首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Hemophilia is treated by IV replacement therapy with Factor VIII (FVIII) or Factor IX (FIX), either on demand to resolve bleeding, or as prophylaxis. Improved treatment may be provided by drugs designed for subcutaneous and less frequent administration with a reduced risk of inhibitor formation. Tissue factor pathway inhibitor (TFPI) down-regulates the initiation of coagulation by inhibition of Factor VIIa (FVIIa)/tissue factor/Factor Xa (FVIIa/TF/FXa). Blockage of TFPI inhibition may facilitate thrombin generation in a hemophilic setting. A high-affinity (K(D) = 25pM) mAb, mAb 2021, against TFPI was investigated. Binding of mAb 2021 to TFPI effectively prevented inhibition of FVIIa/TF/FXa and improved clot formation in hemophilia blood and plasma. The binding epitope on the Kunitz-type protease inhibitor domain 2 of TFPI was mapped by crystallography, and showed an extensive overlap with the FXa contact region highlighting a structural basis for its mechanism of action. In a rabbit hemophilia model, an intravenous or subcutaneous dose significantly reduced cuticle bleeding. mAb 2021 showed an effect comparable with that of rFVIIa. Cuticle bleeding in the model was reduced for at least 7 days by a single intravenous dose of mAb 2021. This study suggests that neutralization of TFPI by mAb 2021 may constitute a novel treatment option in hemophilia.  相似文献   

2.
We have developed a cell-based model of thrombin generation using activated monocytes as a source of tissue factor (TF) and platelets serving as a surface for thrombin generation. Monocytes are activated by lipopolysaccharide and express cell-bound TF. To these are added physiologic (plasma) concentrations of all the plasma procoagulants as well as TF pathway inhibitor, antithrombin, and C1-esterase inhibitor. Coagulation takes place in microtiter wells and is initiated by factor VIIa (FVIIa) and calcium. At time intervals, aliquots are removed, platelet activation is measured by the expression of P-selectin, and thrombin generation is measured by chromogenic assay. In addition, one can measure the activation of FIX, FX, FVIII, FV, and FXI. Initial results reveal that the FVIIa-TF interaction results in the activation of FX to FXa and FIX to FIXa. FXa stays in the vicinity of the TF-bearing cell and, in the presence of FVa, converts a small amount of prothrombin to thrombin on the surface of the TF cell. This small amount of thrombin is not sufficient to clot fibrinogen, but is sufficient to activate platelets and FVIII, FV, and FXI. Following platelet activation, FVIIIa, FVa, and FXa occupy sites on the activated platelet surface. FIXa, activated by TF-FVIIa, does not remain on the TF cell, but converts FX to FXa on the platelet surface. FXIa acts to boost FIXa generation on the activated platelet, increasing FXa and subsequent thrombin generation. We have also shown that activated protein C does not inactivate Va on the platelet surface but rather on endothelial cell surfaces.  相似文献   

3.
Saliva of the hard tick and Lyme disease vector, Ixodes scapularis, has a repertoire of compounds that counteract host defenses. Following sequencing of an I scapularis salivary gland complementary DNA (cDNA) library, a clone with sequence homology to tissue factor pathway inhibitor (TFPI) was identified. This cDNA codes for a mature protein, herein called Ixolaris, with 140 amino acids containing 10 cysteines and 2 Kunitz-like domains. Recombinant Ixolaris was expressed in insect cells and shown to inhibit factor VIIa (FVIIa)/tissue factor (TF)-induced factor X (FX) activation with an inhibitory concentration of 50% (IC(50)) in the picomolar range. In nondenaturing gel, Ixolaris interacted stoichiometrically with FX and FXa but not FVIIa. Ixolaris behaves as a fast-and-tight ligand of the exosites of FXa and gamma-carboxyglutamic acid domainless FXa (des-Gla-FXa), increasing its amidolytic activity. At high concentration, Ixolaris attenuates the amidolytic activity of FVIIa/TF; however, in the presence of DEGR-FX or DEGR-FXa (but not des-Gla-DEGR-FXa), Ixolaris becomes a tight inhibitor of FVIIa/TF as assessed by recombinant factor IX (BeneFIX) activation assays. This indicates that FX and FXa are scaffolds for Ixolaris in the inhibition of FVIIa/TF and implies that the Gla domain is necessary for FVIIa/TF/Ixolaris/FX(a) complex formation. Additionally, we show that Ixolaris blocks FXa generation by endothelial cells expressing TF. Ixolaris may be a useful tool to study the structural features of FVIIa, FX, and FXa, and an alternative anticoagulant in cardiovascular diseases.  相似文献   

