首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Drug metabolism reviews》2012,44(1-2):337-352
Expression of 10 CYP orthologs (Families 1–3) in developing mouse conceptus is constitutive. These forms have specific temporal and spatial expression. Studies on CYP1B1 indicate its requirement for normal eye development, both in human and mouse. The distribution of the enzyme in the mouse eye is in three regions, which may reflect three different, perhaps equally important, functions in this organ. Its presence in the inner ciliary and lens epithelia appears to be necessary for normal development of the trabecular meshwork and its function in regulating intraocular pressure. Its expression in the retinal ganglion and inner nuclear layers may reflect a role in maintenance of the visual cycle. Its expression in the corneal epithelium may indicate a function in metabolism of environmental xenobiotics.  相似文献   

2.
We show, for the first time, the spatiotemporal appearance of Cyp1b1 protein during mouse eye ontogeny. The protein was unambiguously identified in the adult mouse eye and newborn (P0) whole mouse microsomes and was shown to be localized in inner ciliary epithelium, corneal epithelium, retinal inner nuclear cells, and ganglion cells. The enzyme protein was present in the lens epithelium adjacent to the developing ciliary body at 15.5 days postconception (E15.5) and was most strongly expressed during E17.5 to 7 days postnatally (P07). Subsequently, it declined to very low levels. The protein was also expressed in the corneal endothelial cells adjacent to the ciliary body at P07. Cyp1b1 was barely detectable in the inner ciliary epithelium before E17.5 but increased rapidly postnatally, reaching adult levels by P28. Levels of the enzyme protein in the corneal epithelium were seen from E15.5 onward, increasing sharply, and after a decrease at P07, were highest in the adult animal eye. The presence of Cyp1b1 protein in the inner nuclear layer of the retina was very low in the prenatal eye, increasing rapidly postnatally, and was highest in the adult animal eye. In the ganglion cell layer of the retina, it increased slowly from E15.5 to P07 and then rapidly reached adult levels. Interestingly, Cyp1b1 was not detected in the trabecular meshwork at any stage of development or in the adult eye. We conclude that the enzyme may play important roles in normal eye development and function in mice as in humans, and that the mouse may prove to be an excellent model for determination of the roles of CYP1B1 in human eye development and function.  相似文献   

3.
Gene expression arrays reveal the potential linkage of altered gene expression with specific adverse effects leading to disease phenotypes. But how closely do microarray data reflect early physiological or pharmacological measures that predict toxic event(s)? To explore this issue, we have undertaken experiments in early mouse embryos exposed to various teratogens during neurulation stages with the aim of correlating large-scale changes in gene expression across the critical period during exposure. This study reports some of the large-scale changes in gene expression that can be detected in the optic rudiment of the developing mouse and rat embryo across the window of development during which the eye is exceedingly sensitive to teratogen-induced micro-/anophthalmia. Microarray analysis was performed on RNA from the headfold or ocular region at the optic vesicle and optic cup stages when the ocular primordium is enriched for Pax-6, a master control gene for eye morphogenesis. Statistical selection of differentially regulated genes and various clustering techniques identified groups of genes in upward or downward trajectories in the normal optic primordium during early eye development in mouse and rat species. We identified 165 genes with significant differential expression during eye development, and a smaller subset of 58 genes that showed a tight correlation between mouse-rat development. Significantly over-represented functional categories included fatty acid metabolism (up-regulated) and glycolysis (down-regulated). From studies such as these that benchmark large-scale gene expression during normal embryonic development, we may be able to identify the panel of biomarkers that best correlate with species differences and the risks for developmental toxicity.  相似文献   

