首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The beneficial effects of an antagonist of the thromboxane A2/prostaglandin endoperoxide receptor, 7-[2 alpha,4 alpha-(dimethylmethano)-6 beta-(2-cyclopentyl-2 beta- hydroxyacetamido)-1 alpha-cyclohexyl]-5(Z)-heptenoic acid (ONO-3708) on thrombosis were examined. ONO-3708 at 0.1-3 microM inhibited the human platelet aggregation induced by thromboxane A2, prostaglandin H2, collagen, ADP (secondary phase) and epinephrine (secondary phase) without affecting prostanoid synthesis and the content of cyclic AMP in platelets. The in vivo effects, on coronary thrombosis in this case, were examined in two canine models. ONO-3708, 3 to 300 micrograms/kg i.v., prevented dose dependently the coronary thrombosis induced by partial obstruction of the coronary artery. ONO-3708, 3 micrograms/kg per min i.v., significantly prevented electrically stimulated coronary thrombosis without affecting systemic blood pressure and heart rate. These results indicate that the thromboxane A2/prostaglandin endoperoxide receptor could play an important role in the pathogenesis of thrombosis and that ONO-3708 may have therapeutic advantages in preventing thrombosis.  相似文献   

2.
AA-2414, (+/-)-7-(3,5,6-trimethyl-1,4-benzoquinon-2-yl)-7-phenylheptanoi c acid, inhibited the aggregation of guinea pig platelets induced by a prostaglandin endoperoxide (PGH2) analogue, U-44069 and the specific binding of another analogue, [3H]U-46619 to washed guinea pig platelets with IC50 values of 3.1 x 10(-7) and 8.2 x 10(-9) M, respectively. AA-2414 competitively inhibited the contraction of rabbit aorta and pig coronary arteries induced by U-44069 with pA2 values of 8.3 and 9.0, respectively. AA-2414 also inhibited the contraction of rabbit aorta induced by PGF2 alpha (pA2: 7.8) and the contraction of pig coronary arteries induced by PGF2 alpha, PGD2 and 9 alpha,11 beta-PGF2 with pA2 values of 7.8, 8.6 and 7.8, respectively. But, AA-2414 had no effect on the antiaggregatory effect of PGD2 on the aggregation of guinea pig platelets. In experiments with guinea pigs ex vivo, AA-2414 (0.1-1 mg/kg, p.o.) dose-dependently inhibited the platelet aggregation induced by U-44069; the inhibition at a dose of 1 mg/kg was 100% at 1 hr and was 89% even at 24 hr after the administration. The thromboxane (TX) A2/PGH2 receptor antagonistic action of AA-2414 was stereospecific. These results show that AA-2414 is a potent, orally active and long acting TXA2/PGH2 receptor antagonist. In addition, AA-2414 has PGF2 alpha, PGD2 and 9 alpha,11 beta-PGF2 antagonistic effects.  相似文献   

3.
The thromboxane A2/prostaglandin endoperoxide (TXA2/PGH2) receptor antagonist activity of CV-4151, a potent TXA2 synthetase inhibitor, was examined. CV-4151 inhibited guinea pig and human platelet aggregation induced by U-44069 with IC50 values of 1.2 +/- 0.3 X 10(-5) and 1.9 +/- 0.4 X 10(-5) M, respectively, and inhibited the specific binding of [3H]U-46619 to washed guinea pig and human platelets with IC50 values of 1.2 +/- 0.3 X 10(-6) and 5.1 +/- 1.0 X 10(-6) M, respectively. CV-4151 competitively inhibited the contraction of rabbit aortic strips induced by U-44069 with a pA2 value of 5.90. In experiments in mice in vivo, CV-4151 (1 and 10 mg/kg i.v.) significantly inhibited the thrombocytopenia induced by U-44069 in a dose-dependent manner. These results show that CV-4151 has a distinct TXA2/PGH2 receptor antagonist effect, and that this effect together with its inhibition of TXA2 synthetase could be important for the pharmacological action of this compound.  相似文献   

