首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibodies against CD14 protect primates from endotoxin-induced shock.   总被引:17,自引:3,他引:17       下载免费PDF全文
Lipopolysaccharide (LPS), residing in the outer membrane of all gram-negative bacteria, is considered a major initiating factor of the gram-negative septic shock syndrome in humans. LPS forms a complex with the LPS binding protein (LBP) in plasma, and LPS-LBP complexes engage a specific receptor, CD14, on the surface of myeloid cells, leading to the production of potent proinflammatory cytokines. The major goal of this study was to test the importance of the CD14 pathway in vivo in a primate model that is similar to human septic shock. Primates were pretreated with one of two different inhibitory anti-CD14 mAbs, then challenged with intravenous endotoxin (375 microg/kg/h) for 8 h. The anti-CD14 treatment regimens were successful in preventing profound hypotension, reducing plasma cytokine levels (TNF-alpha, IL-1beta, IL-6, and IL-8), and inhibiting the alteration in lung epithelial permeability that occurred in animals treated with LPS and an isotype-matched control antibody. These results demonstrate for the first time the importance of the CD14 pathway in a primate model that is similar to human septic shock. Inhibition of the CD14 pathway represents a novel therapeutic approach to treating this life-threatening condition.  相似文献   

2.
Endotoxemia stimulates many physiologic responses including disturbances in lipid metabolism. We hypothesized that this lipemia may be part of a defensive mechanism by which the body combats the toxic effects of circulating endotoxin. We tested the effects of mixtures of endotoxin, lipoproteins, and lipoprotein-free plasma and determined the ability of varying concentrations of human very low density lipoproteins (VLDL) and chylomicrons, as well as low density lipoproteins (LDL) and high density lipoproteins (HDL), and of the synthetic lipid emulsion SOYACAL to prevent endotoxin-induced death in mice. This study demonstrates that the triglyceride-rich VLDL and chylomicrons, as well as cholesterol-rich LDL and HDL, and cholesterol-free SOYACAL can protect against endotoxin-induced death. Protection required small amounts of lipoprotein-free plasma, and depended on the incubation time and the concentration of lipoprotein lipid. Despite stringent techniques to prevent exogenous endotoxin contamination eight of ten duplicate VLDL preparations contained endotoxin (5,755 +/- 3,514 ng endotoxin/mg triglyceride, mean +/- SEM) making the isolation of endotoxin-free VLDL difficult. In contrast, simultaneous preparations of LDL and HDL were relatively free of endotoxin contamination (3 +/- 3 and 320 +/- 319 ng/mg total cholesterol, respectively), suggesting that the contamination of VLDL occurs in vivo and not during the isolation procedure. These observations suggest a possible role for increased triglyceride-rich lipoproteins in the host's defense against endotoxemia and infection.  相似文献   

3.
In this study, we examined whether inhalation of hypertonic saline aerosols increases vascular permeability in the rat trachea, and we examined the role of neurogenic inflammation in this response. Stereological point counting was performed to measure the percent area occupied by Monastral blue-labeled blood vessels as a means of quantifying the increase in vascular permeability in tracheal whole mounts. Hypertonic saline aerosols (3.6-14.4% NaCl) increased vascular permeability in a dose-dependent fashion compared with 0.9% NaCl. Thus, the area density of Monastral blue-labeled vessels after inhalation of 3.6% NaCl was greater (21.2 +/- 3.5% mean +/- SEM, n = 5) than after 0.9% NaCl aerosol (3.3 +/- 0.9%, n = 5, P less than 0.5). The neutral endopeptidase inhibitor phosphoramidon (2.5 mg/kg, i.v.) significantly potentiated the increase of vascular permeability caused by 3.6% NaCl. Desensitization of sensory nerve endings by pretreatment with capsaicin markedly reduced the usual increase in vascular permeability caused by 3.6% NaCl, but the increase in vascular permeability induced by aerosolized substance P (10(-4) M) was unchanged. These findings suggest that hypertonic saline increases vascular permeability in the rat trachea by stimulating the release of neuropeptides from sensory nerves.  相似文献   