4.
CYP1B1 is linked to normal eye development by the disease phenotype, primary congenital glaucoma (PCG). CYP1B1 mRNA was expressed in a number of human fetal tissue cDNA libraries, supporting the suggestion of its involvement in tissue development. Highest expression levels were found in thymus and kidney, followed by spleen. A considerably lower level was observed in lung, cardiac and skeletal muscle. No expression was detected in liver or brain. CYP1B1 is able to metabolize steroid hormones. Testosterone was a poor substrate and activity with progesterone was 6-fold higher, but estradiol was the preferred substrate, exhibiting a greater metabolite profile with CYP1B1 than with CYP1A2. Major metabolites were A-ring hydroxylations (75-80%). Others were 15alpha-, 6alpha-, 16alpha- and 6beta-hydroxy metabolites. Two CYP1B1 mutations found in families with the PCG phenotype in which incomplete penetrance is seen were expressed in Escherichia coli. G61E, a hinge region mutation, and R469W, a heme region mutation, were shown to code for holoenzymes. G61E had greatly diminished stability, while the R469W holoenzyme, if anything, was stabilized. Both mutants showed compromised catalytic activity. The extents of isomeric site activity diminution were not proportional, resulting in alterations in the metabolite profiles. The results suggest that if a metabolite of CYP1B1 or elimination of a metabolite by CYP1B1 is necessary for normal embryonic or fetal tissue development, the appearance of these two mutations could result in developmental abnormalities. The altered activities of the mutants and ability of CYP1B1 to respond to external challenge may be the basis for the observed incomplete penetrance.  相似文献   

5.
张明  柳晓泉 《药学进展》2009,33(4):157-162
综述细胞色素P450酶(CYP)1B1在肿瘤组织中的表达、在肿瘤的发生发展和诊断与干预中的作用以及其抑制剂的研发和抗肿瘤活性。CYP1B1在正常组织中低表达,而在许多肿瘤组织中则特异性高表达,可激活和代谢产生致癌物质,并可致多种抗癌药物代谢失活而使肿瘤耐药,因此它既可用于早期癌症的诊断,又可作为理想的抗肿瘤作用靶点而用于药物研发。  相似文献   

6.
Sildenafil [SIL (Viagra); Pfizer, New York, NY] is a widely prescribed agent for erectile dysfunction in men older than 65 years. The present study evaluated experimental models to assess age-dependent changes in SIL biotransformation using hepatic microsomes from male rats and mice ranging from 6 weeks to 26 months of age. The role of specific isoforms in the conversion of SIL to its primary circulating metabolite, UK-103,320 (piperazine N-desmethyl sildenafil) in the mouse was also investigated using immunoinhibitory antibodies. Although CYP2C11 largely mediated UK-103,320 formation in the rat, UK-103,320 formation was principally inhibited by a CYP3A antibody in the mouse. An age-related decrement in metabolite formation rate was observed for both species, although this effect was more pronounced in the old rats (reduced to 7% of young) than in the old mice (reduced to 51% of young). CYP2C expression was assessed by Western blot analysis in rat and mouse livers. Age-related differences in hepatic CYP3A expression in the mouse were also compared with metabolite formation rates in the mouse model. Decrements with age in CYP2C and -3A expression in the aging rodents paralleled the decrements in SIL biotransformation, suggesting that age-related differences in SIL metabolic rate may, in part, reflect differences in expression. Although the role of specific CYP enzymes and the clearance values for this reaction may differ among species, age-related changes in these rodent models are consistent with the reduced clearance of SIL observed in human studies.  相似文献   

