首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Medial unicompartmental knee arthroplasty (UKA) is an accepted treatment for isolated medial osteoarthritis. However, using an improper thickness for the tibial component may contribute to early failure of the prosthesis or disease progression in the unreplaced lateral compartment. Little is known of the effect of insert thickness on both knee kinematics and ligament forces. Therefore, a computational model of the tibiofemoral joint was used to determine how non‐conforming, fixed bearing medial UKA affects tibiofemoral kinematics, and tension in the medial collateral ligament (MCL) and the anterior cruciate ligament (ACL) during passive knee flexion. Fixed bearing medial UKA could not maintain the medial pivoting that occurred in the intact knee from 0° to 30° of passive flexion. Abnormal anterior–posterior (AP) translations of the femoral condyles relative to the tibia delayed coupled internal tibial rotation, which occurred in the intact knee from 0° to 30° of flexion, but occurred from 30° to 90° of flexion following UKA. Increasing or decreasing tibial insert thickness following medial UKA also failed to restore the medial pivoting behavior of the intact knee despite modulating MCL and ACL forces. Reduced AP constraint in non‐conforming medial UKA relative to the intact knee leads to abnormal condylar translations regardless of insert thickness even with intact cruciate and collateral ligaments. This finding suggests that the conformity of the medial compartment as driven by the medial meniscus and articular morphology plays an important role in controlling AP condylar translations in the intact tibiofemoral joint during passive flexion. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1868–1875, 2018.
  相似文献   

2.
Little information is available to surgeons regarding how the lateral structures prevent instability in the replaced knee. The aim of this study was to quantify the lateral soft‐tissue contributions to stability following cruciate‐retaining total knee arthroplasty (CR TKA). Nine cadaveric knees were tested in a robotic system at full extension, 30°, 60°, and 90° flexion angles. In both native and CR implanted states, ±90 N anterior–posterior force, ±8 Nm varus–valgus, and ±5 Nm internal–external torque were applied. The anterolateral structures (ALS, including the iliotibial band), the lateral collateral ligament (LCL), the popliteus tendon complex (Pop T), and the posterior cruciate ligament (PCL) were transected and their relative contributions to stabilizing the applied loads were quantified. The LCL was found to be the primary restraint to varus laxity (an average 56% across all flexion angles), and was significant in internal–external rotational stability (28% and 26%, respectively) and anterior drawer (16%). The ALS restrained 25% of internal rotation, while the PCL was significant in posterior drawer only at 60° and 90° flexion. The Pop T was not found to be significant in any tests. Therefore, the LCL was confirmed as the major lateral structure in CR TKA stability throughout the arc of flexion and deficiency could present a complex rotational laxity that cannot be overcome by the other passive lateral structures or the PCL. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1902–1909, 2017.
  相似文献   

3.
This study examined the kinematics of a cruciate-retaining (CR) total knee arthroplasty (TKA) component that attempts to enhance knee flexion by improving posterior tibiofemoral articular contact at high-flexion angles. Using an in vitro robotic experimental setup, medial and lateral femoral translations of this CR design were compared with that of a conventional CR TKA design and intact knee under a combined quadriceps and hamstring muscle load. Both CR TKA designs showed similar kinematics throughout the range of flexion (0 degrees -150 degrees ). The TKAs restored nearly 80% of the posterior femoral translation of the intact knee at 150 degrees . The posterior cruciate ligament (PCL) forces measured for the high-flexion CR TKA component indicate that the PCL is important in the mid-flexion range but has little effect on knee kinematics at high flexion.  相似文献   

