAM also inhibited CYP2E1 catalytic activity in intact HepG2 cells engineered to express CYP2E1. These results suggest that SAM interacts with cytochrome P450s, especially CYP2E1, and inhibits the catalytic activity of CYP2E1 in a reversible and non competitive manner. However, SAM is a weak inhibitor of CYP2E1. Since the K(i) for SAM inhibition of CYP2E1 activity is relatively high, inhibition of CYP2E1 activity is not likely to play a major role in the ability of SAM to protect against the hepatotoxicity produced by toxins requiring metabolic activation by CYP2E1 such as acetaminophen, ethanol, carbon tetrachloride, thioacetamide and carcinogens.  相似文献   

12.
Cytochromes P450 (P450s) are major catalysts in the metabolism of xenobiotics and endogenous substrates such as estradiol (E2). It has previously been shown that E2 is predominantly metabolized in humans by CYP1A2 and CYP3A4 with 2-hydroxyestradiol (2-OHE2) the major metabolite. This study examines effects of deployment-related and other chemicals on E2 metabolism by human liver microsomes (HLM) and individual P450 isoforms. Kinetic studies using HLM, CYP3A4, and CYP1A2 showed similar affinities (Km) for E2 with respect to 2-OHE2 production. Vmax and CLint values for HLM are 0.32 nmol/min/mg protein and 7.5 microl/min/mg protein; those for CYP3A4 are 6.9 nmol/min/nmol P450 and 291 microl/min/nmol P450; and those for CYP1A2 are 17.4 nmol/min/nmol P450 and 633 microl/min/nmol P450. Phenotyped HLM use showed that individuals with high levels of CYP1A2 and CYP3A4 have the greatest potential to metabolize E2. Preincubation of HLM with a variety of chemicals, including those used in military deployments, resulted in varying levels of inhibition of E2 metabolism. The greatest inhibition was observed with organophosphorus compounds, including chlorpyrifos and fonofos, with up to 80% inhibition for 2-OHE2 production. Carbaryl, a carbamate pesticide, and naphthalene, a jet fuel component, inhibited ca. 40% of E2 metabolism. Preincubation of CYP1A2 with chlorpyrifos, fonofos, carbaryl, or naphthalene resulted in 96, 59, 84, and 87% inhibition of E2 metabolism, respectively. Preincubation of CYP3A4 with chlorpyrifos, fonofos, deltamethrin, or permethrin resulted in 94, 87, 58, and 37% inhibition of E2 metabolism. Chlorpyrifos inhibition of E2 metabolism is shown to be irreversible.  相似文献   

13.
The polycyclic aromatic hydrocarbon naphthalene is an environmental pollutant, a component of jet fuel, and, since 2000, has been reclassified as a potential human carcinogen. Few studies of the in vitro human metabolism of naphthalene are available, and these focus primarily on lung metabolism. The current studies were performed to characterize naphthalene metabolism by human cytochromes P450. Naphthalene metabolites from pooled human liver microsomes (pHLMs) were trans-1,2-dihydro-1,2-naphthalenediol (dihydrodiol), 1-naphthol, and 2-naphthol. Metabolite production generated Km values of 23, 40, and 116 microM And Vmax values of 2860, 268, and 22 pmol/mg protein/min, respectively. P450 isoform screening of naphthalene metabolism identified CYP1A2 as the most efficient isoform for producing dihydrodiol and 1-naphthol, and CYP3A4 as the most effective for 2-naphthol production. Metabolism of the primary metabolites of naphthalene was also studied to identify secondary metabolites. Whereas 2-naphthol was readily metabolized by pHLMs to produce 2,6- and 1,7-dihydroxynaphthalene, dihydrodiol and 1-naphthol were inefficient substrates for pHLMs. A series of human p450 isoforms was used to further explore the metabolism of dihydrodiol and 1-naphthol. 1,4-Naphthoquinone and four minor unknown metabolites from 1-naphthol were observed, and CYP1A2 and 2D6*1 were identified as the most active isoforms for the production of 1,4-naphthoquinone. Dihydrodiol was metabolized by P450 isoforms to three minor unidentified metabolites with CYP3A4 and CYP2A6 having the greatest activity toward this substrate. The metabolism of dihydrodiol by P450 isoforms was lower than that of 1-naphthol. These studies identify primary and secondary metabolites of naphthalene produced by pHLMs and P450 isoforms.  相似文献   

14.
The aim of our study was to identify the form(s) of cytochrome P450 responsible for the metabolism of deramciclane, a new anxiolytic drug candidate. The main routes of biotransformation in hepatic microsomes were side chain modification (N-demethylation or total side chain cleavage) and hydroxylation at several points of the molecule. Although several cytochrome P450 forms were involved in the metabolism, the role of CYP2E1 should be emphasized, since it catalyzed almost all steps. Production of deramciclane metabolites was significantly inhibited by diethyl-dithiocarbamate and was elevated in liver microsomes of isoniazid-treated rats. Furthermore, cDNA-expressed rat CYP2E1 generated the metabolites formed by side chain modification and hydroxylation. Neither deramciclane nor its primary metabolite, N-desmethyl deramciclane were able to influence directly the activity of CYP2E1. However, during the biotransformation, one or more metabolites must have been formed which were potent inhibitors of CYP2E1.  相似文献   