7.
Significance of the minor cytochrome P450 3A isoforms   总被引:3,自引:0,他引:3  
Cytochrome P450 (CYP) 3A4 is responsible for most CYP3A-mediated drug metabolism but the minor isoforms CYP3A5, CYP3A7 and CYP3A43 also contribute. CYP3A5 is the best studied of the minor CYP3A isoforms. It is well established that only approximately 20% of livers express CYP3A5. The most common reason for the absence of expression is a splice site mutation. The frequency of variant alleles shows interethnic differences, with the wild-type CYP3A5*1 allele more common in Africans than Caucasians and Asians. In individuals who express CYP3A5, the percentage contributed to total hepatic CYP3A by this isoform is still unclear, with estimates ranging from 17% to 50%. CYP3A5 is also expressed in a range of extrahepatic tissues. Only limited information is available on the regulation of CYP3A5 expression but it appears to be inducible via the glucocorticoid receptor, pregnane X receptor and constitutive androstane receptor-beta, as for CYP3A4. Although information on the substrate specificity of CYP3A5 is limited compared with CYP3A4, there have been a number of recent pharmacokinetic studies on a small range of substrates in individuals of known genotype to investigate the contribution of CYP3A5. In the case of midazolam, ciclosporin, nifedipine and docetaxel, clearance by individuals with a CYP3A5-expressing genotype did not differ from that for nonexpressors, but in the case of tacrolimus, eight independent studies have demonstrated faster clearance by those carrying one or two CYP3A5*1 alleles. This may reflect faster turnover of tacrolimus by CYP3A5 than the other substrates. CYP3A5 genotype may affect cancer susceptibility. Certain combined CYP3A4/CYP3A5 haplotypes show differential susceptibility to prostate cancer and there is a nonsignificant increase in the risk of small-cell lung cancer for a CYP3A5*1/*1 genotype. Females positive for CYP3A5*1 appear to reach puberty earlier, which may affect breast cancer risk. CYP3A5*1 homozygotes may have higher systolic blood pressure.CYP3A7 is predominantly expressed in fetal liver but is also found in some adult livers and extrahepatically. The molecular basis for expression in adult liver relates to upstream polymorphisms, which appear to increase homology to CYP3A4 and make regulation of expression more similar. CYP3A7 has a specific role in hydroxylation of retinoic acid and 16alpha-hydroxylation of steroids, and is therefore of relevance both to normal development and carcinogenesis.CYP3A43 is the most recently discovered CYP3A isoform. In addition to a low level of expression in liver, it is expressed in prostate and testis. Its substrate specificity is currently unclear. Polymorphisms predicting absence of active enzyme have been identified.  相似文献   

8.
In experimental animals, CYP1A2 is absolutely required for the development of uroporphyria induced by treatment with polyhalogenated aromatic compounds or other compounds. Although the role of this CYP in clinical uroporphyria, porphyria cutanea tarda (PCT), is not clear, Cyp1a2(-/-) mice are resistant to the development of uroporphyria. Here, we compared the abilities of human and mouse CYP1A2 expressed in mouse hepatoma Hepa-1 cells to: (i) catalyze CYP1A2-dependent methoxyresorufin demethylase (MROD), and (ii) support uroporphyrin (URO) accumulation. Both CYP1A2 orthologs were expressed at similar levels as indicated by immunodetectable CYP1A2 proteins and MROD activities. URO accumulation was increased in cultures expressing either ortholog when supplemented with 5-aminolevulinic acid, the porphyrin precursor. Cells expressing mouse CYP1A2 produced more URO than cells expressing human CYP1A2. The results indicate that human CYP1A2 can support URO accumulation in hepatoma cells and thus may play a role in human PCT.  相似文献   

9.
10.
Halogenated agonists for the aryl hydrocarbon receptor (AHR), such as 3,3',4,4',5-pentachlorobiphenyl (PCB126) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), cause developmental toxicity in fish. AHR dependence of these effects is known for TCDD but only presumed for PCB126, and the AHR-regulated genes involved are known only in part. We defined the role of AHR in regulation of four cytochrome P450 1 (CYP1) genes and the effect of PCB126 on cell cycle genes (i.e., PCNA and cyclin E) in zebra fish (Danio rerio) embryos. Basal and PCB126-induced expression of CYP1A, CYP1B1, CYP1C1, and CYP1C2 was examined over time as well as in relation to cell cycle gene expression and morphological effects of PCB126 in developing zebra fish. The four CYP1 genes differed in the time for maximal basal and induced expression, i.e., CYP1B1 peaked within 2 days postfertilization (dpf), the CYP1Cs around hatching (3 dpf), and CYP1A after hatching (14-21 dpf). These results indicate developmental periods when the CYP1s may play physiological roles. PCB126 (0.3-100nM) caused concentration-dependent CYP1 gene induction (EC50: 1.4-2.7nM, Lowest observed effect concentration [LOEC]: 0.3-1nM) and pericardial edema (EC50: 4.4nM, LOEC: 3nM) in 3-dpf embryos. Blockage of AHR2 translation significantly inhibited these effects of PCB126 and TCDD. PCNA gene expression was reduced by PCB126 in a concentration-dependent manner, suggesting that PCB126 could suppress cell proliferation. Our results indicate that the four CYP1 genes examined are regulated by AHR2 and that the effect of PCB126 on morphology in zebra fish embryos is AHR2 dependent. Moreover, the developmental patterns of expression and induction suggest that CYP1 enzymes could function in normal development and in developmental toxicity of PCB126 in fish embryos.  相似文献   