4.
The effect of (+)-S-145, (1R, 2S, 3S, 4S)-(5Z)-7-(3-phenylsulfonylaminobicyclo [2.2.1] hept-2-yl) heptenoic acid on human and guinea pig platelet aggregation was examined. (+)-S-145 sodium salt inhibited human platelet aggregation induced by arachidonic acid (AA), 9,11-methanoepoxy-PGH2 (U 46619), collagen, ADP or epinephrine with the IC50 being 0.047-0.146 microM in an in vitro system. When (+)-S-145 calcium salt dihydrate was administered orally to guinea pigs, it inhibited AA-, U-46619- or collagen-induced platelet aggregation dose-dependently with the minimum effective dose being 0.03 mg/kg, and the effective duration being maximally 3 hr. The inhibiting potency and effective duration of (+)-S-145 calcium salt dihydrate after multiple administrations, once a day (0.5 mg/kg) for 7 days, were almost the same as those after a single administration. Although (+)-S-145 sodium salt showed a partial agonist effect (shape change) on platelets in vitro, the effect diminished after pretreatment of the platelets with a lower dose of this compound. These data suggest that (+)-S-145 calcium salt dihydrate is an orally effective potent platelet aggregation inhibitor.  相似文献   

5.
The effect of the thromboxane A2 (TXA2) receptor antagonist SQ 30,741 on infarct size and myocardial blood flow during coronary occlusion and reperfusion was determined. In anesthetized dogs, the left circumflex coronary artery (LCX) was occluded and after 10 min a continuous infusion of SQ 30,741 (1 mg/kg + 1 mg/kg/h, i.v.) or saline was begun. After 90 min of LCX occlusion, the LCX was reperfused for 5 h and infarct size was then determined. Myocardial blood flows before, during, and after occlusion were determined using radioactive microspheres. SQ 30,741 resulted in a significant decrease in infarct size (34% +/- 6% of left ventricular area at risk) compared to controls (60% +/- 9%). Cardioprotection was also found with SQ 30,741 when infarct size was normalized for both area at risk and predrug collateral flow. The protective effect of SQ 30,741 occurred without an increase in collateral flow. At 1 h postreperfusion, subendocardial flow was significantly higher in SQ 30,741-treated animals (109 +/- 15 ml/min/100 g) compared to controls (71 +/- 16 ml/min/100 g). SQ 30,741, in the dose resulting in infarct size reduction, produced a 95% inhibition of platelet TXA2 receptors throughout the experiment as measured by dose-dependent inhibition of the ex vivo platelet shape change response to U-46,619, a TXA2 mimetic. Thus, a dose of SQ 30,741 that results in TXA2 blockade also results in myocardial salvage without changes in collateral flow.  相似文献   

6.
Effects of the new thromboxane A2 antagonist vapiprost (SN-309, GR-32191B, CAS 85505-64-2) on isolated canine blood vessels were investigated. U46619 ((15S)-hydroxy-11a, 9a-(epoxymethano) prosta-5Z, 13E-dienoic acid) 10(-10)-10(-6) mol/l, a thromboxane A2 analogue, produced concentration-dependent contractions of oblong or ring preparations isolated from basilar, coronary, mesenteric and femoral arteries. Vapiprost 10(-8) and 10(-7) mol/l significantly and concentration-dependently shifted the concentration-contraction curves for U46619 of these arteries to the right. The pA2 values were 8.80 +/- 0.09 in basilar arteries, 8.67 +/- 0.12 in coronary arteries, 8.86 +/- 0.05 in mesenteric arteries and 9.01 +/- 0.07 in femoral arteries. On the other hand, oblong or ring preparations of basilar, coronary, mesenteric and femoral arteries showed sustained contractile responses to KCl 3 x 10(-2) mol/l, U46619 10(-7) mol/l or prostaglandin (PG) F2 alpha 10(-5) mol/l. Norepinephrine (NE) 3 x 10(-5) mol/l also produced sustained contractions in mesenteric and femoral arterial preparations, but not in basilar and coronary arterial preparations. Vapiprost 10(-10)-3 x 10(-6) mol/l relaxed these four arterial preparations constricted with U46619 10(-7) mol/l and PGF 2 alpha 10(-5) mol/l in a concentration-dependent fashion, but hardly affected them constricted with KCl 3 x 10(-2) mol/l. NE 3 x 10(-5) mol/l-induced contractures of mesenteric and femoral arterial preparations were not influenced by any concentrations of vapiprost. Results indicate that vapiprost has an antagonistic action on a so-called TP-receptor and/or a vasoconstrictive prostaglandin(s)-receptor and thus produces vasorelaxation.  相似文献   

