首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mutations or deletions of ACSL4 (FACL4, OMIM 300157) are a rare cause of non‐syndromic X‐linked intellectual disability. We report on a 10‐year‐old male patient with moderate intellectual disability, sensorineural hearing loss, facial dysmorphism, pyloric stenosis, and intestinal obstruction in whom a de novo Xq22.3–q23 deletion was detected by SNP array analysis. The deleted 1.56 Mb interval harbored ACSL4 and eight neighboring genes (GUCY2F, NXT2, KCNE1L, TMEM164, MIR3978, AMMECR1, SNORD96B, and RGAG1). In contrast to previously reported patients with chromosome aberrations in the region of the AMME complex (Alport syndrome, intellectual disability, midface hypoplasia, and elliptocytosis, OMIM 300194), this deletion did not contain the Alport syndrome gene COL4A5, suggesting that loss of one or several of the other genes in this interval is responsible for the clinical problems. In summary, the patient reported here broadens our knowledge of the phenotypic consequences of deletions of chromosome region Xq22.3–q23 and provides further proof for ACSL4 as an X‐linked intellectual disability gene. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
The phenotype of patients with a chromosome 1q43q44 microdeletion (OMIM; 612337) is characterized by intellectual disability with no or very limited speech, microcephaly, growth retardation, a recognizable facial phenotype, seizures, and agenesis of the corpus callosum. Comparison of patients with different microdeletions has previously identified ZBTB18 (ZNF238) as a candidate gene for the 1q43q44 microdeletion syndrome. Mutations in this gene have not yet been described. We performed exome sequencing in a patient with features of the 1q43q44 microdeletion syndrome that included short stature, microcephaly, global developmental delay, pronounced speech delay, and dysmorphic facial features. A single de novo non-sense mutation was detected, which was located in ZBTB18. This finding is consistent with an important role for haploinsufficiency of ZBTB18 in the phenotype of chromosome 1q43q44 microdeletions. The corpus callosum is abnormal in mice with a brain-specific knock-out of ZBTB18. Similarly, most (but not all) patients with the 1q43q44 microdeletion syndrome have agenesis or hypoplasia of the corpus callosum. In contrast, the patient with a ZBTB18 point mutation reported here had a structurally normal corpus callosum on brain MRI. Incomplete penetrance or haploinsufficiency of other genes from the critical region may explain the absence of corpus callosum agenesis in this patient with a ZBTB18 point mutation. The findings in this patient with a mutation in ZBTB18 will contribute to our understanding of the 1q43q44 microdeletion syndrome.  相似文献   

3.
4.
Dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1 A (DYRK1A ) is a highly conserved gene located in the Down syndrome critical region. It has an important role in early development and regulation of neuronal proliferation. Microdeletions of chromosome 21q22.12q22.3 that include DYRK1A (21q22.13) are rare and only a few pathogenic single-nucleotide variants (SNVs) in the DYRK1A gene have been described, so as of yet, the landscape of DYRK1A disruptions and their associated phenotype has not been fully explored. We have identified 14 individuals with de novo heterozygous variants of DYRK1A; five with microdeletions, three with small insertions or deletions (INDELs) and six with deleterious SNVs. The analysis of our cohort and comparison with published cases reveals that phenotypes are consistent among individuals with the 21q22.12q22.3 microdeletion and those with translocation, SNVs, or INDELs within DYRK1A. All individuals shared congenital microcephaly at birth, intellectual disability, developmental delay, severe speech impairment, short stature, and distinct facial features. The severity of the microcephaly varied from −2 SD to −5 SD. Seizures, structural brain abnormalities, eye defects, ataxia/broad-based gait, intrauterine growth restriction, minor skeletal abnormalities, and feeding difficulties were present in two-thirds of all affected individuals. Our study demonstrates that haploinsufficiency of DYRK1A results in a new recognizable syndrome, which should be considered in individuals with Angelman syndrome-like features and distinct facial features. Our report represents the largest cohort of individuals with DYRK1A disruptions to date, and is the first attempt to define consistent genotype–phenotype correlations among subjects with 21q22.13 microdeletions and DYRK1A SNVs or small INDELs.  相似文献   

5.
1q24q25 deletions cause a distinctive phenotype including proportionate short stature, microcephaly, brachydactyly, dysmorphic facial features and intellectual disability. We present a mother and son who have a 672 kb microdeletion at 1q24q25. They have the typical skeletal features previously described but do not have any associated intellectual disability. We compare the genes within our patients' deletion to those in the deletions of previously reported cases. This indicates two genes that may be implicated in the intellectual disability usually associated with this deletion syndrome; PIGC and C1orf105. In addition, our cases provide supporting evidence to recent published work suggesting that the skeletal features may be linked to the microRNAs miR199 and miR214, encoded within intron 14 of the Dynamin‐3 gene.  相似文献   