11.
We previously observed a strong synergistic effect on polycyclic aromatic hydrocarbon (PAH)-induced CYP1A1 expression by andrographolide, a major constituent of an herbal medicine derived from the plant Andrographis paniculata, in mouse hepatocytes in primary culture. The present paper describes confirmation of an enhancing effect of andrographolide on the CYP1 family in vivo in the PAH-responsive C57BL/6 mouse. Andrographolide did not alter CYP1 expression in the PAH-nonresponsive DBA/2 mouse. The enhanced expression induced by andrographolide was observed in male C57BL/6 mice, but not in intact or ovariectomized females, or in orchiectomized male mice. However, treatment with testosterone restored the effect in both orchiectomized males and ovariectomized females. These observations indicate a male hormone-related system to be a crucial mediator of the modulation of CYP1 expression by andrographolide. Precautions should be taken regarding the use of A. paniculata as an alternative medication or health promotion, according to its distinctive characterization on sexually dimorphic modulation of CYP1A1 expression.  相似文献   

12.
CYP2A13, CYP2B6, and CYP2F1, which are encoded by neighboring cytochrome P450 genes on human chromosome 19, are active in the metabolic activation of many drugs, respiratory toxicants, and chemical carcinogens. To facilitate studies on the regulation and function of these human genes, we have generated a CYP2A13/2B6/2F1-transgenic (TG) mouse model (all *1 alleles). Homozygous transgenic mice are normal with respect to gross morphological features, development, and fertility. The tissue distribution of transgenic mRNA expression agreed well with the known respiratory tract-selective expression of CYP2A13 and CYP2F1 and hepatic expression of CYP2B6 in humans. CYP2A13 protein was detected through immunoblot analyses in the nasal mucosa (NM) (~100 pmol/mg of microsomal protein; similar to the level of mouse CYP2A5) and the lung (~0.2 pmol/mg of microsomal protein) but not in the liver of the TG mice. CYP2F1 protein, which could not be separated from mouse CYP2F2 in immunoblot analyses, was readily detected in the NM and lung but not the liver of TG/Cyp2f2-null mice, at levels 10- and 40-fold, respectively, lower than that of mouse CYP2F2 in the TG mice. CYP2B6 protein was detected in the liver (~0.2 pmol/mg of microsomal protein) but not the NM or lung (with a detection limit of 0.04 pmol/mg of microsomal protein) of the TG mice. At least one transgenic protein (CYP2A13) seems to be active, because the NM of the TG mice had greater in vitro and in vivo activities in bioactivation of a CYP2A13 substrate, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (a lung carcinogen), than did the NM of wild-type mice.  相似文献   

13.
CYP1C is the newest member of the CYP1 family of P450s; however, its physiological significance, inducers, and metabolic functions are unknown. Two full-length alleles of Fundulus heteroclitus CYP1C1 complementary DNA were cloned. The 529 amino acid protein shared the highest amino acid identity with Stenotomus chrysops CYP1C1 (81%). To investigate whether the carcinogen benzo[a]pyrene (BaP) was a CYP1C1 inducer, we used real-time PCR to quantitatively measure tissue- and sex-specific expression of both CYP1C1 and CYP1A messenger RNAs (mRNAs) in BaP-exposed adult fish. CYP1C1 mRNA expression was constitutively higher than CYP1A in brain, spleen, eye, and gonad, while CYP1A was higher in gastrointestinal tract (GI), heart, gill, and liver. Kidney had equal but high expression of both CYP1s. There were sex differences in constitutive CYP1 expression in the GI, liver, gill, and eye. BaP exposure caused induction of CYP1C1 expression in female and male heart (31- and 17-fold), gill (seven- and four-fold), and liver (six- and five-fold), respectively. Embryo CYP1 expression was constitutively highest at 2 weeks posthatch, and whole embryos expressed 3- to 15-fold more CYP1C1 mRNA compared to CYP1A. BaP, 10 microg/l for 10 days, caused induction of both genes at 120 and 240 h postfertilization. Our results suggest that teleost CYP1C, in addition to CYP1A, is inducible by BaP, has a broad tissue distribution, and should be further investigated for its role in carcinogen bioactivation.  相似文献   