7.
Summary The effects of the novel thromboxane A2 (TXA2) antagonists. ONO-1270 and ONO-3708, on the electrical and mechanical responses evoked by various agents, and in particular 9, 11-epithio-11, 12-methano-thromboxane A2 (STA2), were investigated in the guinea-pig artery. STA2 (up to 0.3 M), and ONO-1270 and ONO-3708 (up to 1.0 M) dit not modify the membrane potential in smooth muscle cells. Perivascular nerve stimulation induced an excitatory junction potential (e.j.p.), and with frequencies over 0.25 Hz, depression of e.j.ps occurred. STA2 (0.1 M) and both ONO-1270 and ONO-3708 had no effect on these electrical events. STA2 (over 0.1 M) produced phasic and tonic contractile responses, in a concentration dependent manner. Both ONO-1270 and ONO-3708 competitively inhibited the phasic contraction induced by STA2 as estimated from parallel shifts in the dose-response curve, and from the Lineweaver-Burk and Schild plots (the PA2 values were 8.22 for ONO-1270 and 8.70 for ONO-3708), but both agents inhibited non-competitively the PGF2 -induced contraction. ONO-1270 and ONO-3708 (up to 0.1 M) had no effect on contractions induced by K+ and caffeine, but did slightly inhibited contractions induced by 5-hydroxytryptamine (5-HT). Following application of indomethacin, neither agent modified the 5-HT-induced contraction. In Ca2+-free solution, 10 nM STA2 produced a phasic but not a tonic contractile response. ONO-1270 and ONO-3708 (over 1 nM) inhibited this phasic contractile response. We conclude that ONO-1270 and ONO-3708 possess the properties of potent and selective antagonists for the TXA2 (STA2)-receptor in smooth muscle cells of the guinea-pig basilar artery.  相似文献   

8.
9,11-Dimethylmethano -11,12-methano-16-(3-azido-4-iodophenoxy)-13,14- dihydro-13-aza-15 alpha beta-omega-tetranor TXA2 (I-PTA-PON3) was synthesized and evaluated as a potential photoaffinity probe of the human platelet thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor. I-PTA-PON3 inhibited the aggregation of washed human platelets induced by the TXA2 mimetic U46619 [(15S)-hydroxy-11 alpha, 9 alpha-(epoxymethano)prosta-5Z,13E-dienoic acid]. Schild analysis of the data revealed a Kd of 9.5 nM and a slope not significantly different from -1. Equilibrium binding studies using [125I]PTA-OH, a TXA2/PGH2 receptor antagonist, showed that I-PTA-PON3 plus photolysis resulted in a 52% reduction in the number of binding sites (1252 +/- 202/platelet) compared to the nonphotolyzed group (2557 +/- 293/platelet) (N = 5, P less than 0.05) with no significant change in the Kd. Repetition of the incubation with I-PTA-PON3 and photolysis a second time resulted in a further 77% (578 +/- 163 binding sites/platelet) reduction in the number of binding sites. Incubation of washed human platelets with I-PTA-PON3 (163 nM) followed by photolysis and removal of the non-covalently bound I-PTA-PON3 resulted in no change in the EC50 value for the TXA2 mimetic, U46619, when compared to controls that were either exposed to I-PTA-PON3 and not photolyzed or exposed only to photolysis. The second photolysis of I-PTA-PON3 resulted in a significant 42% increase in the EC50 value of U46619-induced aggregation compared to the non-photolyzed group (N = 4, P less than 0.05). These results suggest that I-PTA-PON3 is a useful probe for the study of TXA2/PGH2 receptors and that spare TXA2/PGH2 receptors may exist in the platelet.  相似文献   

