首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We identified an individual with a homozygous missense variant (p.Ser103Pro) in a conserved residue of the glycosylphosphatidylinositol (GPI) biosynthesis gene PIGH. This gene encodes an essential component of the phosphatidylinositol N‐acetylglucosaminyltransferase complex, in the first step of the biosynthesis of GPI, a glycolipid anchor added to more than one hundred human proteins, several being critical for embryogenesis and neurological functions. The affected individual had hypotonia, moderate developmental delay, and autism. Unlike other reported individuals with GPI deficiency, the proband did not have epilepsy; however, he did have two episodes of febrile seizures. He had normal alkaline phosphatase and no brachytelephalangy. Upon analysis of the surface expression of GPI‐anchored proteins on granulocytes, he was demonstrated to have GPI deficiency. This suggests that PIGH mutations may cause a syndrome with developmental delay and autism, but without an epileptic encephalopathy, and should increase the awareness of the potentially deleterious nature of biallelic variants in this gene.  相似文献   

2.
Inherited GPI (glycosylphosphatidylinositol) deficiencies (IGDs), a recently defined group of diseases, show a broad spectrum of symptoms. Hyperphosphatasia mental retardation syndrome, also known as Mabry syndrome, is a type of IGDs. There are at least 26 genes involved in the biosynthesis and transport of GPI‐anchored proteins; however, IGDs constitute a rare group of diseases, and correlations between the spectrum of symptoms and affected genes or the type of mutations have not been shown. Here, we report four newly identified and five previously described Japanese families with PIGO (phosphatidylinositol glycan anchor biosynthesis class O) deficiency. We show how the clinical severity of IGDs correlates with flow cytometric analysis of blood, functional analysis using a PIGO‐deficient cell line, and the degree of hyperphosphatasia. The flow cytometric analysis and hyperphosphatasia are useful for IGD diagnosis, but the expression level of GPI‐anchored proteins and the degree of hyperphosphatasia do not correlate, although functional studies do, with clinical severity. Compared with PIGA (phosphatidylinositol glycan anchor biosynthesis class A) deficiency, PIGO deficiency shows characteristic features, such as Hirschsprung disease, brachytelephalangy, and hyperphosphatasia. This report shows the precise spectrum of symptoms according to the severity of mutations and compares symptoms between different types of IGD.  相似文献   

3.
The hereditary spastic paraplegias (HSPs) are a heterogeneous group of disorders characterized by degeneration of the corticospinal and spinocerebellar tracts leading to progressive spasticity. One subtype, spastic paraplegia type 47 (SPG47 or HSP‐AP4B1), is due to bi‐allelic loss‐of‐function mutations in the AP4B1 gene. AP4B1 is a subunit of the adapter protein complex 4 (AP‐4), a heterotetrameric protein complex that regulates the transport of membrane proteins. Since 2011, 11 individuals from six families with AP4B1 mutations have been reported, nine of whom had homozygous mutations and were from consanguineous families. Here we report eight patients with AP4B1‐associated SPG47, the majority born to non‐consanguineous parents and carrying compound heterozygous mutations. Core clinical features in this cohort and previously published patients include neonatal hypotonia that progresses to spasticity, early onset developmental delay with prominent motor delay and severely impaired or absent speech development, episodes of stereotypic laughter, seizures including frequent febrile seizures, thinning of the corpus callosum, and delayed myelination/white matter loss. Given that some of the features of AP‐4 deficiency overlap with those of cerebral palsy, and the discovery of the disorder in non‐consanguineous populations, we believe that AP‐4 deficiency may be more common than previously appreciated.
  相似文献   