4.
Urticarial rash observed in cryopyrin-associated periodic syndrome (CAPS) caused by nucleotide-binding oligomerization domain–leucine-rich repeats containing pyrin domain 3 (NLRP3) mutations is effectively suppressed by anti–interleukin (IL)-1 treatment, suggesting a pathophysiological role of IL-1β in the skin. However, the cellular mechanisms regulating IL-1β production in the skin of CAPS patients remain unclear. We identified mast cells (MCs) as the main cell population responsible for IL-1β production in the skin of CAPS patients. Unlike normal MCs that required stimulation with proinflammatory stimuli for IL-1β production, resident MCs from CAPS patients constitutively produced IL-1β. Primary MCs expressed inflammasome components and secreted IL-1β via NLRP3 and apoptosis-associated speck-like protein containing a caspase recruitment domain when stimulated with microbial stimuli known to activate caspase-1. Furthermore, MCs expressing disease-associated but not wild-type NLRP3 secreted IL-1β and induced neutrophil migration and vascular leakage, the histological hallmarks of urticarial rash, when transplanted into mouse skin. Our findings implicate MCs as IL-1β producers in the skin and mediators of histamine-independent urticaria through the NLRP3 inflammasome.Urticaria, or hives, is a common disease that can affect up to 20% of the general population (1). Chronic urticaria, defined as urticaria that persists for >6 wk, occurs in 0.1% of the population (2), and in a significant percentage of cases (∼40–80%), there is no identifiable cause (1, 3). H1 antihistamines have remained the first line of treatment because histamine release from cutaneous mast cells (MCs) plays an important role in the pathophysiology of urticaria development. However, only ∼55% of patients with chronic urticaria are responsive to antihistamines (4), suggesting that in a significant number of individuals, chronic urticaria is mediated via histamine-independent mechanisms.An urticarial rash developing in the neonatal or early infantile period is one of the clinical manifestations characteristic of cryopyrin-associated periodic syndrome (CAPS). CAPS consists of a spectrum of hereditary periodic fever disorders that comprise three phenotypically overlapping but relatively distinct syndromes: familial cold autoinflammatory syndrome (Mendelian inheritance in men number [MIM] 120100), Muckle-Wells syndrome (MWS; MIM 191900), and chronic infantile neurological cutaneous and articular syndrome (MIM 607115), which is also known as neonatal-onset multisystem inflammatory disease. Familial cold autoinflammatory syndrome and MWS are characterized by periodic attacks of urticarial rash, fever, and arthralgia, whereas patients with chronic infantile neurological cutaneous and articular syndrome, the most severe form of CAPS, exhibit chronic urticaria as well as fever, arthropathy, chronic meningitis, papilledema, growth and mental retardation, and hearing loss (5). The urticarial rash observed in CAPS is similar to that associated with common urticaria. However, unlike the latter disorder, the rash observed in most CAPS patients responds to therapy with IL-1 receptor antagonist rather than antihistamines, suggesting that urticaria in these patients is mediated by IL-1. However, the cellular mechanism responsible for urticaria in CAPS patients remains poorly understood.The mature form of IL-1β is produced by cleavage of the inactive pro–IL-1β precursor by caspase-1, a protease activated by a large multiprotein complex termed the inflammasome (6). CAPS is caused by missense mutations in the gene, nucleotide-binding oligomerization domain (NOD)–leucine-rich repeats (LRRs) containing pyrin domain 3 (NLRP3) (7), whose product is a component of the inflammasome that includes the adaptor protein, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and procaspase-1 (8, 9). NLRP3, a member of the NOD-like receptor family, is an intracellular receptor involved in the recognition of pathogen-associated molecular patterns (PAMPs). Although several microbial activators of NLRP3 have been reported, the precise mechanism by which the NLRP3 inflammasome is activated by PAMPs remains poorly understood. In the presence of ATP or pore-forming molecules, several PAMPs, including LPS, muramyl dipeptide, bacterial mRNA, and the antiviral compound R837, activate the NLRP3 inflammasome (10, 11). In addition to PAMPs, NLRP3 senses endogenous danger signals such as monosodium urate crystals and particulate matter including asbestos, silica (12), and aluminum salts (13, 14). Disease-associated NLRP3 mutations associated with CAPS localize to the centrally located NOD domain and constitutively activate caspase-1 to produce active IL-1β (8, 15). NLRP3 is predominantly expressed in monocytes, granulocytes, and chondrocytes (16, 17), but to date, no reports have investigated the cells in the skin that are involved in the development of urticarial rash associated with CAPS. Our study identifies resident MCs in the skin as a cell population capable of producing IL-1β via the NLRP3 inflammasome and provides evidence that MCs mediate urticarial rash via dysregulated IL-1β production in the skin of CAPS patients.  相似文献   