4.
Tissue factor pathway.   总被引:3,自引:0,他引:3  
Blood coagulation is initiated in response to vessel damage in order to preserve the integrity of the mammalian vascular system. The coagulation cascade can also be initiated by mediators of the inflammatory response, and fibrin deposition has been noted in a variety of pathological states. The cascade of coagulation zymogen activations which leads to clot formation is initiated by exposure of flowing blood to Tissue Factor (TF), the cellular receptor and cofactor for Factor VII (FVII). FVII binds to the receptor in a I:I stoichiometric complex and is rapidly activated. FVIIa undergoes an active site transition upon binding TF in the presence of calcium which enhances the fundamental properties of the enzyme. This results in rapid autocatalytic activation of FVII to FVIIa, thereby amplifying the response by generating more TF-FVIIa complexes. The TF-FVIIa activates both FIX and FX. Further FXa generation by the FIXa-FVIIIa-Ca2+-phospholipid complex is required to sustain the coagulation mechanism, since the TF-FVIIa complex is rapidly inactivated by Tissue Factor pathway inhibitor (TFPI). TFPI circulates in plasma, is associated with vascular cell surface and is released from platelets following stimulation by thrombin. TFPI requires the formation of an active TF-FVIIa complex and FXa generation before inhibition can occur. TFPI prevents further participation of TF in the coagulation process by forming a stable quaternary complex, TF-FVIIa-FXa-TFPI.  相似文献   

5.
Tissue factor (TF) assembled with activated factor VII (FVIIa) initiates the coagulation cascade. We recently showed that TF was essential for FVIIa-induced vascular endothelial growth factor (VEGF) production by human fibroblasts. We investigated whether this production resulted from TF activation by its binding to FVIIa or from the production of clotting factors activated downstream. Incubation of fibroblasts with a plasma-derived FVIIa concentrate induced the generation of activated factor X (FXa) and thrombin and the secretion of VEGF, which was inhibited by hirudin and FXa inhibitors. By contrast, the addition of recombinant FVIIa to fibroblasts did not induce VEGF secretion unless factor X was present. Moreover, thrombin and FXa induced VEGF secretion and VEGF mRNA accumulation, which were blocked by hirudin and FXa inhibitors, respectively. The effect of thrombin was mediated by its specific receptor, protease-activated receptor-1; in contrast, the effect of FXa did not appear to involve effector cell protease receptor-1, because it was not affected by an anti-effector cell protease receptor-1 antibody. An increase in intracellular calcium with the calcium ionophore A23187 or intracellular calcium chelation by BAPTA-AM had no effect on either basal or FXa-induced VEGF secretion, suggesting that the calcium signaling pathway was not sufficient to induce VEGF secretion. Finally, FVIIa, by itself, had no effect on mitogen-activated protein (MAP) kinase activation, contrary to thrombin and FXa, which activate the p44/p42 MAP kinase pathway, as shown by the blocking effect of PD 98059 and by Western blotting of activated MAP kinases. These findings indicate that FVIIa protease induction of VEGF expression is mediated by thrombin and FXa generated in response to FVIIa binding to TF-expressing fibroblasts; they also exclude a direct signaling involving MAP kinase activation via the intracellular domain of TF when expressed by these cells.  相似文献   