4.
Abnormal anterior translation of the femur on the tibia has been observed in mid flexion (20–60°) following posterior stabilized total knee arthroplasty. The underlying biomechanical causes of this abnormal motion remain unknown. The purpose of this study was to isolate the effects of posterior cruciate ligament removal on knee motion after total knee arthroplasty. We posed two questions: Does removing the posterior cruciate ligament introduce abnormal anterior femoral translation? Does implanting a posterior stabilized prosthesis change the kinematics from the cruciate deficient case? Using a navigation system, we measured passive knee kinematics of ten male osteoarthritic patients during surgery after initial exposure, after removing the anterior cruciate ligament, after removing the posterior cruciate ligament, and after implanting the prosthesis. Passively flexing and extending the knee, we calculated anterior femoral translation and the flexion angle at which femoral rollback began. Removing the posterior cruciate ligament doubled anterior translation (from 5.1 ± 4.3 mm to 10.4 ± 5.1 mm) and increased the flexion angle at which femoral rollback began (from 31.2 ± 9.6° to 49.3 ± 7.3°). Implanting the prosthesis increased the amount of anterior translation (to 16.1 ± 4.4 mm), and did not change the flexion angle at which femoral rollback began. Abnormal anterior translation was observed in low and mid flexion (0–60°) after removing the posterior cruciate ligament, and normal motion was not restored by the posterior stabilized prosthesis. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:1494–1499, 2008  相似文献   

5.
Isolated posterior cruciate ligament injuries usually are treated nonoperatively, although some patients remain symptomatic, and degenerative changes within the patellofemoral joint and the medial compartment of the tibiofemoral joint have been seen in followup studies. In vitro simulation of knee squatting was done to quantify the influence of the posterior cruciate ligament on tibiofemoral and patellofemoral kinematics. For five knee specimens, knee kinematics were measured before and after sectioning the posterior cruciate ligament, and compared using a Wilcoxon signed rank test. The only kinematic parameters that changed significantly after sectioning the posterior cruciate ligament were the tibial posterior translation and patellar flexion. The posterior translation of the tibia increased significantly between 25 degrees and 90 degrees flexion. The average increase in the posterior translation exceeded 10 mm at 90 degrees flexion. The patellar flexion increased significantly from 30 degrees to 90 degrees flexion. The average patellar flexion increase peaked at 4.4 degrees at 45 degrees flexion. Increased tibial translation could adversely influence joint stability. Increased patellar flexion could increase the patellofemoral joint pressure, especially at the inferior pole, leading to degenerative changes within the patellofemoral joint.  相似文献   

6.
We re‐examined experimental model results using half‐body specimens with intact extensor mechanisms and navigation to evaluate cruciate‐retaining (CR) and posterior stabilized (PS) total knee arthroplasty (TKA) component gaps through an entire range of motion. Six sequential testing regimens were conducted with the knee intact, with a CR TKA in place, and with a PS TKA in place, with and without 22 N traction in place at each stage. Each of 10 knees was taken through six full ranges of motion from 0° to 120° at every stage using a navigated knee system to record component gapping. No significant difference was found between loaded and unloaded component gaps, and no significant differences were found in component gapping between CR and PS TKAs throughout a full range of motion. Flexion–extension gap measurements were significantly different from previously published data (at 90° flexion). No difference was found in kinematics when comparing CR and PS TKA component designs. Our results suggest that intact extensor mechanisms may be required to perform proper kinematic studies of TKA. Our findings provide evidence that the extensor mechanism may play a major role in the flexion–extension gaps in cadaveric knees. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:627–632, 2014.  相似文献   

7.
Introduction: Femoral tunnel placement has a great influence on the clinical outcome after PCL reconstruction. Materials and methods: Using a robotic/universal force moment sensor (UFS) testing system, we examined joint kinematics and in situ forces of human knees following soft-tissue single bundle PCL reconstruction fixed at the center of the femoral attachment. Results: Posterior tibial translation significantly increased at all flexion angles after transsection of the posterior cruciate ligament (p<0.05). PCL reconstruction resulted in significantly less posterior tibial translation at all flexion angles when compared to the PCL deficient knee (p<0.05). The differences in the in situ force between the intact ligament and the reconstructed graft were statistical significant (p<0.05). Conclusion: Single bundle PCL reconstruction with a soft-tissue graft fixed at the center of the femoral attachment is able to reduce the posterior tibial translation significantly. However, it cannot restore kinematics of the intact knee and in situ forces of the intact PCL.  相似文献   