5.
OBJECTIVE: Several studies have suggested that intravenous hydroxyethyl starch treatment may dampen acute inflammatory responses. It is well documented that limited oxygen delivery to tissues (hypoxia) is common in acute inflammation, and numerous parallels exist between acute responses to hypoxia and to inflammation, including the observation that both are associated with increased vascular leakage and neutrophil infiltration of tissues. Therefore, we compared functional influences of hydroxyethyl starch on normoxic or posthypoxic endothelia. DESIGN: Laboratory study. SETTING: University hospital. SUBJECTS: Cultured human microvascular endothelial cells and mice (C57BL/6/129 svj). INTERVENTIONS: We measured functional influences of hydroxyethyl starch on normoxic or posthypoxic endothelia. MEASUREMENTS AND MAIN RESULTS: Studies to assess endothelial barrier function in vitro indicated that the addition of hydroxyethyl starch promotes endothelial barrier in a dose-dependent fashion and hydroxyethyl starch-barrier effects are increased following endothelial hypoxia exposure (human microvascular endothelial cells, 48 hrs, 2% oxygen). Treatment of human microvascular endothelial cells with hydroxyethyl starch resulted in a dose-dependent increase in 157-phosphorylated vasodilator-stimulated phosphoprotein, a protein responsible for controlling the geometry of actin-filaments. Neutrophil adhesion was decreased in the presence of physiologically relevant concentrations of hydroxyethyl starch in vitro, particularly after endothelial hypoxia exposure. Using a murine model of normobaric hypoxia, increases in vascular leakage and pulmonary edema associated with hypoxia exposure (4 hrs at 8% oxygen) were decreased in animals treated with intravenous hydroxyethyl starch. Increases of tissue neutrophil accumulation following hypoxia exposure were dampened in hydroxyethyl starch-treated mice. CONCLUSIONS: Taken together, these results indicate that hypoxia-induced increases in vascular leakage and acute inflammation are attenuated by hydroxyethyl starch treatment.  相似文献   

6.
Macrolide antibiotics are clinically important antibiotics which are effective inhibitors of protein biosynthesis in bacterial cells. We have recently shown that some of these compounds also inhibit 50S ribosomal subunit formation in Escherichia coli. Now we show that certain macrolides have the same effect in two gram-positive organisms, Bacillus subtilis and Staphylococcus aureus. Assembly in B. subtilis was prevented by erythromycin, clarithromycin, and azithromycin but not by oleandomycin. 50S subunit formation in S. aureus was prevented by each of seven structurally related 14-membered macrolides but not by lincomycin or two streptogramin antibiotics. Erythromycin treatment did not stimulate the breakdown of performed 50S subunits in either organism. The formation of the 30S ribosomal subunit was also unaffected by these compounds. Assembly was also inhibited in a B. subtilis strain carrying a plasmid with the ermC gene that confers macrolide resistance by rRNA methylation. These results suggest that ribosomes contain an additional site for the inhibitory functions of macrolide antibiotics.  相似文献   

7.
Premenopausal women develop occlusive artery disease less frequently than postmenopausal women. In coronary heart disease, higher blood levels of homocysteine-cysteine mixed disulphide have been reported. Therefore, in healthy subjects, we studied the role of menopausal status in the transsulphuration of methionine in 10 premenopausal and 10 postmenopausal women. To exclude the role of aging, we compared these results with those in 10 younger and 10 older men of comparable age groups. An oral methionine load (0.1 g/kg of body weight) was administered after overnight fasting. Before and during 8 h, thereafter, serum levels of methionine, homocystine, and homocysteine-cysteine mixed disulphide were measured. In the fasting state, serum methionine levels were similar in the premenopausal women and both groups of men. Postmenopausal women had significantly lower fasting levels. Peak levels and clearances of methionine after loading did not differ between the groups. In the fasting state, homocystine was never detectable; yet, after methionine loading, slight homocystinemia was present in 12 out of 20 men, and was more pronounced in all postmenopausal women. However, homocystinemia did not occur in any of the premenopausal women after loading. Fasting serum homocysteine-cysteine mixed disulphide levels did not differ between both groups of men and postmenopausal women. In premenopausal women, both fasting and postloading disulphide levels were significantly lower than in any other group. We conclude that premenopausal women have a unique efficiency of methionine handling, and thereby are preserved against the accumulation of homocysteine after methionine loading. We speculate that this phenomenon might account for the lower incidence of vascular disease in women in the reproductive life cycle.  相似文献   