6.
Originally isolated from a haematophagous hookworm, recombinant nematode anticoagulant protein c2 (rNAPc2) is an 85-amino acid protein with potent anticoagulant properties. Unlike conventional anticoagulants that attenuate blood coagulation via inhibition of thrombin or activated factor X (FXa) at the downstream portion of the cascade, rNAPc2 is a potent inhibitor of the activated factor VII/tissue factor complex (FVIIa/TF), the key physiological initiator of blood coagulation. Its mechanism of action requires prerequisite binding to circulating FXa or zymogen factor X (FX) to form a binary complex prior to its interaction and inhibition of membrane-bound FVIIa/TF. The binding of rNAPc2 to FX results in an elimination half-life of longer than 50 h following either subcutaneous or intravenous administration. Recombinant NAPc2, like other inhibitors of FVIIa/TF including tissue factor pathway inhibitor (TFPI) and active site-blocked FVIIa (ASIS, FFR-rFVIIa or FVIIai), may have a promising role in the prevention and treatment of venous and arterial thrombosis, as well as potential efficacy in the management of disseminated intravascular coagulopathies because of their potent and selective inhibition of FVIIa/TF.  相似文献   

7.
Mast  AE; Broze  GJ Jr 《Blood》1996,87(5):1845-1850
Tissue factor pathway inhibitor (TFPI) is a Kunitz-type serine proteinase inhibitor that directly inhibits factor Xa and, in a factor Xa dependent manner, inhibits the factor VIIa/tissue factor catalytic complex. The inhibitory effect of TFPI in prothrombin activation assays using purified components of the prothrombinase complex was examined. When factor Xa is added to mixtures containing TFPI, prothrombin, calcium ions, and nonactivated platelets or factor V and phospholipids, TFPI significantly reduces subsequent thrombin generation, and the inhibitory effect is enhanced by heparin. If factor Xa is preincubated with calcium ions and thrombin-activated platelets or factor Va and phospholipids to permit formation of prothrombinase before the addition of prothrombin and physiologic concentrations of TFPI (< 8 nmol/L), minimal inhibition of thrombin generation occurs, even in the presence of heparin. Thus, contrary to results in amidolytic assays with chromogenic substrates, prothrombinase is resistant to inhibition by TFPI in the presence of its physiological substrate, prothrombin. Higher concentrations of TFPI (approximately 100 nmol/L), similar to those used in animal studies testing for therapeutic actions of TFPI, do effectively block prothrombinase activity.  相似文献   

8.
Tissue factor (TF) plays an important role in hemostasis, inflammation, angiogenesis, and the pathophysiology of atherosclerosis and cancer. In this article we uncover a mechanism in which protein S, which is well known as the cofactor of activated protein C, specifically inhibits TF activity by promoting the interaction between full-length TF pathway inhibitor (TFPI) and factor Xa (FXa). The stimulatory effect of protein S on FXa inhibition by TFPI is caused by a 10-fold reduction of the K(i) of the FXa/TFPI complex, which decreased from 4.4 nM in the absence of protein S to 0.5 nM in the presence of protein S. This decrease in K(i) not only results in an acceleration of the feedback inhibition of the TF-mediated coagulation pathway, but it also brings the TFPI concentration necessary for effective FXa inhibition well within range of the concentration of TFPI in plasma. This mechanism changes the concept of regulation of TF-induced thrombin formation in plasma and demonstrates that protein S and TFPI act in concert in the inhibition of TF activity. Our data suggest that protein S deficiency not only increases the risk of thrombosis by impairing the protein C system but also by reducing the ability of TFPI to down-regulate the extrinsic coagulation pathway.  相似文献   