8.
We have examined the relationship between the size of the flexion gap and the anterior translation of the tibia in flexion during implantation of a posterior cruciate ligament (PCL)-retaining BalanSys total knee replacement (TKR). In 91 knees, the flexion gap and anterior tibial translation were measured intra-operatively using a custom-made, flexible tensor-spacer device. The results showed that for each increase of 1 mm in the flexion gap in the tensed knee a mean anterior tibial translation of 1.25 mm (SD 0.79, 95% confidence interval 1.13 to 1.37) was produced. When implanting a PCL-retaining TKR the surgeon should be aware that the tibiofemoral contact point is related to the choice of thickness of the polyethylene insert. An additional thickness of polyethylene insert of 2 mm results in an approximate increase in tibial anterior translation of 2.5 mm while the flexed knee is distracted with a force of between 100 N and 200 N.  相似文献   

9.
The purpose of this study was to clarify meniscal displacement and cartilage–meniscus contact behavior in a full extension position and a deep knee flexion position. We also studied whether the meniscal translation pattern correlated with the tibiofemoral cartilage contact kinematics. Magnetic resonance (MR) images were acquired at both positions for 10 subjects using a conventional MR scanner. Subjects achieved a flexion angle averaging 139° ± 3°. Both medial and lateral menisci translated posteriorly on the tibial plateau during deep knee flexion. The posterior translation of the lateral meniscus (8.2 ± 3.2 mm) was greater than the medial (3.3 ± 1.5 mm). This difference was correlated with the difference in tibiofemoral contact kinematics between medial and lateral compartments. Contact areas in deep flexion were approximately 75% those at full extension. In addition, the percentage of area in contact with menisci increased significantly due to deep flexion. Our results related to meniscal translation and tibio‐menisco‐femoral contact in deep knee flexion, in combination with information about force and pressure in the knee, may lead to a better understanding of the mechanism of meniscal degeneration and osteoarthritis associated with prolonged kneeling and squatting. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:673–684, 2008  相似文献   

10.
Kneeling is an important function of the knee for many activities of daily living. In this study, we evaluated the in vivo kinematics of kneeling after total knee arthroplasty (TKA) using radiographic based image‐matching techniques. Kneeling from 90 to 120° of knee flexion produced a posterior femoral rollback after both cruciate‐retaining and posterior‐stabilized TKA. It could be assumed that the posterior cruciate ligament and the post‐cam mechanism were functioning. The posterior‐stabilized TKA design had contact regions located far posterior on the tibial insert in comparison to the cruciate‐retaining TKA. Specifically, the lateral femoral condyle in posterior‐stabilized TKA translated to the posterior edge of the tibial surface, although there was no finding of subluxation. After posterior‐stabilized TKA, the contact position of the post‐cam translated to the posterior medial corner of the post with external rotation of the femoral component. Because edge loading can induce accelerated polyethylene wear, the configuration of the post‐cam mechanism should be designed to provide a larger contact area when the femoral component rotates. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:435–442, 2008  相似文献   

11.
The mechanism of chronic degeneration of the knee after posterior cruciate ligament (PCL) injury is still not clearly understood. While numerous biomechanical studies have been conducted to investigate the function of the PCL with regard to antero-posterior stability of the knee, little has been reported on its effect on the rotational stability of the knee. In this study, eight cadaveric human knee specimens were tested on a robotic testing system from full extension to 120 degrees of flexion with the PCL intact and with the PCL resected. The antero-posterior tibial translation and the internal-external tibial rotation were measured when the knee was subjected to various simulated muscle loads. Under a quadriceps load (400 N) and a combined quadriceps/hamstring load (400/200 N), the tibia moved anteriorly at low flexion angles (below 60 degrees). Resection of the PCL did not significantly alter anterior tibial translation. At high flexion angles (beyond 60 degrees), the tibia moved posteriorly and rotated externally under the muscle loads. PCL deficiency significantly increased the posterior tibial translation and external tibial rotation. The results of this study indicate that PCL deficiency not only changed tibial translation, but also tibial rotation. Therefore, only evaluating the tibial translation in the anteroposterior direction may not completely describe the effect of PCL deficiency on knee joint function. Furthermore, the increased external tibial rotations were further hypothesized to cause elevated patello-femoral joint contact pressures. These data may help explain the biomechanical factors causing long-term degenerative changes of the knee after PCL injury. By fully understanding the etiology of these changes, it may be possible to develop an optimal surgical treatment for PCL injury that is aimed at minimizing the long-term arthritic changes in the knee joint.  相似文献   

12.