8.
Gentamicin and amikacin, administered in therapeutic doses to normal healthy adults, caused a transient decrease in chemotactic migration of their PMNs. In contrast, RM of leukocytes obtained from these individuals was increased significantly. The magnitude of these changes did not correlate with the serum antibiotic concentrations. Separate in vitro experiments with gentamicin, however, revealed an inverse dose-response relationship with chemotactic suppression. The mechanism(s) involved in modifications of these leukocyte functions is not well understood. These findings may be of clinical significance in patients, especially those with altered host defense mechanisms, who require therapy with these aminoglycoside antimicrobial agents.  相似文献   

9.
10.
11.
Chemokines are a family of cytokines whose participation in inflammation in vivo remains to be established. Using the rat model of anti-glomerular basement membrane (GBM) nephritis, we found that mRNA for the chemokine CINC (cytokine-induced neutrophil chemoattractant) was induced in the kidney, and the corresponding protein was elaborated by isolated inflamed glomeruli. Production of CINC by glomeruli was unaffected by complement- or leukocyte-depletion prior to disease induction. Cytokines which induce CINC expression in renal cells (TNF-alpha and IL-1 beta) were also expressed in the kidney during glomerular inflammation. TNF-alpha production, unlike CINC, was complement and leukocyte dependent. In vivo administration of anti-CINC, but not anti-human IL-8, IgG selectively attenuated the influx of PMNs into the glomerulus and commensurately diminished proteinuria. The participation of CINC was not tissue-specific: anti-CINC IgG also diminished the influx of PMNs in dermal immune complex inflammation. In sum, we propose that glomerular immune complex deposition/complement activation leads to cytokine production which results in CINC expression by endogenous glomerular cells. The CINC produced plays a contributory role in the influx of PMNs into the glomerulus in the context of the activation of other inflammatory mediators. These results suggest a potential role for CINC homologues, IL-8 and the GRO family of chemokines, in human immune complex-mediated disease.  相似文献   

12.
13.

Background  

The Portex Soft Seal high-volume, low-pressure cuffed trachealtube was compared with the Mallinckrodt HiLo, Sheridan Preformed and PortexProfile tracheal tubes for leakage of dye placed in the subglottic space of apig's trachea which was used in a benchtop mechanical ventilation modeland in six isolated pig tracheas.  相似文献   

14.
Aspirin inhibits cyclooxygenase, thus preventing thromboxane A2 production in blood platelets and prostacyclin in vascular cells. Aspirin is rapidly hydrolyzed to salicylate in the circulation. The objectives of this study were (a) to evaluate whether administration of salicylate, though ineffective by itself, prevents the inhibitory effect of aspirin on platelet and/or vascular cyclooxygenase activity; (b) to verify whether salicylate accumulating in blood after aspirin administration interferes with the pharmacological activity of further doses of aspirin. Pretreatment of rats with sodium salicylate (25-100 mg/kg i.p.) resulted in dose-related prevention of the effect of a subsequent dose of aspirin (2.5-10 mg/kg i.v.) on both platelet and vascular cells. Sodium salicylate appeared to amplify the greater response of platelets to aspirin compared with vessel wall. Pretreatment of rats with repeated high doses of aspirin (200 mg/kg) resulted after 24 h in blood salicylate levels (150-200 microgram/ml) that significantly prevented the inhibitory effect of a subsequent dose of aspirin on newly synthesized vascular prostacyclin. Blood salicylate levels obtained after 36 or 48 h (less than 50 microgram/ml) were too low to blunt aspirin's effect. The interference with aspirin of its major endogenous metabolite should be borne in mind when interpreting results obtained with high dose aspirin or during repeated administration of this drug.  相似文献   