6.
Identification of rare genetic variants in patients with intellectual disability (ID) has been greatly accelerated by advances in next generation sequencing technologies. However, due to small numbers of patients, the complete phenotypic spectrum associated with pathogenic variants in single genes is still emerging. Among these genes is ZBTB18 (ZNF238), which is deleted in patients with 1q43q44 microdeletions who typically present with ID, microcephaly, corpus callosum (CC) abnormalities, and seizures. Here we provide additional evidence for haploinsufficiency or dysfunction of the ZBTB18 gene as the cause of ID in five unrelated patients with variable syndromic features who underwent whole exome sequencing revealing separate de novo pathogenic or likely pathogenic variants in ZBTB18 (two missense alterations and three truncating alterations). The neuroimaging findings in our cohort (CC hypoplasia seen in 4/4 of our patients who underwent MRI) lend further support for ZBTB18 as a critical gene for CC abnormalities. A similar phenotype of microcephaly, CC agenesis, and cerebellar vermis hypoplasia has been reported in mice with central nervous system‐specific knockout of Zbtb18. Our five patients, in addition to the previously described cases of de novo ZBTB18 variants, add to knowledge about the phenotypic spectrum associated with ZBTB18 haploinsufficiency/dysfunction.  相似文献   

7.
We describe a family with four members, a mother, two sons, and a daughter, who show clinical features consistent with X linked Alport syndrome. The two males presented with additional features including mental retardation, dysmorphic facies with marked midface hypoplasia, and elliptocytosis. The elliptocytosis was not associated with any detectable abnormalities in red cell membrane proteins; red cell membrane stability and rigidity was normal on ektacytometry. Molecular characterisation suggests a submicroscopic X chromosome deletion encompassing the entire COL4A5 gene. We propose that the additional abnormalities found in the affected males of this family are attributable to deletion or disruption of X linked recessive genes adjacent to the COL4A5 gene and that this constellation of findings may represent a new X linked contiguous gene deletion syndrome.  相似文献   

8.
9.
We report two patients with microdeletions in chromosomal subdomain 15q26.1 encompassing only two genes, CHD2 and RGMA. Both patients present a distinct phenotype with intellectual disability, epilepsy, behavioral issues, truncal obesity, scoliosis and facial dysmorphism. CHD2 haploinsufficiency is known to cause intellectual disability and epilepsy, RGMA haploinsufficiency might explain truncal obesity with onset around puberty observed in our two patients.  相似文献   

10.
11.
Currarino syndrome (OMIM 175450) presents with sacral, anorectal, and intraspinal anomalies and presacral meningocele or teratoma. Autosomal dominant loss‐of‐function mutations in the MNX1 gene cause nearly all familial and 30% of sporadic cases. Less frequently, a complex phenotype of Currarino syndrome can be caused by microdeletions of 7q containing MNX1. Here, we report one familial and three sporadic cases of Currarino syndrome. To determine the most efficient genetic testing approach for these patients, we have compared results from MNX1 sequencing, chromosomal microarray, and performed a literature search with analysis of genotype–phenotype correlation. Based on the relationship between the type of mutation (intragenic MNX1 mutations vs 7q microdeletion) and the presence of intellectual disability, growth retardation, facial dysmorphism, and associated malformations, we propose a testing algorithm. Patients with the classic Currarino triad of malformations but normal growth, intellect, and facial appearance should have MNX1 sequencing first, and only in the event of a normal result should the clinician proceed with chromosomal microarray testing. In contrast, if growth delay and/or facial dysmorphy and/or intellectual disability are present, chromosomal microarray should be the first method of choice for genetic testing.  相似文献   

12.
ARID2 loss‐of‐function is associated with a rare genetic disorder characterized in 14 reported patients to date. ARID2 encodes a member of the SWItch/sucrose non‐fermentable chromatin remodeling complex. Other genes encoding subunits of this complex, such as ARID1A, ARID1B, and SMARCA2, are mutated in association with Coffin‐Siris syndrome (CSS) and Nicolaides Baraitser syndrome (NCBRS) phenotypes. Previously reported ARID2 mutations manifested clinically with a CSS‐like phenotype including intellectual disability, coarsened facial features, fifth toenail hypoplasia, and other recognizable dysmorphisms. However, heterogeneity exists between previously reported patients with some patients showing more overlapping features with NCBRS. Herein, we present a patient with a novel disease‐causing ARID2 loss‐of‐function mutation. His clinical features included intellectual disability, coarse and dysmorphic facial features, toenail hypoplasia, ADHD, short stature, and delayed development consistent with prior reports. Our patient also presented with previously unreported clinical findings including ophthalmologic involvement, persistent fetal fingertip and toetip pads, and diffuse hyperpigmentary and hypopigmentary changes sparing his face, palms, and soles. The anomalous skin findings are particularly of interest given prior literature outlining the role of ARID2 in melanocyte homeostasis and melanoma. This clinical report and review of the literature is further affirming of the characteristic symptoms and expands the phenotype of this newly described and rare syndrome.  相似文献   