4.
Adaptor protein complex‐4 (AP‐4) is a heterotetrameric protein complex which plays a key role in vesicle trafficking in neurons. Mutations in genes affecting different subunits of AP‐4, including AP4B1, AP4E1, AP4S1, and AP4M1, have been recently associated with an autosomal recessive phenotype, consisting of spastic tetraplegia, and intellectual disability (ID). The overlapping clinical picture among individuals carrying mutations in any of these genes has prompted the terms “AP‐4 deficiency syndrome” for this clinically recognizable phenotype. Using whole‐exome sequencing, we identified a novel homozygous mutation (c.991C>T, p.Q331*, NM_006594.4) in AP4B1 in two siblings from a consanguineous Pakistani couple, who presented with severe ID, progressive spastic tetraplegia, epilepsy, and microcephaly. Sanger sequencing confirmed the mutation was homozygous in the siblings and heterozygous in the parents. Similar to previously reported individuals with AP4B1 mutations, brain MRI revealed ventriculomegaly and white matter loss. Interestingly, in addition to the typical facial gestalt reported in other AP‐4 deficiency cases, the older brother presented with congenital left Horner syndrome, bilateral optic nerve atrophy and cataract, which have not been previously reported in this condition. In summary, we report a novel AP4B1 homozygous mutation in two siblings and review the phenotype of AP‐4 deficiency, speculating on a possible role of AP‐4 complex in eye development.
  相似文献   

5.
Myhre syndrome is a rare autosomal dominant disorder caused by a narrow spectrum of missense mutations in the SMAD4 gene. Typical features of this disorder are distinctive facial appearance, deafness, intellectual disability, cardiovascular abnormalities, short stature, short hands and feet, compact build, joint stiffness, and skeletal anomalies. The clinical features generally appear during childhood and become more evident in older patients. Therefore, the diagnosis of this syndrome in the first years of life is challenging. We report a 2‐year‐old girl diagnosed with Myhre syndrome by whole exome sequencing (WES) that revealed the recurrent p.Ile500Val mutation in the SMAD4 gene. Our patient presented with growth deficiency, dysmorphic features, tetralogy of Fallot, and corectopia (also known as ectopia pupillae). The girl we described is the youngest patient with Myhre syndrome. Moreover, corectopia and tetralogy of Fallot have not been previously reported in this disorder.  相似文献   

6.
Glycosylphosphatidylinositol (GPI) is a glycolipid that tethers more than 150 different proteins to the cell surface. Aberrations in biosynthesis of GPI anchors cause congenital disorders of glycosylation with clinical features including intellectual disability (ID), seizures, and facial dysmorphism. Here, we present two siblings with ID, cerebellar hypoplasia, cerebellar ataxia, early‐onset seizures, and minor facial dysmorphology. Using exome sequencing, we identified a homozygous nonsense variant (NM_001127178.1:c.1640G>A, p.Trp547*) in the gene Phosphatidylinositol Glycan Anchor Biosynthesis, Class G (PIGG) in both the patients. Variants in several other GPI anchor synthesis genes lead to a reduced expression of GPI‐anchored proteins (GPI‐APs) that can be measured by flow cytometry. No significant differences in GPI‐APs could be detected in patient granulocytes, consistent with recent findings. However, fibroblasts showed a reduced global level of GPI anchors and of specific GPI‐linked markers. These findings suggest that fibroblasts might be more sensitive to pathogenic variants in GPI synthesis pathway and are well suited to screen for GPI‐anchor deficiencies. Based on genetic and functional evidence, we confirm that pathogenic variants in PIGG cause an ID syndrome, and we find that loss of function of PIGG is associated with GPI deficiency.  相似文献   

7.
Granular cell tumors (GCTs) are rare mesenchymal tumors that exhibit a characteristic morphology and a finely granular cytoplasm. The genetic alterations responsible for GCT tumorigenesis had been unknown until recently, when loss‐of‐function mutations of ATP6AP1 and ATP6AP2 were described. Thus, we performed whole‐exome sequencing, RNA sequencing, and targeted sequencing of 51 GCT samples. From these genomic analyses, we identified mutations in genes encoding vacuolar H+‐ATPase (V‐ATPase) components, including ATP6AP1 and ATP6AP2, in 33 (65%) GCTs. ATP6AP1 and ATP6AP2 mutations were found in 23 (45%) and 2 (4%) samples, respectively, and all were truncating or splice site mutations. In addition, seven other genes encoding V‐ATPase components were also mutated, and three mutations in ATP6V0C occurred on the same amino acid (isoleucine 136). These V‐ATPase component gene mutations were mutually exclusive, with one exception. These results suggest that V‐ATPase function is impaired in GCTs not only by loss‐of‐function mutations of ATP6AP1 and ATP6AP2 but also through mutations of other subunits. Our findings provide additional support for the hypothesis that V‐ATPase dysfunction promotes GCT tumorigenesis.  相似文献   