14.
15.
Wu Q  Ohsako S  Baba T  Miyamoto K  Tohyama C 《Toxicology》2002,174(2):119-129
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent environmental contaminant that can exert developmental toxicity. To investigate the stage-specific effects of TCDD on preimplantation embryos, we exposed mouse embryos to TCDD at different stages (1-, 2-, and 8-cell) and collected them at different stages of development (the 1- or 2-, 8-cell, and blastocyst stage, respectively). Semiquantitative RT-PCR revealed increased constitutive gene expression of the arylhydrocarbon receptor (AhR) and AhR nuclear translocator (Arnt) at the 1-cell stage, decreased expression at the 2- to 8-cell stage, and increased expression again at the blastocyst stage, and addition of TCDD to media did not affect their mRNA levels. Interestingly, no cytochrome P4501A1 (CYP1A1) mRNA was detected in embryos at the 1-, 2-, and 8-cell stages after exposure to 10 nM TCDD for 12 or 24 h, whereas CYP1A1 mRNA was significantly increased at the blastocyst stage in response to TCDD, and its induction was found to be concentration-dependent on TCDD exposure from 0.01 to 10 nM for 24 h. In addition, no significant differences in development rate of preimplantation embryos, cell number of blastocyst embryos, or apoptotic indices, such as TUNEL-positive cell number or Bax/Bcl-2 expression ratios were observed at the blastocyst stage between TCDD-exposed groups and non-exposed group. These results suggest that the sensitivity to TCDD differs with the embryonic stage, which may reflect an ability of embryos to adapt to environmental stressors, such as dioxins.  相似文献   

16.
Crossing the Cyp1a1/1a2(-/-) double-knockout mouse with the Cyp1b1(-/-) single-knockout mouse, we generated the Cyp1a1/1a2/1b1(-/-) triple-knockout mouse. In this triple-knockout mouse, statistically significant phenotypes (with incomplete penetrance) included slower weight gain and greater risk of embryolethality before gestational day 11, hydrocephalus, hermaphroditism, and cystic ovaries. Oral benzo[a]pyrene (BaP) daily for 18 days in the Cyp1a1/1a2(-/-) produced the same degree of marked immunosuppression as seen in the Cyp1a1(-/-) mouse; we believe this reflects the absence of intestinal CYP1A1. Oral BaP-treated Cyp1a1/1a2/1b1(-/-) mice showed the same "rescued" response as that seen in the Cyp1a1/1b1(-/-) mouse; we believe this reflects the absence of CYP1B1 in immune tissues. Urinary metabolite profiles were dramatically different between untreated triple-knockout and wild-type; principal components analysis showed that the shifts in urinary metabolite patterns in oral BaP-treated triple-knockout and wild-type mice were also strikingly different. Liver microarray cDNA differential expression (comparing triple-knockout with wild-type) revealed at least 89 genes up- and 62 genes down-regulated (P-value < or = 0.00086). Gene Ontology "classes of genes" most perturbed in the untreated triple-knockout (compared with wild-type) include lipid, steroid, and cholesterol biosynthesis and metabolism; nucleosome and chromatin assembly; carboxylic and organic acid metabolism; metal-ion binding; and ion homeostasis. In the triple-knockout compared with the wild-type mice, response to zymosan-induced peritonitis was strikingly exaggerated, which may well reflect down-regulation of Socs2 expression. If a single common molecular pathway is responsible for all of these phenotypes, we suggest that functional effects of the loss of all three Cyp1 genes could be explained by perturbations in CYP1-mediated eicosanoid production, catabolism and activities.  相似文献   