9.
A binding site for the thromboxane A2/prostaglandin H2 (TXA2/PGH2) antagonist 125I-PTA-OH (9,11-dimethylmethano-11,12-methano-16-(4-methoxyphenyl)-13,14-dih ydro-13-aza-1 5 alpha beta-w-tetranor-TXA2) to washed canine platelets is described. 127I-PTA-OH competitively antagonized aggregation induced by the TXA2/PGH2 mimetic U46619. A Schild analysis of the pharmacologic study revealed pA2 of 7.97 and a slope of -0.95. The pA2 value yielded a Kd of 11 nM. Specific binding in Tris-NaCl buffer (pH 7.4) is not affected by extracellular Ca2+ or Mg2+ in concentrations up to 750 microM. The pH optimum for binding resides between 7.0 and 7.4. The association rate constant, k1, was 4.5 X 10(6) M-1 min-1, and the dissociation rate constant, k-1, was 1.45 X 10(-1) min-1, yielding a kinetically determined Kd (k-1/k1) of 32 nM. Scatchard analysis of I-PTA-OH binding to washed canine platelets revealed two classes of binding sites, a high affinity site (Kd = 24 nM, Bmax = 71 fmol/10(7) platelets) (4400 binding sites/platelet) and a low affinity site (Kd = 2.1 microM). Several TXA2/PGH2 receptor antagonists competed with specific 125I-PTA-OH binding, and the rank order of potency for displacing the ligand correlated (r = 0.97) with the rank order of potency for their ability to inhibit U46619-induced aggregation in canine platelet-rich plasma. Prostaglandins F2 alpha and E2 also displaced the ligand, but only at much higher concentrations. Binding of I-PTA-OH or the TXA2/PGH2 mimetic U46619 was unaffected by the aggregating agents epinephrine (10 microM) or ADP (5 microM). The similarity in the Kd values obtained kinetically, by equilibrium binding studies for the high affinity site and by Schild analysis, suggests that this high affinity site mediates TXA2/PGH2 induced platelet aggregation. In addition, the close correlation between the abilities of the antagonists to displace the ligand and to inhibit U46619-induced aggregation suggests that this site may represent a TXA2/PGH2 receptor.  相似文献   

10.
The binding of [125I]9,11-dimethylmethano-11,12-methano-16-(3-iodo-4-hydroxypheny l)-13,14- dihydro-13-aza-15 alpha beta-omega-tetranor-TXA2 [( 125I]PTA-OH), a thromboxane A2/prostaglandin H2 receptor antagonist, to washed guinea-pig platelets was studied. [125I]PTA-OH bound to guinea-pig platelets in a saturable and displaceable manner. The Kd for [125I]PTA-OH was 14.5 +/- 2 nM (n = 4) and the Bmax was 32 +/- 7 fmol/10(7) platelets or 1,927 +/- 422 binding sites/platelet. The IC50 value for a series of 13-azapinane TXA2 analogs to antagonize the TXA2/PGH2 mimetic U46619-induced platelet aggregation and displace [125I]PTA-OH from its binding site was determined. The IC50 values for the series of five antagonists were highly correlated (r = 0.99) in the binding assays and aggregation studies. The ability of a series of five agonists to displace [125I]PTA-OH from its binding site was compared to their ability to induce platelet aggregation. All the agonists completely displaced the ligand from its binding site but their rank order did not correlate well with their ability to induce aggregation (r = 0.37). Collectively, the data are consistent with the notion that [125I]PTA-OH binds to a putative TXA2/PGH2 receptor in guinea-pig platelets.  相似文献   