Background and purpose

Because of the oblique orientation of the posterior cruciate ligament (PCL), flexion gap distraction could lead to anterior movement of the tibia, which would influence the tibiofemoral contact point. This would affect the kinematics of the TKR. We assessed the flexion gap parameters when the knee is distracted during implantation of a PCL-retaining TKR. Furthermore, the effects of PCL elevation (steep or flat) and collateral ligament releases on the flexion gap parameters were determined.

Methods

During a ligament-guided TKR procedure in 50 knees, the flexion gap was distracted with a double-spring tensor with 200N after the tibia had been cut. The flexion gap height, anterior tibial translation, and femoral rotation were measured intraoperatively using a CT-free navigation system.

Results

During flexion gap distraction, the greatest displacement was seen in anterior-posterior direction. Mean ratio between increase in gap height and tibial translation was 1 to 1.9, and was highest for knees with a steep PCL (1 to 2.3). Knees with a flat PCL and knees with a ligament release had a larger increase in PCL elevation when the gap was distracted.

Interpretation

When the PCL is tensioned, every extra mm that the flexion gap is distracted can be expected to move the tibia anteriorly by at least 1.7 mm (flat PCL), or more if there is a steep PCL. This changes the tibiofemoral contact point, which may have consequences for polyethylene wear.  相似文献   

13.
BackgroundDepressed fractures of anteromedial tibial plateau are often underappreciated and treated inadequately. When these fractures are accompanied by injuries of posterior cruciate ligament and postero-lateral corner, they are called as diagonal lesions. There are very few publications on the management of such injuries in chronic stage. The purpose of our study is to describe our results in management of these neglected fractures using open wedge osteotomy of medial tibial condyle (OWOMTC).MethodsThis is a retrospective study of ten patients. KOOS score and Tegner and Lysholm score were recorded preoperatively and at three, six, twelve and twenty four months after surgery to assess the functional outcome. Medial proximal tibial angle (MPTA) and tibial slope were recorded before and after surgery.ResultsAll cases had posterior cruciate ligament (PCL) and posterolateral corner (PLC) injuries. There was no anterior cruciate ligament (ACL) injury. MPTA was corrected from mean 76.2° ± 3.7° to mean 86.4° ± 3.2°. Mean tibial slope was increased from −4° ± 3° to mean tibial slope of 7.6° ± 2.2°.Tegner and Lyshom score improved from mean of 38–88 (p < .05) at final follow-up. KOOS score improved from mean of 32–86 (p < .05) at final follow-up. Union was achieved in all the cases. None of the cases required ligament reconstruction.ConclusionsWe conclude that OWOMTC is a useful method to manage neglected depressed fractures of anteromedial tibial plateau accompanied by PCL and PLC injury (diagonal injury). This procedure can restore limb alignment, congruency and stability of knee joint without any soft tissue reconstruction and change in the patellofemoral kinematics.  相似文献   