9.
Relevance of tissue factor in cardiovascular disease   总被引:11,自引:0,他引:11  
Overexpression and exposition of tissue factor (TF) in atherosclerotic plaques and/or arterial thrombi are critical events in atherothrombosis. TF, the receptor for factor VII (FVII) and activated factor VII (FVIIa), is the principal initiator of blood coagulation and induces thrombin generation leading to fibrin formation and platelet activation. TF also plays a major role in cell migration and angiogenesis. TF activity is downregulated by Tissue Factor Pathway Inhibitor (TFPI), a Kunitz-type inhibitor, which forms a neutralizing complex with TF, FVIIa and activated factor X. In physiological conditions, TF is absent from vascular cells which come into contact with flowing blood and is present as an inactive pool in fibroblasts and smooth muscle cells (SMC). In contrast, TF is widely expressed in atherosclerotic plaques and is found in macrophages, SMCs, and foam-cells and also in extracellular matrix and acellular lipid-rich core. TF expression is up-regulated by inflammatory cytokines and oxidized lipids. Plaque thrombogenicity is directly correlated to their TF content. After fibrous cap disruption, TF is exposed on plaque surface and triggers thrombus formation leading to arterial lumen occlusion and/or downstream embolization. In coronary and carotid plaques, TF content was found to be higher in plaques from symptomatic than asymptomatic patients. Soluble forms of TF and microparticles of monocyte and platelet origin, and bearing TF, constitute "blood-born TF". The contribution of this TF pool to arterial thrombosis is still under discussion. TF pathway is a target for new therapeutic agents that can decrease TF activity, such as active site-inactivated factor VIIa, recombinant TFPI and antibodies against TF or peptides interfering with TF-FVIIa complex activity.  相似文献   

10.
Protease-activated receptor 2 (PAR2) is expressed by vascular endothelial cells and other cells in which its function and physiological activator(s) are unknown. Unlike PAR1, PAR3, and PAR4, PAR2 is not activatable by thrombin. Coagulation factors VIIa (FVIIa) and Xa (FXa) are proteases that act upstream of thrombin in the coagulation cascade and require cofactors to interact with their substrates. These proteases elicit cellular responses, but their receptor(s) have not been identified. We asked whether FVIIa and FXa might activate PARs if presented by their cofactors. Co-expression of tissue factor (TF), the cellular cofactor for FVIIa, together with PAR1, PAR2, PAR3, or PAR4 conferred TF-dependent FVIIa activation of PAR2 and, to lesser degree, PAR1. Responses to FXa were also observed but were independent of exogenous cofactor. The TF/FVIIa complex converts the inactive zymogen Factor X (FX) to FXa. Strikingly, when FX was present, low picomolar concentrations of FVIIa caused robust signaling in cells expressing TF and PAR2. Responses in keratinocytes and cytokine-treated endothelial cells suggested that PAR2 may be activated directly by TF/FVIIa and indirectly by TF/FVIIa-generated FXa at naturally occurring expression levels of TF and PAR2. These results suggest that PAR2, although not activatable by thrombin, may nonetheless function as a sensor for coagulation proteases and contribute to endothelial activation in the setting of injury and inflammation. More generally, these findings highlight the potential importance of cofactors in regulating PAR function and specificity.  相似文献   

11.
Cocaine consumption can lead to myocardial infarction. Tissue factor (TF) has been implicated in acute coronary syndromes, and the balance of TF and tissue factor pathway inhibitor (TFPI) determines initiation of thrombus formation. This study was designed to investigate the effect of cocaine on endothelial TF and TFPI expression. Cocaine (10(-8)-10(-5) mol/l) increased thrombin-induced TF expression by 24% at 10(-7) mol/l (P < 0.001) without affecting basal TF expression. In contrast, cocaine reduced endothelial TFPI expression by 47% at 10(-7) mol/l (P < 0.01). Moreover, thrombin impaired endothelial TFPI expression, and cocaine (10(-8) mol/l) further reduced TFPI expression by 33% as compared to thrombin (P < 0.02). These effects occur at cocaine concentrations usually present in plasma of consumers. Given the importance of TF in the pathogenesis of acute coronary syndromes, TF induction in conjunction with TFPI suppression may be relevant for the increased frequency of myocardial infarction observed in cocaine consumers.  相似文献   