8.
Inherited glycosylphosphatidylinositol (GPI) deficiencies are a group of clinically and genetically heterogeneous conditions belonging to the congenital disorders of glycosylation. PIGW is involved in GPI biosynthesis and modification, and biallelic pathogenic variants in this gene cause autosomal recessive GPI biosynthesis defect 11. Only five patients and two fetuses have been reported in the literature thus far. Here we describe a new patient with a novel homozygous missense variant in PIGW, who presented with hypotonia, severe intellectual disability, early‐onset epileptic seizures, brain abnormalities, nystagmus, hand stereotypies, recurrent respiratory infections, distinctive facial features, and hyperphosphatasia. Our report expands the phenotype of GPI biosynthesis defect 11 to include stereotypies and recurrent respiratory infections. A detailed and long‐term analysis of the electroclinical characteristics and review of the literature suggest that early‐onset epileptic seizures are a key manifestation of GPI biosynthesis defect 11. West syndrome and focal‐onset epileptic seizures are the most common seizure types, and the fronto‐temporal regions may be the most frequently involved areas in these patients.  相似文献   

9.
Shprintzen‐Goldberg syndrome (SGS) is a rare systemic connective tissue disorder characterized by craniofacial, skeletal, and cardiovascular manifestations. It is associated with a significant risk of intellectual disability, a feature which distinguishes it from Marfan and Loeys‐Dietz syndromes. SGS is mainly caused by mutations in the SKI gene, a repressor of TGF‐β activity. Most SKI mutations are found in exon 1 of the gene and are located in the R‐SMAD domain, a proposed hotspot for de novo mutations. Here, we report on a de novo SKI mutation located in the DHD domain of SKI. By adding our finding to previously reported de novo SKI mutations, a new mutational hotspot in the DHD domain is proposed. Our patient presented with a lipomeningomyelocele, tethered cord, and spina bifida but with no SGS‐related clinical findings apart from a marfanoid habitus and long slender fingers. Specifically, she did not have an intellectual disability, craniofacial, or cardiovascular abnormalities. By comparing the clinical findings on patients with mutations in the R‐SMAD and DHD domains of SKI, we propose that mutations in those domains have different effects on TGF‐β activity during embryonic development with resulting phenotypic differences.  相似文献   

10.
Metachromatic Leukodystrophy (MLD) is a rare inherited lysosomal storage disorder caused by the deficiency of Arylsulfatase A (ARSA). The disease manifests itself with a broad spectrum of clinical variants, all characterized by progressive neurodegeneration in the central and peripheral nervous systems. The correlation between mutations in the ARSA gene, residual enzymatic activity associated with the mutated alleles and patients' phenotype, which has been extensively drawn for common ARSA mutations, has recently been expanded to rare ones. In this context, functional studies on the rare allelic variances acquire particular relevance for patients' prognostic evaluation. Here we have characterized eight newly identified ARSA mutations, through lentiviral vector‐based expression studies on cell lines and ARSA defective murine fibroblasts. In each case, the residual activity associated with the new mutant allele correlates well with the patient's phenotype. Therefore, our results confirm the importance of functional characterization of mutant alleles for a precise genotype‐based classification and definition of prognosis in MLD patients, which is particularly relevant for pre‐symptomatic diagnosis. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Smith‐Lemli‐Opitz syndrome (RHS) (SLOS, OMIM 270400) is an autosomal recessive disorder of cholesterol biosynthesis caused by mutations of the 3β‐hydroxysterol Δ7‐Δ8‐reductase gene, DHCR7. We report a fetus with holoprosencephaly and multiple congenital anomalies who was homozygous for the IVS8‐1G→C mutation. Following termination of pregnancy, both the elevated amniotic fluid 7‐dehydrocholesterol level and the DHCR7 mutations were demonstrated. Two other newborn infants with IVS8‐1G→C/IVS8‐1G→C genotype are described. This report illustrates a severe phenotypic extreme of SLOS associated with a null genotype, underscores the complex relationship between SLOS and holoprosencephaly, and discusses the possible pathogenetic mechanisms of the development of holoprosencephaly in SLOS. © 2001 Wiley‐Liss, Inc.  相似文献   