15.
《Toxicology in vitro》2014,28(7):1190-1195
Due to limited availability of human liver tissue for the study of cytochrome P450 (CYP450), porcine liver tissue has been suggested as an alternative source to prepare microsomes and hepatocytes. The porcine liver is made by four different lobes. The present study investigated the expression and activity of specific CYP450 isoforms in the four lobes, with the purpose to examine if one lobe of the porcine liver resembles the human more than others. Samples from the four major lobes were taken from female pigs and mRNA expression and activity of CYP1A, 2A, 2C, 2D, 2E and 3A determined. The results showed no differences in specific mRNA expression and activity of any of the investigated CYP450 isoforms. In conclusion, the study shows that all parts of the porcine liver are equally useful as model tissue.  相似文献   

16.
Vanoxerine (1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine; GBR12909) is a promising agent for the treatment of cocaine dependence. Knowledge of the major pathway for GBR12909 metabolism is important for prediction of the likelihood of drug-drug interactions, which may affect the therapeutic clinical outcome, when this agent is used in cocaine-dependent individuals receiving multiple drug therapy. We studied biotransformation of GBR12909 in human liver microsomes (n = 4), human hepatocytes, and microsomes containing cDNA-expressed human P450 isoforms with GBR12909 concentrations within the range of steady-state plasma concentrations detected in healthy volunteers. A high-pressure liquid chromatography assay was used to measure parent GBR12909 and its primary metabolite. GBR12909 was metabolized by human liver microsomes, hepatocytes, and cDNA-expressed human P450s to a single metabolite. Ketoconazole, a selective inhibitor of CYP3A, reduced GBR12909 biotransformation in human liver microsomes and primary hepatocytes by 92 +/- 2 and 92.4 +/- 0.4%, respectively. Quercetin (an inhibitor of CYP2C8/3A4) was a less effective inhibitor producing 62 +/- 22% inhibition in human liver microsomes and 54 +/- 35% in hepatocytes. Other P450 selective inhibitors did not decrease GBR12909 biotransformation more than 29% in either human liver microsomes or hepatocytes with the exception of chlorzoxazone (CYP2E1), which inhibited GBR12909 biotransformation by 71.4 +/- 18.5% in primary human hepatocytes. Ciprofloxacin (CYP1A2), sulfaphenazole (CYP2C9), quinidine (CYP2D6), chlorzoxazone (CYP2E1), and mephenytoin (CYP2C19) did not demonstrate statistically significant inhibition (p > 0.05) of GBR12909 biotransformation in liver microsomes. cDNA-expressed P450 3A4 metabolized GBR12909 to a greater extent than 2C8 and 2E1. These data suggest the possibility that multiple P450 isoforms may be involved in human GBR12909 metabolism but that CYP3A appears to be the major enzyme responsible for human GBR12909 biotransformation.  相似文献   

17.
1.?Humans and animals are commonly exposed to indole-3-carbinol (I3C) and resveratrol (RES) via food or beverages. Moreover, these compounds have been demonstrated to potentially cause food–drug interactions. However, information about their combined effects is limited. Therefore, we investigated the effects of I3C and RES, both as single compounds and in combination, on cytochrome P450 1A and 3A activity and gene expression.

2.?Using porcine microsomes, we demonstrated that RES caused non-competitive inhibition of CYP1A activity and un-competitive inhibition of CYP3A activity. Compared to the effect of single compounds, co-treatment with I3C and RES increased a degree of inhibition of CYP1A activity.

3.?In porcine primary hepatocytes, treatment with I3C and RES resulted in induction of CYP1A1, CYP1A2 and CYP3A29 mRNA expression.

4.?In conclusion, we demonstrated that both RES and I3C could cause food–drug interactions and that the combined effect could be more potent in doing so.  相似文献   