14.
《Arthroscopy》2003,19(7):706-711
Purpose: The objective of this study was to evaluate the efficacy of different stress radiography techniques in quantifying a posterior cruciate ligament (PCL) lesion. Type of Study: Prospective serial study. Methods: Sixty patients with subacute or chronic PCL injuries, confirmed using magnetic resonance imaging (MRI) or arthroscopic evaluation, were enrolled in this study. The patients underwent a KT-2000 (Medmetric, San Diego, CA) examination and a series of stress radiographs that included a radiographic posterior drawer test with Telos (Telos, Weterstadt, Germany) at 90° and 25° of knee flexion, an active radiograph at 90° of knee flexion, and an axial view radiograph. Results: Stress radiography performed with Telos showed an average posterior tibial displacement of 11.54 ± 4.93 mm and 7.97 ± 3.16 mm at 90° and 25°, respectively. The active radiographs showed an average posterior tibial displacement of 11.48 ± 5.14 mm. Conclusions: Stress radiographs were shown to be superior to arthrometric evaluation in quantifying posterior tibial translation. The techniques performed with the knee at 90° of knee flexion allowed for greater posterior tibial displacement and, consequently, an easier quantification of the degree of ligament insufficiency. Stress radiographs performed through hamstring contraction gave the same results as those performed with Telos at 90° of knee flexion.  相似文献   

15.
股骨单隧道内分叉双束纤维重建后交叉韧带的实验研究   总被引:2,自引:2,他引:0  
目的在人膝关节标本上行股骨单隧道分叉双束纤维重建后交叉韧带(posterior cruciate ligament,PCL),探讨其术式的优缺点。方法应用力学试验机对14侧捐赠新鲜冷冻人膝关节标本进行生物力学测试,男12侧,女2侧;年龄20~31岁。标本股骨段长20cm,胫骨段长20cm。首先测量PCL完整时胫骨后移距离和交叉韧带的应变(完整组,n=14);然后切断PCL(切断组,n=14),测量胫骨受力时的后移距离后,再将标本随机分为两组:单束重建组(n=7)和分叉双束重建组(n=7),分别测量屈膝0、30、60、90和120°5个角度时胫骨后移距离和移植韧带的应变。结果胫骨受到100N后向力量,完整组在不同屈膝角度下,胫骨向后移位1.97±0.29~2.60±0.23mm,前外束和后内束纤维交替紧张松弛。切断组膝关节明显松弛,胫骨向后移位达11.27±1.06~14.94±0.67mm,与完整组比较差异有统计学意义(P<0.05);单束纤维重建组,在不同屈膝角度下胫骨向后移位1.99±0.19~2.72±0.38mm,移植韧带持续紧张。双束纤维重建组在不同屈膝角度下胫骨向后移位2.27±0.32~3.05±0.44mm,移植的双束纤维交替紧张,协同作用。组内比较:双束重建组在不同屈膝角度时胫骨向后位移差异无统计学意义(P>0.05),而单束重建组在屈膝90°时与屈膝30、60和120°时相比,胫骨后移增大,差异有统计学意义(P<0.05)。结论股骨单隧道内分叉双束纤维重建PCL术在各屈膝角度均能有效防止胫骨后移,股骨单隧道单束重建术屈膝90°时后移较其他角度时增大。分叉双束重建PCL的两束纤维束交替紧张,生物力学特征更接近于正常PCL。  相似文献   

16.
A change in hamstring strength and activation is typically seen after injuries or invasive surgeries such as anterior cruciate reconstruction or total knee replacement. While many studies have investigated the influence of isometric increases in hamstring load on knee joint kinematics, few have quantified the change in kinematics due to a variation in medial to lateral hamstring force ratio. This study examined the changes in knee joint kinematics on eight cadaveric knees during an open‐chain deep knee bend for six different loading configurations: five loaded hamstring configurations that varied the ratio of a total load of 175 N between the semimembranosus and biceps femoris and one with no loads on the hamstring. The anterior–posterior translation of the medial and lateral femoral condyles’ lowest points along proximal‐distal axis of the tibia, the axial rotation of the tibia, and the quadriceps load were measured at each flexion angle. Unloading the hamstring shifted the medial and lateral lowest points posteriorly and increased tibial internal rotation. The influence of unloading hamstrings on quadriceps load was small in early flexion and increased with knee flexion. The loading configuration with the highest lateral hamstrings force resulted in the most posterior translation of the medial lowest point, most anterior translation of the lateral lowest point, and the highest tibial external rotation of the five loading configurations. As the medial hamstring force ratio increased, the medial lowest point shifted anteriorly, the lateral lowest point shifted posteriorly, and the tibia rotated more internally. The results of this study, demonstrate that variation in medial‐lateral hamstrings force and force ratio influence tibiofemoral transverse kinematics and quadriceps loads required to extend the knee. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1707–1715, 2016.  相似文献   