11.
The specific binding sites for S-145, a novel thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor antagonist with weak partial agonistic activity, were studied in human platelet membranes. [3H]S-145 displayed high affinity and specificity, as well as saturable and displaceable binding, to a single class of recognition sites with the same maximum number of sites (2100 fmol/mg protein) as the other two TXA2/PGH2 receptor antagonists, [3H]SQ29,548 and [3H]ONO3708. Binding of S-145 to the platelet membranes was enhanced by divalent cations (Mg2+ and Ca2+), and the binding affinity in the presence of 20 mM MgCl2 was 0.75 nM, a value which was smaller than those of SQ29,548 (8.7 nM) and ONO3708 (3.7 nM). The rank order of potency (Ki) for a series of TXA2/PGH2 receptor antagonists to displace [3H]S-145 binding to the membranes was correlated with those determined from [3H]SQ29,548 or [3H]ONO3708 binding to the same preparations. Kinetic analysis for the binding of the above radiolabeled antagonist to the crude platelet membranes revealed that the dissociation rate constant (K-1) for S-145 was much smaller than that for other ligands in human, rat and rabbit platelets. The extremely slow dissociation of S-145 from the receptors may explain the long-lasting characteristic of this compound in vivo as well as the abolishment of partial agonistic activity.  相似文献   

12.
1. The mechanism for the stereospecific recognition of the antagonist S-145 by the thromboxane A2 (TXA2)/prostaglandin H2 (PGH2) receptor was examined by ligand-binding techniques in rat vascular smooth muscle cells (VSMCs) and in human platelet membranes. 2. Scatchard analysis revealed the existence of a single class of binding sites with the same maximum number for both [3H]-(+)-S-145 and [3H]-(-)-S-145 in both cell types. The dissociation constants (Kd) for the binding of the (+)-isomer in rat VSMCs and human platelet membranes were, respectively, 0.40 +/- 0.03 and 0.20 +/- 0.02 nM, each value being lower than that for the (-)-isomer (3.57 +/- 0.74 and 2.87 +/- 0.08 nM, respectively). 3. The rank orders of potency (Ki) for a series of TXA2/PGH2 ligands at inhibiting [3H]-(+)-S-145 binding were highly correlated with those determined for [3H]-(-)-S-145 binding in both cell preparations. 4. Kinetic analysis of the binding of both radioligands revealed a much lower dissociation rate constant (k-1) and a slightly greater association rate constant (k1) for the (+)-isomer compared to those for the (-)-isomer. 5. These results suggest that it is at the stage of dissociation from the TXA2/PGH2 receptor that the stereochemistry of the optical isomers of S-145 confers their difference in affinity for these receptors in rat VSMCs and human platelet membranes.  相似文献   

13.
The human platelet thromboxane A2/prostaglandin H2 receptor has been purified 6100-fold to apparent homogeneity by a three-step chromatographic procedure with an overall yield of 6%. A 6-fold purification of the receptor was first achieved by chromatography of 3-[(3-cholamidopropyl)dimethyl-ammonio]-1-propanesulfonate (CHAPS)-solubilized membrane proteins from human platelets on a diethylaminoethyl (DEAE)-Sepharose column. The DEAE eluate fractions containing receptor activity were then applied to a newly developed affinity column using the cyclohexyl derivative of SQ30,741 (SQ31,491) as the immobilized ligand. Elution of the receptor from the affinity column with BM13.177 yielded a further purification of 1700-fold. An additional 4-fold receptor purification from the affinity column eluate was achieved by HPLC using GPC 500 and GPC 100 columns connected in tandem. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining of the HPLC eluate containing purified receptor revealed a single, distinct band with a molecular weight of 55,000. The receptor binding activity was detected with [3H]SQ29,548 using a newly developed binding assay which involved immobilization of the receptor on polyethyleneimine-treated glass fiber filters. The binding of [3H]SQ29,548 to the purified receptor was time dependent, saturable, reversible and highly specific. Unlabeled SQ29,548, BM13.505, and U46619 (but not thromboxane B2 or 6-keto prostaglandin F1 alpha) competed for [3H]SQ29,548 binding to the purified receptor in a concentration-dependent manner. Scatchard analysis of [3H]SQ29,548 binding to the purified receptor revealed the presence of a single class of high-affinity binding sites, with a Kd of 4 nM and a Bmax of 17 nmol/mg protein.  相似文献   