18.
Buprenorphine (BUP) is a synthetic derivative of the morphine alkaloid thebaine. BUP is metabolized by N-dealkylation to form the active metabolite nor-buprenorphine (Nor-BUP), and both undergo subsequent glucuronidation. Although BUP has been used clinically for years, its metabolism has still not been fully elucidated. The aim of this study was to clarify the identity of the human hepatic cytochromes P450 (P450s) involved in BUP metabolism and to investigate other potential metabolites. The metabolism of BUP was examined using human liver microsomes (HLM) and Ad293 P450-transfected cell lines, as well as CYP 3A4 and 2C8 recombinant isoforms. The kinetic parameters of metabolite formation were calculated for HLM and competent isoforms. Individual contribution of P450 isoforms in BUP metabolism as well as Nor-BUP production was evaluated using chemical inhibition experiments, as well as the relative activity factor approach. The analytical method used was based on liquid chromatography-mass spectrometry. Among the 13 P450 isoforms tested, CYP 3A4, 2C8, 3A5, and 3A7 produced Nor-BUP. Based on the results of chemical inhibition, CYP 3A4 accounts for about 65% of Nor-BUP production and CYP 2C8 for about 30%. BUP utilization by either HLM or P450-transfected cells revealed that another oxidative metabolic pathway exists, which was found to involve CYP 2C9, 2C18, 2C19, and mainly CYP 3A. Incubation of BUP or Nor-BUP with HLM led to the formation of new metabolites, identified by tandem mass spectrometry as being hydroxy-BUP and hydroxy-Nor-BUP. Hydroxy-BUP was produced by the CYP 3A, but not the 2C isoforms.  相似文献   

19.
Because YM17E (1,3-bis[[1-cycloheptyl-3-(p-dimethylaminophenyl)ureido]methyl]benzene dihydrochloride) inhibits acyl coenzyme A:cholesterol acyltransferase (ACAT) it has potential application in the treatment of hypercholesterolaemia. In man and animals YM17E is extensively metabolized, via N-demethylation, to five active metabolites (M1, M2-a, M2-b, M3 and M4). The main objectives of this study were to examine inhibition of YM17E metabolism by the products and identify the cytochrome P450 isoforms in liver microsomes which catalyse in-vitro YM17E metabolism in man. In microsomes in man, N-demethylation of YM17E to M1 occurred enzymatically; for up to 45 s the rate was linearly proportional to the microsomal protein concentration. This reaction was inhibited by metabolites M2-a, M2-b, M3 and M4. Further, N-demethylation of [14C]-YM17E was also inhibited by its product, M1. These results showed that primary metabolism of YM17E was inhibited by its products, and supported the finding that the non-linear increase in plasma concentration of the parent drug and metabolites observed in an in-vivo study was due to inhibition by these products. Metabolic activity in microsomes from ten individual human livers demonstrated that YM17E N-demethylase activity correlated closely with testosterone 6β-hydroxylase activity. When cytochrome P450 isozyme-specific substrates and chemical inhibitors were used to inhibit YM17E N-demethylase activity, CYP3A-specific substrate and inhibitors such as nifedipine, ketoconazole and triacetyloleandomycin strongly inhibited this activity, whereas CYP1A-specific substrate or inhibitor, ethoxyresorufin and α-naphthoflavone, inhibited weakly. Other CYP inhibitors, in contrast, had few or no effects. An inhibition study using anti-rat CYP1A1, CYP2B1, CYP2C11, CYP2E1 and CYP3A2 antibodies demonstrated that only anti-rat CYP3A2 antibody inhibited YM17E metabolism, to 40% of control level, with no other antibodies showing an inhibitory effect. Of seven cDNA-expressed P450 isoforms in man (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2D6, CYP2E1 and CYP3A4), CYP3A4, CYP2D6 and CYP1A2 isozyme exhibited substantial catalytic activity of N-demethylation of YM17E. These results indicate the predominant role of CYP3A4 in liver metabolism of YM17E in man.  相似文献   

20.
1. Primary porcine hepatocytes and enterocytes were isolated and cultured in Williams' E medium for up to 10 days to investigate potential organ differences in the metabolism of the immunosuppressive compound tacrolimus (FK 506) and of two investigational drugs (KC11346 and KC12291). Using LC-MS (FK506) and HPLC-FL (KC 11346/12291) a number of metabolites with identical mass and/or identical retention time could be detected. 2. In the case of tacrolimus hepatocytes and enterocytes produced the same spectrum of metabolites, e.g. bisdemethyl-tacrolimus, demethyl-tacrolimus, demethyl-hydroxy-tacrolimus and hydroxy-tacrolimus, albeit at varying intensities. 3. Treatment of enterocyte cultures with dexamethasone increased the overall metabolite formation very significantly (up to 36 fold). 4. The metabolism of tacrolimus was also studied with preparations of insect cells, that express specifically high levels of individual human cytochrome P450 (CYP) isoenzymes. All metabolites could be generated with microsomal preparations specifically expressing CYP3A4, but hydroxy-tacrolimus was exclusively produced by CYP3A5. 5. In the case of the investigational drugs KC 11346 and KC 12291 only three metabolites were formed by cultured enterocytes whereas hepatocytes produced 10 and 20 metabolites, respectively. 6. When assessed at the protein level CYP1A and CYP3A were expressed in cultures of porcine enterocytes for up to 10 days but porcine hepatocytes expressed additionally CYP2C9/10. 7. In conclusion, primary enterocytes and hepatocytes can be successfully cultured for several days while maintaining mono-oxygenase activity and may therefore be used as a tool for studying intestinal and hepatic metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号