12.
Tissue factor (TF) is the cellular receptor for factor FVIIa (FVIIa), and the complex is the principal initiator of blood coagulation. The effects of FVIIa binding to TF on cell migration and signal transduction of human fibroblasts, which express high amounts of TF, were studied. Fibroblasts incubated with FVIIa migrated toward a concentration gradient of PDGF-BB at approximately 100 times lower concentration than do fibroblasts not ligated with FVIIa. Anti-TF antibodies inhibited the increase in chemotaxis induced by FVIIa/TF. Moreover, a pronounced suppression of chemotaxis induced by PDGF-BB was observed with active site-inhibited FVIIa (FFR-FVIIa). The possibility that hyperchemotaxis was induced by a putative generation of FXa and thrombin activity was excluded. FVIIa/TF did not induce increased levels of PDGF beta-receptors on the cell surface. Thus, the hyperchemotaxis was not a result of this mechanism. FVIIa induced the production of inositol-1,4, 5-trisphosphate to the same extent as PDGF-BB; the effects of FVIIa and PDGF-BB were additive. FFR-FVIIa did not induce any release of inositol-1,4,5,-trisphosphate. Thus, binding of catalytically active FVIIa to TF can, independent of coagulation, modulate cellular responses, such as chemotaxis.  相似文献   

13.
In this study we examined the ability of tissue factor (TF) alone, or in conjunction with factor VIIa, factor Xa and TFPI in activating a number of key signalling pathways associated with cellular growth, stress and differentiation responses in human endothelial cells. We used luciferase reporter systems to demonstrate the activation of p42/44 MAPK by the TF-FVIIa complex, mediated via the PAR1 receptor. TF alone was capable of interacting with the cell surface and was sufficient to activate the JNK-SAPK pathway and subsequently AP-1, but the level of activation was enhanced by the activity of FXa on PAR1 and 2. Furthermore, the phosphorylated form of the transmembrane-cytoplasmic domain of TF was directly responsible for activation of these pathways. CREB activation occurred in response to TF-FVIIa in a non-protease dependent manner but was lowered on addition of FXa. Finally, NFkappaB activation occurred in response to FVIIa or FXa, with the latter exhibiting higher levels of activation. In conclusion, we have shown that TF is capable of activating differing signalling pathways, via more than one mechanism. The differential influence of TF is modified depending on the presence of other coagulation factors and ultimately acts as a deciding factor in the determination of cellular fate.  相似文献   

14.
Sutherland MR  Ruf W  Pryzdial EL 《Blood》2012,119(15):3638-3645
The coagulation system provides physiologic host defense, but it can also be exploited by pathogens for infection. On the HSV1 surface, host-cell-derived tissue factor (TF) and virus-encoded glycoprotein C (gC) can stimulate protease activated receptor 1 (PAR1)-enhanced infection by triggering thrombin production. Using novel engineered HSV1 variants deficient in either TF and/or gC, in the present study, we show that activated coagulation factors X (FXa) or VII (FVIIa) directly affect HSV1 infection of human umbilical vein endothelial cells in a manner that is dependent on viral TF and gC. The combination of FXa and FVIIa maximally enhanced infection for TF(+)/gC(+) HSV1 and receptor desensitization and Ab inhibition demonstrated that both proteases act on PAR2. Inhibitory TF Abs showed that the required TF source was viral. Individually, TF or gC partly enhanced the effect of FXa, but not FVIIa, revealing gC as a novel PAR2 cofactor for FVIIa. In sharp contrast, thrombin enhanced infection via PAR1 independently of viral TF and gC. Thrombin combined with FXa/FVIIa enhanced infection, suggesting that PAR1 and PAR2 are independently involved in virus propagation. These results show that HSV1 surface cofactors promote cellular PAR2-mediated infection, indicating a novel mode by which pathogens exploit the initiation phase of the host hemostatic system.  相似文献   