17.
The induction of cytochrome P4502E1 (CYP2E1) is believed to play a role in the development of fibrosis in hepatitis C patients. However, information about CYP2E1 activity in chronic hepatitis C patients is fragmentary and the relationship between CYP2E1 activity and mRNA expression is unknown in this disease. The purpose of this study was (a) to characterise CYP2E1 activity in those patients and (b) to analyse its relationship with CYP2E1 mRNA expression in the liver and in peripheral blood lymphocytes (PBLs), previously proposed as a surrogate to assess changes in CYP2E1 activity. Fourteen chronic hepatitis C patients were submitted to a routine transcutaneous liver biopsy. CYP2E1 activity was assessed by using chlorzoxazone (CZX) pharmacokinetic parameters and hepatic and PBLs CYP2E1 mRNA expression was measured by real-time RT-PCR. The mean oral clearance of CZX (CLT: 21.5+/-10.1L/h) was within the normal range and the chlorzoxazone metabolic ratio (CMR) at t = 2 h was closely related to other CZX pharmacokinetic parameters. None of the pharmacokinetic parameters did significantly correlate with CYP2E1 mRNA, neither in the liver nor in PBLs. Furthermore, there was no significant relationship between CYP2E1 mRNA levels in paired liver and PBL samples. Our data indicate that early stages of chronic hepatitis C are not associated with CYP2E1 induction. In this disease, the determination of the CMR at t = 2 h represents a reliable index to assess CYP2E1 activity. The measurement of CYP2E1 expression, at the mRNA level, in PBLs or in liver is not useful for that purpose.  相似文献   

18.
2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a potent rodent carcinogen and a potential human carcinogen because of its existence in the normal human diet. N2-OH-PhIP, a major PhIP metabolite, has been identified as a precursor of genotoxic species. In vitro data supported the view that CYP1A2 is the major enzyme responsible for the formation of N2-OH-PhIP. However, disruption of the CYP1A2 gene in mouse failed to inhibit PhIP-induced carcinogenesis. To investigate the mechanism underlying this observation, the metabolism of PhIP in wild-type, Cyp1a2-null, and CYP1A2-humanized mice was examined in detail using a metabolomic approach. Following data acquisition in a high-resolution LC-MS system, urinary metabolomes of the control and PhIP-treated mice were characterized in a principal component analysis (PCA) model. Comprehensive metabolite profiles of PhIP in high dose (10 mg/kg) and low dose (100 microg/kg) were established through analyzing urinary ions contributing to the separation of three mouse lines in the multivariate model and by measuring radiolabled PhIP metabolite in a radio-HPLC assay, respectively. The genotoxicity of PhIP to three mouse lines was evaluated by measuring DNA adduction levels in liver, lung, colon, and mammary gland. On the basis of the chemical identities of 17 urinary PhIP metabolites, including eight novel metabolites, multivariate data analysis revealed the role of CYP1A2 in PhIP metabolism and a human-mouse interspecies difference in the catalytic activity of CYP1A2. In addition, the results also showed that Cyp1a2-null mice still possess significant N2-hydroxylation and DNA adduction activities, which may be partially attributed to mouse CYP2C enzymes according to the results from in vitro microsome and Supersome incubations and antibody inhibition experiments.  相似文献   

19.
20.
The Cytochrome P450 4A subfamily is one of eighteen subfamilies in the CYP4 family and presently consists of twenty individual forms in nine different mammalian species. The major substrates for CYP4A forms are fatty acids, but recent studies have shown other non-fatty acid substrates may be metabolized by specific CYP4A forms. The physiological and metabolic functions of the CYP4A subfamily have not been elucidated, but the ability of CYP4A forms to metabolize medium and long chain length fatty acids at their omega (omega)-carbon atom has generated significant interest because of the possible role that omega-hydroxylated fatty acids may have in cell signalling processes and as an alternative pathway for fatty acid metabolism. A number of different compounds or physiological conditions have been shown to regulate the expression of CYP4A forms in liver and/or kidney. Several CYP4A forms may serve as a marker for the exposure to compounds that are classified as peroxisome proliferators. There is also considerable interest why multiple CYP4A forms exist in different tissues. Recent studies in the rat and human indicate that other CYP4 forms besides CYP4A forms may be responsible for the metabolism of arachidonic acid to its omega-hydroxy product. The focus of this review will be to summarize recent studies that have characterized the substrate specificity of rat, rabbit and human CYP4A forms and discuss the significance of CYP4A-mediated hydroxylation of fatty acids. In addition, dietary effects or novel compounds that have been reported to regulate CYP4A expression in the rat and mouse will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号