15.
Sepsis and its complications, hypotension, shock, and multiorgan failure continue to represent a significant cause of mortality among hospitalized patients, affecting approximately 200,000 patients per year in the US and 100,000 in Europe (Dal Nogare, A.R. 1991. Am. J. Med. Sci. 302:50-65.). Incidence rates appear to be increasing, probably due to an increase in the population with risk factors such as diabetes or invasive procedures. Activation of cytokines by endotoxins and subsequent formation of nitric oxide is of central pathogeneic importance in sepsis. In this study we show that polymerized bovine hemoglobin (Biopure 2) restores both cardiovascular and renal functions in an endotoxin-induced shock model in rats. These effects are compared to those of the nitric oxide synthase inhibitor N(G)-nitro-L-arginine, and hydroxyethyl starch, the latter currently in clinical use for intravenous volume replacement. Our results clearly indicate that polymerized hemoglobin but not nitric oxide synthase inhibition or volume replacement normalize cardiovascular and kidney function in acute septic shock. This new therapeutic approach is readily applicable to controlled clinical trials because polymerized hemoglobin has been tested in humans and is therefore available for such studies.  相似文献   

16.
To evaluate the role of cyclic guanosine monophosphate (cGMP) in the vascular and renal action of atrial natriuretic peptide (ANP), we compared the effects of atriopeptins (APs) on cGMP accumulation in cultured cells from rat mesenteric vascular smooth muscle (VSM), glomerular mesangium (GM) and renal papillary collecting tubule (RPCT), and also evaluated the relationship between renal sodium or water excretion and urinary cGMP in AP-infused rats. Both AP I and AP III increased intracellular cGMP levels dose-dependently in all types of cells, while they did not affect intracellular cAMP levels or prostaglandin synthesis. AP III was 100 times more potent than AP I. The magnitude change in cGMP levels was largest in GM cells. The sensitivity of VSM and GM cells to AP III were greater than that of RPCT cells. There were significant positive relationships between urinary excretion of sodium or water and that of cGMP levels in AP-infused rats. These results may suggest that GM and VSM cells are the principal targets for ANP to stimulate cGMP synthesis and, possibly, to exert the renal sodium and water excretion, and also support the hypothesis that cGMP mediates the cellular action of ANP.  相似文献   

17.
Using the model of the isolated perfused rat liver, we investigated the influence of the two pharmacologically different calcium channel blockers, verapamil and flunarizine, on changes of ion homeostasis, liver weights, pH deviations and enzyme activities during warm ischemia (37°C) and reperfusion. The LDH and GLDH activities were determined and the calcium, potassium, and sodium concentrations were measured in the effluent. Warm ischemia (180 min) caused an increased enzyme release, a high influx of calcium and sodium into the liver and a massive potassium efflux current. Normoxic reperfusion led to a further increase in hepatic enzyme release and although the loss of potassium ceased, the calcium influx into the liver continued. By the end of reperfusion the liver weight had increased significantly (P<0.01) in the control group. The two calcium entry blockers were added to the perfusate in various concentrations. Both substances protected the liver against warm ischemia and normoxic reperfusion damage, but they did not inhibit calcium inflow. However, the potassium efflux was significantly reduced by all concentration tasted (P<0.001). After reperfusion the liver weights were significantly lower in the treated groups (P<0.001) than in control animals. Thus, the calcium entry blockers verapamil and flunarizine protect liver cells against damage caused by warm ischemia and reperfusion. Furthermore, they prevent the disruption of intracellular potassium homeostasis, which seems to be related to improved volume regulation of liver cells.  相似文献   

18.
In the early 1960s liver cytochrome P450 (P450) was known as an enzyme in drug metabolism. By the late 1970s, P450 induction was associated with elevation of plasma high-density lipoprotein cholesterol and apolipoprotein AI indicating a reduced risk of atherosclerotic disease. Later on, 57 human P450 genes have been identified. One P450 enzyme participates in cholesterol synthesis, and several others catabolize it to oxysterols and other metabolites. Oxysterols are physiological ligands specific for liver X receptors (LXRs) in the activation of ATP-binding cassette (ABC) transporter and other cholesterol-lowering genes. Elevation of cholesterol leads to an endogenous induction of P450 and consequently to enhanced generation of oxysterols and activation of genes coding proteins which efflux cholesterol out of cells, transport it to the liver, catabolize and excrete cholesterol into bile, and prevent absorption of cholesterol in the intestine in the processes that maintain cellular cholesterol homeostasis and protect arteries from atherosclerosis. Peroxisome proliferator-activated receptors (PPARs) co-operate with LXRs and ABC transporters in cholesterol regulation. Secretion of oxysterol is a direct pathway for cellular cholesterol elimination. Several compounds induce P450 and other genes regulating cholesterol balance and prevent or regress atherosclerosis, whereas inhibition of P450 blocks oxidative reactions, promotes cholesterol accumulation, and enhances the atherosclerotic vascular process.  相似文献   

19.