15.
Hemophilia A and B are caused by deficiencies in coagulation factor VIII (FVIII) and factor IX, respectively, resulting in deficient blood coagulation via the intrinsic pathway. The extrinsic coagulation pathway, mediated by factor VIIa and tissue factor (TF), remains intact but is negatively regulated by tissue factor pathway inhibitor (TFPI), which inhibits both factor VIIa and its product, factor Xa. This inhibition limits clot initiation via the extrinsic pathway, whereas factor deficiency in hemophilia limits clot propagation via the intrinsic pathway. ARC19499 is an aptamer that inhibits TFPI, thereby enabling clot initiation and propagation via the extrinsic pathway. The core aptamer binds tightly and specifically to TFPI. ARC19499 blocks TFPI inhibition of both factor Xa and the TF/factor VIIa complex. ARC19499 corrects thrombin generation in hemophilia A and B plasma and restores clotting in FVIII-neutralized whole blood. In the present study, using a monkey model of hemophilia, FVIII neutralization resulted in prolonged clotting times as measured by thromboelastography and prolonged saphenous-vein bleeding times, which are consistent with FVIII deficiency. ARC19499 restored thromboelastography clotting times to baseline levels and corrected bleeding times. These results demonstrate that ARC19499 inhibition of TFPI may be an effective alternative to current treatments of bleeding associated with hemophilia.  相似文献   

16.
Changes in plasma tissue factor (TF)-activated factor VII (FVIIa) and plasma tissue factor pathway inhibitor (TFPI) in type II diabetes mellitus are assessed, vascular complicated and noncomplicated patients compared, and whether these novel hemostatic activity markers predict vascular complications in diabetic patients, improving risk assessment, is determined. Fifty type II diabetic patients and 20 healthy controls (age, sex and body mass matched) underwent medical history and examination, fasting plasma glucose level, glycosylated hemoglobin (HbA1c), lipid profile, hemostatic parameters, plasma TF activity, and TFPI and TF expression on blood monocytes. Mean TF, TF activity, TFPI, and FVIIa significantly increased among hyperlipidemic compared with normolipidemic diabetic patients, and normolipidemic diabetic patients compared with controls. Mean percentage TF-positive monocytes with and without lipopolysaccharide, plasma TF activity, TFPI and FVIIa were significantly higher among complicated than noncomplicated diabetic patients. Mean percentage TF-positive monocytes without and with lipopolysaccharide, plasma TF activity, plasma TFPI and FVIIa were higher among diabetic patients with macrovascular compared with microvascular complications. High significant correlation occurred between HbA1c, triglycerides and percentage TF-positive monocytes with and without lipopolysaccharide stimulation, plasma TF activity and both FVIIa and TFPI. High activity levels of plasma TF and FVIIa with increased circulating TF-positive monocytes occurred in type II diabetic patients, especially with vascular complications. Results reflect high procoagulant activity possibly involved in diabetic vascular complications. Elevated TFPI levels were observed, but were not sufficient to balance high procoagulant activity. Correlation of procoagulant activity markers with HbA1c reinforces the importance of optimal glycemic control in type II diabetes.  相似文献   

17.
Gailani  D; Broze  GJ Jr 《Blood》1993,82(3):813-819
Factor XI (FXI) may be activated in a purified system by thrombin and by autoactivation in the presence of negatively charged substances such as dextran sulfate or sulfatides. The current studies were performed to determine if these processes occur during the coagulation of plasma. FXII--deficient plasma was supplemented with 125I-FXI and clot formation was induced with tissue factor and/or sulfatides. Cleavage of FXI was studied by standard polyacrylamide gel electrophoresis and autoradiography. Activated FXI (FXIa) was detected after 20 minutes of incubation with sulfatides alone and this process was markedly accelerated by the addition of tissue factor (TF). The enhancing effect of TF was blocked by hirudin, which indicated thrombin involvement in FXI activation. The contribution of FXIa to FIX activation in this system was studied using a 3H-FIX activation peptide release assay. Sulfatides increased FIX activation about twofold in plasma induced to clot with TF but had no effect if the plasma was immunodepleted of FXI. FIX activation was also increased in plasma induced to clot with FXa if sulfatides were present. The enhanced generation of FIXa was dependent on FXI and was blocked by hirudin. Some activation was seen in the reactions with sulfatides and hirudin and is likely solely caused by FXI autoactivation. The data indicate that during the coagulation of plasma in the presence of sulfatides, FXI is activated by a mechanism that is thrombin dependent and does not require FXII.  相似文献   