12.
ARID2 loss‐of‐function is associated with a rare genetic disorder characterized in 14 reported patients to date. ARID2 encodes a member of the SWItch/sucrose non‐fermentable chromatin remodeling complex. Other genes encoding subunits of this complex, such as ARID1A, ARID1B, and SMARCA2, are mutated in association with Coffin‐Siris syndrome (CSS) and Nicolaides Baraitser syndrome (NCBRS) phenotypes. Previously reported ARID2 mutations manifested clinically with a CSS‐like phenotype including intellectual disability, coarsened facial features, fifth toenail hypoplasia, and other recognizable dysmorphisms. However, heterogeneity exists between previously reported patients with some patients showing more overlapping features with NCBRS. Herein, we present a patient with a novel disease‐causing ARID2 loss‐of‐function mutation. His clinical features included intellectual disability, coarse and dysmorphic facial features, toenail hypoplasia, ADHD, short stature, and delayed development consistent with prior reports. Our patient also presented with previously unreported clinical findings including ophthalmologic involvement, persistent fetal fingertip and toetip pads, and diffuse hyperpigmentary and hypopigmentary changes sparing his face, palms, and soles. The anomalous skin findings are particularly of interest given prior literature outlining the role of ARID2 in melanocyte homeostasis and melanoma. This clinical report and review of the literature is further affirming of the characteristic symptoms and expands the phenotype of this newly described and rare syndrome.  相似文献   

13.
Antley‐Bixler syndrome (ABS) is a rare multiple anomaly syndrome comprising radiohumeral synostosis, bowed femora, fractures of the long bones, premature fusion of the calvarial sutures, severe midface hypoplasia, proptosis, choanal atresia, and, in some, ambiguous genitalia. Of fewer than 40 patients described to date, most have been sporadic, although reports of parental consanguinity and affected sibs of both sexes suggests autosomal recessive inheritance in some families. Known genetic causes among sporadic cases of ABS or ABS‐like syndromes are missense mutations in the IgII and IgIII regions of FGFR2, although the assignment of the diagnosis of ABS to such children has been disputed. A third cause of an ABS‐like phenotype is early in utero exposure to fluconazole, an inhibitor of lanosterol 14‐alpha‐demethylase. The fourth proposed cause of ABS is digenic inheritance combining heterozygosity or homozygosity for steroid 21‐hydroxylase deficiency with effects from a second gene at an unknown locus. Because fluconazole is a strong inhibitor of lanosterol 14‐alpha‐demethylase (CYP51), we evaluated sterol metabolism in lymphoblast cell lines from an ABS patient without a known FGFR2 mutation and from a patient with an FGFR2 mutation and ABS‐like manifestations. When grown in the absence of cholesterol to stimulate cholesterol biosynthesis, the cells from the ABS patient with ambiguous genitalia but without an FGFR2 mutation accumulated markedly increased levels of lanosterol and dihydrolanosterol. Although the abnormal sterol profile suggested a deficiency of lanosterol 14‐alpha‐demethylase, mutational analysis of its gene, CYP51, disclosed no obvious pathogenic mutation in any of its 10 exons or exon‐intron boundaries. Sterol metabolism in lymphoblasts from the phenotypically unaffected mother was normal. Our results suggest that ABS can occur in a patient with an intrinsic defect of cholesterol biosynthesis at the level of lanosterol 14‐alpha‐demethylase, although the genetic nature of the deficiency remains to be determined. © 2002 Wiley‐Liss, Inc.  相似文献   