14.
1. Canine jugular and femoral veins were studied to determine the possible importance of thromboxane (TXA2) and prostaglandin endoperoxides (prostaglandin H2, PGH2) in mediating bradykinin(BK)-induced contraction. 2. Isolated vein rings incubated in modified Krebs solution contracted to TXA2/PGH2 analogs SQ26655 and U44069 with potency of contraction exceeding that for BK. The potency ranking for both veins was SQ26655 greater than U44069 greater than BK greater than PGF2 alpha greater than TXB2 much greater than PGD2. 3. The cyclo-oxygenase inhibitors indomethacin (3 x 10(-7) M) and flufenamic acid (10(-5) M) reduced BK contractions without affecting those induced by noradrenaline (NA). 4. TXA2/PGH2 receptor antagonists SQ29548 (10(-8) M) and BM13177 (10(-6) M) strongly inhibited BK-induced tension. The action of antagonists was reversible with negligible influence on NA-elicited contraction. Selective removal of endothelium had no effect on BK-induced contraction or the action of the antagonists. 5. The thromboxane synthase inhibitors dazoxiben (10(-4) M) and CGS 12970 (10(-5) M) had no significant inhibitory effect on BK-induced tension. 6. These results suggest that in canine jugular and femoral vein, the action of BK is largely dependent upon stimulation of the cyclo-oxygenase pathway to produce PGH2 and possibly TXA2, which can activate a smooth muscle TXA2/PGH2 receptor to elicit vasoconstriction.  相似文献   

15.
The subcellular localization of a binding site for the competitive thromboxane A2/prostaglandin H2 (TXA2/PGH2) antagonist, 9,11-dimethylmethano-11,12-methano-16-(3-iodo-4- hydroxyphenyl)-13,14-dihydro-13-aza-15 alpha beta-omega-tetranor TXA2 ([125I]-PTA-OH), was determined. Subcellular fractions of platelets were prepared by glycerol lysis or nitrogen cavitation, and were characterized by the use of enzymatic markers specific for plasma membranes, endoplasmic reticulum (dense tubular system), mitochondria, granules, and cytosolic constituents. The Kd and density of binding sites in the subcellular fractions were determined by Scatchard analysis of equilibrium binding data. The Kd and Bmax for [125I]-PTA-OH determined in the lysates were 49 +/- 11 nM and 4.1 +/- 1.7 pmol/mg protein respectively (N = 6). The Kd values were not significantly different in any of the fractions assayed. The binding sites were coenriched (4.5 +/- 0.66 fold) with the enzymatic markers for plasma membranes (3.7 +/- 0.5 fold) and dense tubular system (2.4 +/- 0.4 fold). The binding sites were not coenriched with markers for cytoplasmic constituents, mitochondria, or granules. The ability of the TXA2/PGH2 mimetic U46619 to compete with [125I]-PTA-OH for the binding site was also determined for the various subcellular fractions. The IC50 for U46619 was 5.4 +/- 1.2 microM in the lysate, and was not significantly different in the subcellular fractions. These data suggest that the binding site is the TXA2/PGH2 receptor described previously. These data are consistent with the notion that the putative TXA2/PGH2 receptor is localized in the plasma membranes and/or the dense tubular system.  相似文献   