18.
Tissue factor (TF) is the primary physiological initiator of blood coagulation. TF has a high-affinity for factor (F) VII resulting in the formation of (TF:FVII:FVIIa) bimolecular complex which, in the presence of Ca(2+), increases the enzymatic activity of FVIIa towards its natural substrates, FIX and FX, generating their active forms FIXa and FXa, respectively. This eventually leads to thrombin generation and a fibrin clot formation. Up-regulation of TF in injured blood vessels and atherosclerotic plaque can lead to undesirable vascular thrombosis. Nitric oxide (NO) is a free radical synthesized from L-arginine and molecular oxygen by nitric oxide synthases (NOS). NO participates in diverse physiological and pathophysiological process as an intra or extracellular messenger. A relationship between TF and NO has been proposed. Thus, models of TF regulation by NO has been studied in different cells and experimental animal models, but the results have been conflicting. The premise that NO donors can prevent TF expression in vivo has provided the foundation for a broad field of pharmacotherapeutics in vascular medicine. A new class of drugs combining a statin (inhibitors of coenzyme A reductase) with an NO-donating moiety has been described. The resulting drug, nitrostatin, has been suggested to increase the antithrombotic effects of native statin. However, it is questionable if NO release from these drugs had any significant role on TF inhibition. In summary, care must be taken in drawing conclusions about the relationship between NO and TF. Interpretation of NO studies must take several factors into consideration, including NO bioavailability, its half-life and inactivation, as well as the cell type and experimental model used.  相似文献   

19.
Following vascular damage, blood clotting is triggered when factor VIIa (FVIIa) forms a complex with tissue factor (TF). In hemophilia A and B, the propagation phase of blood coagulation is disrupted due to the lack of factors VIII (FVIII) and IX (FIX), leading to excessive bleeding. However, high doses of recombinant FVIIa (rFVIIa) can bypass the FVIII/FIX deficiency and ameliorate bleeding problems. Although the precise mechanism of action of rFVIIa at pharmacological doses remains a matter of debate, rFVIIa-catalyzed (TF-independent) activation of factor X (FX) on the surface of the activated platelet appears to be important. Variants of rFVIIa with increased intrinsic (TF-independent) activity have been developed, which may offer improved treatment of bleeding episodes, for example, in hemophiliacs with inhibitory antibodies to FVIII; they can also help us to understand how FVIIa works at the molecular level. This article reviews the properties of these molecules.  相似文献   

20.
The Tissue Factor/Factor VIIa (TF/FVIIa) complex is an attractive target for pharmacological interruption of thrombin generation and hence blood coagulation, as this complex is the initiation point of the extrinsic pathway of coagulation. TF is a cell membrane-associated protein that interacts with soluble FVIIa to activate factors IX and X resulting in a cascade of events that leads to thrombin generation and eventual fibrin deposition. The goal of this non-randomized study was to evaluate XK1, a specific protein inhibitor of TF/FVIIa, and compare antithrombotic efficacy and bleeding propensity to a previously described Factor Xa (FXa) inhibitor (SC-83157/SN429) and a direct-acting thrombin inhibitor (SC-79407/L-374087) in an acute rat model of arterial thrombosis. All saline-treated animals experienced occlusion of the carotid artery due to acute thrombus formation within 20 minutes. Rats treated with XK1 exhibited a dose-dependent inhibition of thrombus formation with full antithrombotic efficacy and no change in bleeding time or total blood loss at a dose of 4.5 mg/kg, i.v. administered over a 60 minute period. FXa inhibition with SC-83157 resulted in complete inhibition of thrombus formation at a dose of 1.2 mg/kg, i.v.; however, this effect was associated with substantial blood loss. Thrombin inhibition with SC-79407 also afforded complete protection from thrombus formation and occlusion at a dose of 2.58 mg/kg, i.v., and like SC-83157, was associated with substantial blood loss. These data imply that TF/FVIIa inhibition confers protection from acute thrombosis without concomitant changes in bleeding, indicating that this target (TF/FVIIa) may provide improved separation of efficacy vs. bleeding side-effects than interruption of coagulation by directly inhibiting either FXa or thrombin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号