14.
Mitochondrial 3‐hydroxy‐3‐methylglutaryl‐CoA synthase (mHS) deficiency is a very rare autosomal recessive inborn error of ketone body synthesis and presents with hypoketotic hypoglycemia, metabolic acidosis, lethargy, encephalopathy, and hepatomegaly with fatty liver precipitated by catabolic stress. We report acute presentation of two patients from unrelated two families with novel homozygous c.862C>T and c.725‐2A>C mutations, respectively, in HMGCS2 gene. Affected patients had severe hypoketotic hypoglycemia, lethargy, encephalopathy, severe metabolic and lactic acidosis and hepatomegaly after infections. Surprisingly, molecular screening of the second family showed more affected patients without clinical findings. These cases expand the clinic spectrum of this extremely rare disease.  相似文献   

15.
Molecular analysis of proaerolysin selected glycosylphosphatidylinositol anchor (GPI‐a) deficient isolates in the TK6 cell line was performed. Initial studies found that the expected X‐linked PIGA mutations were rare among the spontaneous isolates but did increase modestly after ethyl methane sulfate (EMS) treatment (but to only 50% of isolates). To determine the molecular bases of the remaining GPI‐a deficient isolates, real‐time analysis for all the 25 autosomal GPI‐a pathway genes was performed on the isolates without PIGA mutations, determining that PIGL mRNA was absent for many. Further analysis determined these isolates had several different homozygous deletions of the 5′ region of PIGL (17p12‐p22) extending 5′ (telomeric) through NCOR1 and some into the TTC19 gene (total deletion >250,000 bp). It was determined that the TK6 parent had a hemizygous deletion in 17p12‐p22 (275,712 bp) extending from PIGL intron 2 into TTC19 intron 7. Second hit deletions in the other allele in the GPI‐a deficient isolates led to the detected homozygous deletions. Several of the deletion breakpoints including the original first hit deletion were sequenced. As strong support for TK6 having a deletion, a number of the isolates without PIGA mutations nor homozygous PIGL deletions had point mutations in the PIGL gene. These studies show that the GPI‐a mutation studies using TK6 cell line could be a valuable assay detecting point and deletion mutations in two genes simultaneously. Environ. Mol. Mutagen. 56:663–673, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
Floating‐Harbor syndrome (FHS) is a rare disorder characterized by short stature, delayed bone age, speech delay, and dysmorphic facial features. We report here the molecular analysis of nine cases, fulfilling the diagnostic criteria for FHS. Using exome sequencing, we identified SRCAP as the disease gene in two cases and subsequently found SRCAP truncating mutations in 6/9 cases. All mutations occurred de novo and were located in exon 34, in accordance with the recent report of Hood et al. However, the absence of SRCAP mutations in 3/9 cases supported genetic heterogeneity of FH syndrome. Importantly, no major clinical differences were observed supporting clinical homogeneity in this series of FHS patients.  相似文献   

17.
Deficiencies of mitochondrial respiratory chain complex I frequently result in leukoencephalopathy in young patients, and different mutations in the genes encoding its subunits are still being uncovered. We report 2 patients with cystic leukoencephalopathy and complex I deficiency with recessive mutations in NDUFA2, an accessory subunit of complex I. The first patient was initially diagnosed with a primary systemic carnitine deficiency associated with a homozygous variant in SLC22A5, but also exhibited developmental regression and cystic leukoencephalopathy, and an additional diagnosis of complex I deficiency was suspected. Biochemical analysis confirmed a complex I deficiency, and whole‐exome sequencing revealed a homozygous mutation in NDUFA2 (c.134A>C, p.Lys45Thr). Review of a biorepository of patients with unsolved genetic leukoencephalopathies who underwent whole‐exome or genome sequencing allowed us to identify a second patient with compound heterozygous mutations in NDUFA2 (c.134A>C, p.Lys45Thr; c.225del, p.Asn76Metfs*4). Only 1 other patient with mutations in NDUFA2 and a different phenotype (Leigh syndrome) has previously been reported. This is the first report of cystic leukoencephalopathy caused by mutations in NDUFA2.  相似文献   