17.
After total knee arthroplasty, changes in articular surface geometry, soft tissue treatment, and component alignment can alter normal lower limb function. The guided motion bi‐cruciate substituting prosthesis was designed specifically to restore physiological knee joint motion. We determined whether this design could in vivo normal kinematics and kinetics, not only at the replaced knee, but also throughout both lower limbs. Sixteen patients (4 male, 12 female, mean age of 68.2 years with a range from 58 to 79 years) with primary knee osteoarthritis were implanted with the bi‐cruciate substituting prosthesis. At 6‐month follow‐up, knee joint kinematics was assessed by video‐fluoroscopy during stair‐climbing, chair‐rising/sitting, and step‐up/down. Lower limb overall function was also assessed on the same day by standard gait analysis with simultaneous electromyography during level walking. By video‐fluoroscopy, mean anteroposterior translations between femoral and tibial components during the three motor tasks were 9.7 ± 3.0, 10 ± 2.6, and 6.9 ± 3.5 mm on the medial compartment, and 14.3 ± 3.5, 18.5 ± 3.0, and 13.9 ± 3.8 mm on the lateral compartment, respectively. Axial rotation ranged from 5.6° to 26.2°. Gait analysis revealed restoration of nearly normal walking patterns in most patients. This rare combination of measurements, i.e., accurate rotation‐translation at the replaced knee and complete locomotion patterns at both lower limb joints, suggested that bi‐cruciate substituting arthroplasty can restore physiological knee motion and normal overall function. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:1569–1575, 2009  相似文献   

18.
《The Journal of arthroplasty》2021,36(11):3765-3772.e4
BackgroundLittle is known regarding anterior-posterior stability after anterior cruciate ligament–preserving partial (PKA) and combined partial knee arthroplasty (CPKA) compared to standard posterior cruciate–retaining total knee arthroplasty (TKA).MethodsThe anterior-posterior tibial translation of twenty-four cadaveric knees was measured, with optical tracking, while under 90N drawer with the knee flexed 0-90°. Knees were tested before and after PKA, CPKA (medial and lateral bicompartmental and bi-unicondylar), and then posterior cruciate–retaining TKA. The anterior-posterior tibial translations of the arthroplasty states, at each flexion angle, were compared to the native knee and each other with repeated measures analyses of variance and post-hoc t-tests.ResultsUnicompartmental and bicompartmental arthroplasty states had similar laxities to the native knee and to each other, with ≤1-mm differences throughout the flexion range (P ≥ .199). Bi-unicondylar arthroplasty resulted in 6- to 8-mm increase of anterior tibial translation at high flexion angles compared to the native knee (P ≤ .023 at 80-90°). Meanwhile, TKA exhibited increased laxity across all flexion angles, with increased anterior tibial translation of up to 18 ± 6 mm (P < .001) and increased posterior translation of up to 4 ± 2 mm (P < .001).ConclusionsIn a cadaveric study, anterior-posterior tibial translation did not differ from native laxity after PKA and CPKA. Posterior cruciate ligament–preserving TKA demonstrated increased laxity, particularly in anterior tibial translation.  相似文献   