Introduction

Angiopoietin-1 (Angpt1), the natural agonist ligand for the endothelial Tie2 receptor, is a non-redundant endothelial survival and vascular stabilization factor that reduces endothelial permeability and inhibits leukocyte-endothelium interactions. Here we evaluate the efficacy of a novel polyethylene glycol (PEG)-clustered Tie2 agonist peptide, vasculotide (VT), to protect against vascular leakage and mortality in a murine model of polymicrobial abdominal sepsis.

Methods

Polymicrobial abdominal sepsis in C57BL6 mice was induced by cecal-ligation-and-puncture (CLP). Mice were treated with different dosages of VT or equal volume of phosphate-buffered saline (PBS). Sham-operated animals served as time-matched controls.

Results

Systemic administration of VT induced long-lasting Tie2 activation in vivo. VT protected against sepsis-induced endothelial barrier dysfunction, as evidenced by attenuation of vascular leakage and leukocyte transmigration into the peritoneal cavity. Histological analysis revealed that VT treatment ameliorated leukocyte infiltration in kidneys of septic mice, probably due to reduced endothelial adhesion molecule expression. VT-driven effects were associated with significantly improved organ function and reduced circulating cytokine levels. The endothelial-specific action of VT was supported by additional in vitro studies showing no effect of VT on either cytokine release from isolated peritoneal macrophages, or migratory capacity of isolated neutrophils. Finally, administration of VT pre-CLP (hazard ratio 0.39 [95% confidence interval 0.19-0.81] P < 0.001) and post-CLP reduced mortality in septic mice (HR 0.22 [95% CI 0.06-0.83] P < 0.05).

Conclusions

We provide proof of principle in support of the efficacious use of PEGylated VT, a drug-like Tie2 receptor agonist, to counteract microvascular endothelial barrier dysfunction and reduce mortality in a clinically relevant murine sepsis model. Further studies are needed to pave the road for clinical application of this therapeutic concept.  相似文献   

20.
The fluoroquinolone antibiotics are structurally related to nalidixic acid. Their primary antibacterial action appears to be mainly due to inhibition of DNA gyrase (DNA topoisomerase II). We determined the activity of several fluoroquinolones in vitro against two strains of Plasmodium falciparum, FCC1 (chloroquine susceptible) and VNS (chloroquine resistant). [3H]hypoxanthine incorporation by malarial parasites was determined at 48 and 96 h. The molarity at which each agent caused a 50% decrease in the incorporation of [3H]hypoxanthine compared with that of drug-free controls was defined as the 50% inhibitory concentration. The fluoroquinolones evaluated were amifloxacin, ciprofloxacin, enoxacin, norfloxacin, ofloxacin, and pefloxacin. Other DNA gyrase inhibitors tested were nalidixic acid, oxolinic acid, novobiocin, and coumermycin A1. Among the fluoroquinolones, ciprofloxacin had the lowest 50% inhibitory concentrations at 48 h against both chloroquine-susceptible and -resistant strains of P. falciparum, (0.26 +/- 0.08) x 10(-4) and (0.38 +/- 0.15) x 10(-4) M, respectively (mean +/- standard deviation). Enoxacin had the lowest 50% inhibitory concentrations against FCC1 and VNS at 96 h, 0.23 x 10(-5) and (0.06 +/- 0.04) x 10(-5) M, respectively. With the VNS strain, fractional inhibitory concentration indexes for the combination of ciprofloxacin and tetracycline were calculated at 48 and 96 h to be 0.93 and 0.79, respectively, indicating modest additive effects. The combination of novobiocin with ciprofloxacin showed indifference in the same system. The antimalarial effects of some fluoroquinolones occur at achievable serum concentrations. Whether inhibition of DNA gyrase contributes to the antimalarial activity of the fluoroquinolones is unknown at present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号