18.
Guanidinoacetate methyltransferase deficiency (GAMT‐D) is an autosomal recessively inherited disorder of creatine biosynthesis. Creatine deficiency on cranial proton magnetic resonance spectroscopy, and elevated guanidinoacetate levels in body fluids are the biomarkers of GAMT‐D. In 74 patients, 50 different mutations in the GAMT gene have been identified with missense variants being the most common. Clinical and biochemical features of the patients with missense variants were obtained from their physicians using a questionnaire. In 20 patients, 17 missense variants, 25% had a severe, 55% a moderate, and 20% a mild phenotype. The effect of these variants on GAMT enzyme activity was overexpressed using primary GAMT‐D fibroblasts: 17 variants retained no significant activity and are therefore considered pathogenic. Two additional variants, c.22C>A (p.Pro8Thr) and c.79T>C (p.Tyr27His) (the latter detected in control cohorts) are in fact not pathogenic as these alleles restored GAMT enzyme activity, although both were predicted to be possibly damaging by in silico analysis. We report 13 new patients with GAMT‐D, six novel mutations and functional analysis of 19 missense variants, all being included in our public LOVD database. Our functional assay is important for the confirmation of the pathogenicity of identified missense variants in the GAMT gene.  相似文献   

19.
Pyruvate carboxylase (PC), a key enzyme for gluconeogenesis and anaplerotic pathways, consists of four domains, namely, biotin carboxylase (BC), carboxyltransferase (CT), pyruvate carboxylase tetramerization (PT), and biotin carboxyl carrier protein (BCCP). PC deficiency is a rare metabolic disorder inherited in an autosomal recessive way. The most severe form (form B) is characterized by neonatal lethal lactic acidosis, whereas patients with form A suffer chronic lactic acidosis with psychomotor retardation. Diagnosis of PC deficiency relies on enzymatic assay and identification of the PC gene mutations. To date, six mutations of the PC gene have been identified. We report nine novel mutations of the PC gene, in five unrelated patients: three being affected with form B, and the others with form A. Three of them were frameshift mutations predicted to introduce a premature termination codon, the remaining ones being five nucleotide substitutions and one in frame deletion. Impact of these mutations on mRNA was assessed by RT‐PCR. Evidence for a deleterious effect of the missense mutations was achieved using protein alignments and three‐dimensional structural prediction, thanks to our modeling of the human PC structure. Altogether, our data and those previously reported indicate that form B is consistently associated with at least one truncating mutation, mostly lying in CT (C‐terminal part) or BCCP domains, whereas form A always results from association of two missense mutations located in BC or CT (N‐terminal part) domains. Finally, although most PC mutations are suggested to interfere with biotin metabolism, none of the PC‐deficient patients was biotin‐responsive. Hum Mutat 0:1–7, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Noonan syndrome‐like disorder with loose anagen hair (NS/LAH) is one of the RASopathies, a group of clinically related developmental disorders caused by germline mutations in genes that encode components acting in the RAS/MAPK pathway. Among RASopathies, NS/LAH (OMIM 607721) is an extremely rare, multiple anomaly syndrome characterized by dysmorphic facial features similar to those observed in Noonan syndrome along with some distinctive ectodermal findings including easily pluckable, sparse, thin, and slow‐growing hair. ADA2 deficiency (DADA2, OMIM 615688) is a monogenic autoinflammatory disorder caused by homozygous or compound heterozygous mutations in ADA2, with clinical features including recurrent fever, livedo racemosa, hepatosplenomegaly, and strokes as well as immune dysregulation. This is the first report of NS/LAH and ADA2 deficiency in the same individual. We report on a patient presenting with facial features, recurrent infections and ectodermal findings in whom both the clinical and molecular diagnoses of NS/LAH and ADA2 deficiency were established, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号