16.
Differential effects on human platelet function of thromboxane A2 (TXA2) synthetase inhibition singly and of TXA2 synthetase inhibition combined with TXA2/prostaglandin endoperoxide receptor antagonism were revealed, using ridogrel as a probe. Ridogrel combines selective TXA2 synthetase inhibition with TXA2/prostaglandin receptor antagonism in one molecule: in washed human platelets, the compound reduces the production of TXB2 (IC50 = 1.3 X 10(-8) M) and increases that of PGF2 alpha, PGE2, PGD2 from [14C]arachidonic acid. Additionally, at higher concentrations (Ki = 0.52 X 10(-6) M), it selectively antagonizes the breakdown of inositol phospholipids, subsequent to stimulation of TXA2/prostaglandin endoperoxide receptors with U 46619. The latter happens in a competitive way with fast receptor association-dissociation characteristics. At low concentrations (1 X 10(-9)-1 X 10(-7) M) producing single TXA2 synthetase inhibition, ridogrel reduces the collagen-induced formation of TXB2 by washed platelets, but enhances [32P]phosphatidic acid (PA) accumulation and [3H]5-hydroxytryptamine (5-HT) release. At higher concentrations (1 X 10(-6)-1 X 10(-5) M) which additionally block U 46619-induced [32P]PA accumulation, ridogrel inhibits the [32P]PA accumulation and release of [3H]5-HT by human platelets stimulated with collagen. These observations, corroborated by results obtained with OKY 1581, sulotroban, indomethacin and human serum albumin, suggest a causal role for prostaglandin endoperoxides in the stimulation by TXA2 synthetase inhibition of platelet reactions to collagen. They reinforce the concept that TXA2 synthetase inhibition-induced reorientation of cyclic endoperoxide metabolism, away from TXA2 into inhibitory prostanoids, requires additional TXA2/prostaglandin endoperoxide receptor antagonism to achieve optimal anti-platelet effects.  相似文献   

17.
Many prostanoids including are prostaglandin (PG) F2 alpha and PGD2 are potent bronchoconstrictor agents. There is evidence to suggest that airway thromboxane (TP) receptor may act as a common receptor for their bronchoconstrictor actions. We tested the hypothesis that inhaled prostaglandin (PG) D2-induced bronchoconstriction is mediated by interacting with the TP receptor antagonist, ICI 192605, on the bronchoconstrictor response to inhaled PGD2 in a double-blind, placebo-controlled and crossed-over trial in normal subjects. The effect of ICI 192605 on histamine induced bronchoconstriction served as control for non-specific bronchodilatory actions. The study had two phases; the first consisted of two inhaled PGD2 challenge study days, and the second phase was that of inhaled histamine. Each study day was separated by at least a week. On each study day, the challenge tests were carried out 30 min after ingestion of 100 mg ICI 192605 or placebo. Doubling concentrations of agonist were given till more than 35% fall in post-diluent specific airway conductance (sGaw) occurred. The concentration needed to cause a fall in a sGaw of 35% post-diluent value (PC35sGaw) was then determined from linear interpolation of the log dose-response. Eight male subjects (median age 26, range 20-35 years) completed the study. ICI 192605 did not change baseline airway calibre 30 min after ingestion on either PGD2 or histamine study days. ICI 192605 significantly shifted the dose-response curve to inhaled PGD2 to the right by a median of 3.4 fold (Wilcoxon rank sign test, P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
1. Several lines of evidence indicate that thromboxane (Tx) A2 may contribute to the development and maintenance of hypertension. The present study was undertaken to evaluate the role of TxA2 in the development of hypertension in spontaneously hypertensive rats (SHR) by using an orally active, highly specific TxA2/prostaglandin H2 receptor antagonist S-1452. 2. Vehicle (1% arabic gum solution) alone was given orally to Wistar-Kyoto (WKY) rats (n = 15) and SHR (n = 14), while S-1452 (10 mg/kg per day, twice daily) was administered orally to SHR (n = 16) for 18 weeks (from 5 to 23 weeks of age). 3. No significant difference was observed in tail-cuff blood pressure (BP) between vehicle- and S-1452-treated SHR before and at 5 and 11 weeks after treatment. Thereafter, BP was further elevated in vehicle-treated SHR, but was significantly blunted in SHR treated with S-1452 at 15 (224+/-8 vs 211+/-13 mmHg; P < 0.01) and 18 weeks (227+/-9 vs 206+/-10 mmHg; P < 0.001); this was associated with reduced proteinuria. 4. Urinary TxB2 in vehicle-treated SHR, especially during the early period, was significantly greater than that in WKY rats, while no significant difference was observed in urinary 6-ketoprostaglandin F1alpha (6-keto-PGF1alpha) between the two groups. Treatment with S-1452 reduced urinary excretion of TxB2 at 18 weeks. 5. The present study shows that S-1452, at the dose used, does not reduce BP during the early period of the development of hypertension. These results suggest that the role of enhanced TxA2 production in the development of hypertension is small, if any, in SHR. Delayed response of BP may be independent of the direct pharmacological effects of S-1452.  相似文献   