13.
Haploinsufficiency of the gene encoding the insulin-like growth factor 1 receptor (IGF1R), either caused by telomeric 15q26 deletions, or by heterozygous point mutations in IGF1R, segregate with short stature and various other phenotypes, including microcephaly and dysmorphic facial features. Psychomotor retardation and behavioral anomalies have been seen in some cases. Here we report small, intragenic deletions of IGF1R, identified by chromosome microarray analysis in two unrelated families affected primarily with neuropsychiatric phenotypes including developmental delay, intellectual disability and aggressive/autoaggressive behaviors. The deletions are in frame, and both wild-type and mutant mRNAs are expressed as measured by quantitative real-time PCR. While short stature is considered a phenotypic hallmark of IGF1R haploinsufficiency, the present report suggests that in frame exon deletions of IGF1R present predominantly with cognitive and neuropsychiatric phenotypes.  相似文献   

14.
Williams–Beurens syndrome (WBS) is a rare genetic disorder caused by a recurrent 7q11.23 microdeletion. Clinical characteristics include typical facial dysmorphisms, weakness of connective tissue, short stature, mild to moderate intellectual disability and distinct behavioral phenotype. Cardiovascular diseases are common due to haploinsufficiency of ELN gene. A few cases of larger or smaller deletions have been reported spanning towards the centromeric or the telomeric regions, most of which included ELN gene. We report on three patients from two unrelated families, presenting with distinctive WBS features, harboring an atypical distal deletion excluding ELN gene. Our study supports a critical role of CLIP2, GTF2IRD1, and GTF2I gene in the WBS neurobehavioral profile and in craniofacial features, highlights a possible role of HIP1 in the autism spectrum disorder, and delineates a subgroup of WBS individuals with an atypical distal deletion not associated to an increased risk of cardiovascular defects.  相似文献   

15.
KBG syndrome (OMIM 148050) is a very rare genetic disorder characterized by macrodontia, distinctive craniofacial abnormalities, short stature, intellectual disability, skeletal, and neurologic involvement. Approximately 60 patients have been reported since it was first described in 1975. Recently mutations in ANKRD11 have been documented in patients with KBG syndrome, and it has been proposed that haploinsufficiency of ANKRD11 is the cause of this syndrome. In addition, copy number variation in the 16q24.3 region that includes ANKRD11 results in a variable phenotype that overlaps with KBG syndrome and also includes autism spectrum disorders and other dysmorphic facial features. In this report we present a 2½‐year‐old African American male with features highly suggestive of KBG syndrome. Genomic microarray identified an intragenic 154 kb deletion at 16q24.3 within ANKRD11. This child's mother was mosaic for the same deletion (present in approximately 38% of cells) and exhibited a milder phenotype including macrodontia, short stature and brachydactyly. This family provides additional evidence that ANKRD11 causes KBG syndrome, and the mild phenotype in the mosaic form suggests that KBG phenotypes might be dose dependent, differentiating it from the more variable 16q24.3 microdeletion syndrome. This family has additional features that might expand the phenotype of KBG syndrome. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
17.
Microdeletion of chromosome 22q13.31 is a very rare condition. Fourteen patients have been annotated in public databases but, to date, a clinical comparison has not been done and, consequently, a specific phenotype has not been delineated yet. We describe a patient showing neurodevelopmental disorders, dysmorphic features, and multiple congenital anomalies in which SNP array analysis revealed an interstitial 3.15 Mb de novo microdeletion in the 22q13.31 region encompassing 21 RefSeq genes and seven non‐coding microRNAs. To perform an accurate phenotype characterization, clinical features observed in previously reported cases of 22q13.31 microdeletions were reviewed and compared to those observed in our patient. To the best of our knowledge, this is the first time that a comparison between patients carrying overlapping 22q13.31 deletions has been done. This comparison allowed us to identify a distinct spectrum of clinical manifestations suggesting that patients with a de novo interstitial microdeletion involving 22q13.31 have an emerging syndrome characterized by developmental delay/intellectual disability, speech delay/language disorders, behavioral problems, hypotonia, urogenital, and hands/feet anomalies. The microdeletion identified in our patient is the smallest reported so far and, for this reason, useful to perform a detailed genotype‐phenotype correlation. In particular, we propose the CELSR1, ATXN10, FBLN1, and UPK3A as candidate genes in the onset of the main clinical features of this contiguous gene syndrome. Thus, the patient reported here broadens our knowledge of the phenotypic consequences of 22q13.31 microdeletions facilitating genotype‐phenotype correlations. Additional cases are needed to corroborate our hypothesis and confirm genotype–phenotype correlations of this emerging syndrome.
  相似文献   