19.
Measurements of tibial translation in response to an external load are used in clinical and laboratory settings to diagnose and characterize knee-ligament injuries. Before these measurements can be quantified, a reference position of the knee must be established (defined as the position of the knee with no external forces or moments applied). The objective of this study was to determine the effects of cruciate ligament deficiency on this reference position and on subsequent measurements of tibial translation and, in so doing, to establish a standard of kinematic measurement for future biomechanical studies. Thirty-six human cadaveric knees were studied with a robotic/universal force-moment sensor testing system. The reference positions of the intact and posterior cruciate ligament-deficient knees of 18 specimens were determined at full extension and at 30, 60, 90, and 120 degrees of flexion, and the remaining five-degree-of-freedom knee motion was unrestricted. Subsequently, under a 134-N anterior-posterior load, the resulting knee kinematics were measured with respect to the reference positions of the intact and posterior cruciate ligament-deficient knees. With posterior cruciate ligament deficiency, the reference position of the knee moved significantly in the posterior direction, reaching a maximal shift of 9.3 +/- 3.8 mm at 90 degrees of flexion. For the posterior cruciate ligament-deficient knee, posterior tibial translation ranged from 13.0 +/- 3.4 to 17.7 +/- 3.6 mm at 30 and 90 degrees, respectively, when measured with respect to the reference positions of the intact knee. When measured with respect to the reference positions of the posterior cruciate ligament-deficient knee, these values were significantly lower, ranging from 11.7 +/- 4.3 mm at 30 degrees of knee flexion to 8.4 +/- 4.8 mm at 90 degrees. A similar protocol was performed to study the effects of anterior cruciate ligament deficiency on 18 additional knees. With anterior cruciate ligament deficiency, only a very small anterior shift in the reference position was observed. Overall, this shift did not significantly affect measurements of tibial translation in the anterior cruciate ligament-deficient knee. Thus, when the tibial translation in the posterior cruciate ligament-injured knee is measured when the reference position of the intact knee is not available, errors can occur and the measurement may not completely reflect the significance of posterior cruciate ligament deficiency. However, there should be less corresponding error when measuring the tibial translation of the anterior cruciate ligament-injured knee because the shift in reference position with anterior cruciate ligament deficiency is too small to be significant. We therefore recommend that in the clinical setting, where the reference position of the knee changes with injury, comparison of total anterior-posterior translation with that of the uninjured knee can be a more reproducible and accurate measurement for assessing cruciate-ligament injury, especially in posterior cruciate ligament-injured knees. Similarly, in biomechanical testing where tibial translations are often reported for the ligament-deficient and reconstructed knees, a fixed reference position should be chosen when measuring knee kinematics. If such a standard is set, measurements of knee kinematics will more accurately reflect the altered condition of the knee and allow valid comparisons between studies.  相似文献   

20.
Despite the numerous long-term success reports of posterior stabilized (PS) total knee arthroplasty (TKA), recent retrieval studies of various PS TKA designs revealed wear and deformation on the anterior side of the tibial post. This study investigated the mechanisms of anterior impingement of the post with the femoral component. Seven cadaveric knees were tested to study kinematics and tibial post biomechanics during simulated heel strike using an in vitro robotic testing system. Intact knee kinematics and in situ anterior cruciate ligament (ACL) forces were determined at hyperextension (0 degree to -9 degrees) and low flexion angles (0 degrees to 30 degrees) under the applied loads. The same knee was reconstructed using a PS TKA. The kinematics and the tibial post contact forces of the TKA were measured under the same loading condition. The ACL in the intact knee carried load and contributed to knee stability at low flexion angles and hyperextension. After TKA, substantial in situ contact forces (252.4 +/- 173 N at 9 degrees of hyperextension) occurred in the tibial post, indicating anterior impingement with the femoral component. Consequently, the TKA showed less posterior femoral translation compared to the intact knee after the impingement. At 9 degrees of hyperextension, the medial condyle of the intact knee translated 0.1 +/- 1.1 mm whereas the medial condyle of the TKA knee translated 5.6 +/- 6.9 mm anteriorly. The lateral condyle of the intact knee translated 1.5 +/- 1.0 mm anteriorly whereas the lateral condyle of the TKA knee translated 2.1 +/- 5.8 mm anteriorly. The data demonstrated that anterior tibial post impingement functions as a substitute for the ACL during hyperextension, contributing to anterior stability. However, anterior post impingement may result in additional polyethylene wear and tibial post failure. Transmitted impingement forces might cause backside wear and component loosening. Understanding the advantages and disadvantages of the tibial post function at low flexion angles may help to further improve component design and surgical techniques and thus enhance knee stability and component longevity after TKA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号