19.
The purpose of this investigation was to provide a detailed analysis of the effects of the thromboxane antagonist L655,240 (0.3 mg/kg i.v.) on early ischemia- and reperfusion-induced arrhythmias in a canine model of coronary artery occlusion. In a dose that abolished the pulmonary response to U46619, L655,240 attenuated markedly the severity of those arrhythmias that resulted from reperfusion of the myocardium; survival from the combined occlusion-reperfusion insult was increased from 10% in control animals to 70% in dogs administered L655,240. Drug intervention did not significantly alter the total number of arrhythmias during the period of ischemia, but a detailed analysis of the different types of arrhythmia that occurred during this period showed that L655,240 significantly reduced those arrhythmias in phase 1a (0-10 min of occlusion) without affecting the later phase 1b arrhythmias. This was particularly shown in the marked reduction in the number of salvos (couplets and triplets) during this period. Neither those arrhythmias occurring later in the ischaemia period (phase 1b) nor the total number of single ectopics and salvos or the incidence and duration of ventricular tachycardia was modified by L655,240. These results reveal that thromboxane antagonism protects especially against reperfusion-induced ventricular fibrillation and against early (phase 1a) ischemia-induced arrhythmias, possibly implicating a role for thromboxane in the genesis of these cardiac rhythm disturbances.  相似文献   

20.
A potent thromboxane A2/PGH2 (TP)-receptor antagonist, S18886, was evaluated for its antithrombotic property in a dog model of acute periodic platelet-mediated thrombosis in stenosed coronary arteries with endothelial damage. After thrombosis had been obtained in 11 dogs, S18886 (300 microg/kg bolus) was administered IV. Heart rate, systemic blood pressure, and coronary blood flow were continuously recorded. Ex vivo whole blood platelet aggregation (PA), blood pH, hematocrit, platelet count, PO2, PCO2, and bleeding times were measured before and 30 minutes after administration of S18886. S18886 completely inhibited thrombosis in all dogs in approximately 5-10 minutes. No change in heart rate, blood pressure, pH, PO2, PCO2, platelet count, or bleeding time and a slight but significant elevation in hematocrit occurred. Infusion of epinephrine IV after complete inhibition of thrombosis by S18886 partially restored thrombosis in 3 of the 11 dogs. PA induced by collagen (4 microg/mL), collagen (0.25 microg/mL) plus epinephrine (1 microg/mL), collagen (1 microg/mL) plus epinephrine (1 microg/mL), ADP (40 microM) plus epinephrine (1 microg/mL), and phorbol 12-myristate 13-acetate (0.5 nM) were attenuated by 90 +/- 8% (P < 0.005), 98 +/- 2% (P < 0.05), 78 +/- 6% (P < 0.005), 70 +/- 10% (P < 0.005), and 28 +/- 8% (P < 0.05), respectively. In conclusion, S18886 is a potent platelet inhibitor that attenuates in vivo platelet-dependent thrombosis in the experimental dog model and reduces ex vivo platelet aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号