18.
Potocki–Shaffer syndrome (PSS) is a rare disorder caused by haploinsufficiency of genes located on the proximal short arm of chromosome 11 (11p11.2p12). Classic features include biparietal foramina, multiple exostoses, profound hypotonia, dysmorphic features, and developmental delay/intellectual disability. Fewer than 40 individuals with PSS have been reported, with variable clinical presentations due in part to disparity in deletion sizes. We report on a boy who presented for initial evaluation at age 13 months because of a history of developmental delay, hypotonia, subtle dysmorphic features, and neurobehavioral abnormalities. SNP microarray analysis identified a 137 kb deletion at 11p11.2, which maps within the classically defined PSS interval. This deletion results in haploinsufficiency for all or portions of six OMIM genes: SLC35C1, CRY2, MAPK8IP1, PEX16, GYLTL1B, and PHF21A. Recently, translocations interrupting PHF21A have been associated with intellectual disability and craniofacial anomalies similar to those seen in PSS. The identification of this small deletion in a child with developmental delay and hypotonia provides further evidence for the genetic basis of developmental disability and identifies a critical region sufficient to cause hypotonia in this syndrome. Additionally, this case illustrates the utility of high resolution genomic approaches in correlating clinical phenotypes with specific genes in contiguous gene deletion syndromes. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
In their studies on the molecular basis of osteopoikilosis, Menten et al have identified three individuals with microdeletions on chromosome 12q14.4, which removed several genes including LEMD3, the osteopoikilosis gene. In addition to osteopoikilosis, affected individuals had growth retardation and developmental delay. We now report a smaller 12q14.4 microdeletion in a boy with severe pre and postnatal growth failure, and mild developmental delay; the patient was small at birth and presented with poor feeding and failure to thrive during the first 2 years of life, similar to the phenotype of primordial dwarfism or severe Silver-Russell syndrome (SRS). The 12q14 deletion did not include LEMD3, and no signs of osteopoikilosis were observed on skeletal radiographs. Among the deleted genes, HMGA2 is of particular interest in relationship to the aberrant somatic growth in our patient, as HMGA2 variants have been linked to stature variations in the general population and loss of function of Hmga2 in the mouse results in the pygmy phenotype that combines pre and postnatal growth failure, with resistance to the adipogenic effect of overfeeding. Sequencing of the remaining HMGA2 allele in our patient showed a normal sequence, suggesting that HMGA2 haploinsufficiency may be sufficient to produce the aberrant growth phenotype. We conclude that the 12q14.4 microdeletion syndrome can occur with or without deletion of LEMD3 gene; in LEMD3-intact cases, the phenotype includes primordial short stature and failure to thrive with moderate developmental delay, but osteopoikilosis is absent. Such cases will likely be diagnosed as Silver-Russell-like or as primordial dwarfism.  相似文献   

20.
Xia-Gibbs syndrome is a rare genetic condition characterized by intellectual disability, growth retardation, delayed psychomotor development with absent or poor expressive language, distinctive facial features, hypotonia, laryngomalacia and obstructive sleep apnea. At present, Xia-Gibbs syndrome has been reported to be mainly caused by truncating mutations in AHDC1 gene located on chromosome 1p36.11. However, the evidence supporting AHDC1 deletion as a cause of this syndrome is still limited. Here we report an 8-year-old boy carrying a de novo 575 Kb microdeletion at 1p36.11 including AHDC1 gene. The boy is characterized by intellectual disability, developmental delay, short stature, expressive language delay, facial dysmorphism, obstructive sleep apnea and multiple congenital anomalies, which are mostly consistent with the characteristics of Xia-Gibbs syndrome. Therefore, we provide further supporting evidence that AHDC1 deletion causes Xia-Gibbs syndrome through a haploinsufficiency mechanism. Currently, clinical consequences of AHDC1 gene duplication has never been reported. Here, we identify a de novo 480 Kb duplication at 1p36.11p35.3 spanning the entire AHDC1 gene in a 2-year-8-month boy, who displays similar clinical features with that of Xia-Gibbs syndrome, in particular, expressive language delay, hypotonia, laryngomalacia and obstructive sleep apnea, as well as mirrored phenotypes such as overgrowth and advanced bone age. WES test excludes to the degree possible other known genetic causes. This case suggests that AHDC1 gene duplication may be clinical significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号