首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Innate lymphoid cells (ILCs) are important regulators of the immune response and play a crucial role in the restoration of tissue homeostasis after injury. GATA‐3+ IL‐13‐ and IL‐5‐producing group 2 innate lymphoid cells (ILC2s) have been shown to promote tissue repair in barrier organs, but despite extensive research on ILCs in the recent years, their potential role in autoimmune diseases is still incompletely understood. In the present study, we investigate the role of ILC2s in the MRL/MpJ‐Faslpr (MRL‐lpr) mouse model for severe organ manifestation of systemic lupus erythematosus (SLE). We show that in these MRL‐lpr mice, progression of lupus nephritis is accompanied with a reduction of ILC2 abundance in the inflamed renal tissue. Proliferation/survival and cytokine production of kidney‐residing ILC2s was suppressed by IFN‐γ and, to a lesser extent, by IL‐27 which were produced by activated T cells and myeloid cells in the nephritic kidney, respectively. Most importantly, restoration of ILC2 numbers by IL‐33‐mediated expansion ameliorated lupus nephritis and prevented mortality in MRL‐lpr mice. In summary, we show here that development of SLE‐like kidney inflammation leads to a downregulation of the renal ILC2 response and identify an ILC2‐expanding therapy as a promising treatment approach for autoimmune diseases.  相似文献   

3.
Crohn's disease (CD) is a chronic inflammatory condition of the human gastrointestinal tract whose aetiology remains largely unknown. Dysregulated adaptive immune responses and defective innate immunity both contribute to this process. In this study, we demonstrated that the interleukin (IL)‐17A+interferon (IFN)‐γ+ and IL‐22+IFN‐γ+ T cell subsets accumulated specifically in the inflamed terminal ileum of CD patients. These cells had higher expression of Ki‐67 and were active cytokine producers. In addition, their proportions within both the IL‐17A‐producer and IL‐22‐producer populations were increased significantly. These data suggest that IL‐17A+IFN‐γ+ and IL‐22+IFN‐γ+ T cell subsets might represent the pathogenic T helper type 17 (Th17) population in the context of intestinal inflammation for CD patients. In the innate immunity compartment we detected a dramatic alteration of both phenotype and function of the intestinal innate lymphoid cells (ILCs), that play an important role in the maintenance of mucosal homeostasis. In the inflamed gut the frequency of the NKp44CD117ILC1s subset was increased significantly, while the frequency of NKp44+ILC3s was reduced. Furthermore, the frequency of human leucocyte antigen D‐related (HLA‐DR)‐expressing‐NKp44+ILC3s was also reduced significantly. Interestingly, the decrease in the NKp44+ILC3s population was associated with an increase of pathogenic IL‐17A+IFN‐γ+ and IL‐22+IFN‐γ+ T cell subsets in the adaptive compartment. This might suggest a potential link between NKp44+ILC3s and the IL‐17A+IFN‐γ+ and IL‐22+IFN‐γ+ T cell subsets in the terminal ileum of CD patients.  相似文献   

4.
5.
Inflammatory bowel diseases (IBD) are key risk factors for the development of colorectal cancer, but the mechanisms that link intestinal inflammation with carcinogenesis are insufficiently understood. Card9 is a myeloid cell‐specific signaling protein that regulates inflammatory responses downstream of various pattern recognition receptors and which cooperates with the inflammasomes for IL‐1β production. Because polymorphisms in Card9 were recurrently associated with human IBD, we investigated the function of Card9 in a colitis‐associated cancer (CAC) model. Card9?/? mice develop smaller, less proliferative and less dysplastic tumors compared to their littermates and in the regenerating mucosa we detected dramatically impaired IL‐1β generation and defective IL‐1β controlled IL‐22 production from group 3 innate lymphoid cells. Consistent with the key role of immune‐derived IL‐22 in activating STAT3 signaling during normal and pathological intestinal epithelial cell (IEC) proliferation, Card9?/? mice also exhibit impaired tumor cell intrinsic STAT3 activation. Our results imply a Card9‐controlled, ILC3‐mediated mechanism regulating healthy and malignant IEC proliferation and demonstrates a role of Card9‐mediated innate immunity in inflammation‐associated carcinogenesis.  相似文献   

6.
《Mucosal immunology》2016,9(6):1372-1383
Innate lymphoid cells (ILCs) have a central role in innate defenses against pathogens, lymphoid organogenesis, and tissue remodeling. They have been detected in human decidua, however, their role in this tissue remains unclear. Successful pregnancy requires an early inflammatory phase favoring implantation and tissue remodeling as well as a subsequent regulatory phase to prevent fetal rejection and supporting neoangiogenesis. Here, we show that, during the first trimester of pregnancy, neutrophils infiltrate decidua basalis and are more abundant in normal pregnancy than in spontaneous miscarriages. Decidual neutrophils localize in proximity of NCR+ILC3, which may influence neutrophil migration and survival given their production of CXCL8 and granulocyte macrophage colony-stimulating factor (GM-CSF). Moreover, NCR+ILC3-derived GM-CSF was found to induce the expression of heparin-binding EGF-like growth factor and IL1ra in neutrophils, two proteins/cytokines involved in tissue remodeling and maintenance of pregnancy. Our data suggest that the simultaneous presence of NCR+ILC3 and neutrophils in decidual tissues and their possible cross talk, may have a role in the early phases of pregnancy.  相似文献   

7.
《Mucosal immunology》2015,8(2):254-264
Innate lymphoid cells (ILCs) are developmentally related cells that play an important role in innate defenses and tissue remodeling. So far, only natural killer (NK) cells have been identified and functionally characterized in human decidua where they contribute to induction of immune suppression, neo-angiogenesis, and tissue building/remodeling. The presence of other ILC subsets in human decidua has not been yet characterized. Here we identify in human decidua, during early pregnancy, two subsets of decidual group 3 ILC (ILC3), including lymphoid tissue inducer (LTi)-like cells and natural cytotoxicity receptors (NCRs)+ILC3 and interferon-(IFN)γ-producing ILC1, different from NK cells. Decidual LTi-like cells produced interleukin -17 (IL-17) and tumor necrosis factor (TNF), while NCR+ILC3 released IL-22 and IL-8. Importantly, NCR+ILC3 and LTi-like cells established functional interactions with stromal cells. Decidual LTi-like cells differentiated into NCR+ILC3, whereas they marginally contributed to NK cell generation. Our data suggest that decidual ILC3 may play a role in innate defenses and in vessel and tissue building, thus contributing to maintenance of pregnancy.  相似文献   

8.
Allergic asthma is a chronic inflammation of the airways mediated by an adaptive type 2 immune response. Upon allergen exposure, group 2 innate lymphoid cells (ILC2s) can be rapidly activated and represent an early innate source of IL‐5 and IL‐13. Here, we used a house dust mite (HDM)‐driven asthma mouse model to study the induction of ILC2s in allergic airway inflammation. In BALF, lungs, and lymph nodes, ILC2 activation is critically dependent on prior sensitization with HDM. Importantly, T cells are required for ILC2 induction, whereby T‐cell activation precedes ILC2 induction. During HDM‐driven allergic airway inflammation the accumulation of ILC2s in BALF is IL‐33 independent, although infiltrating ILC2s produce less cytokines in Il33?/? mice. Transfer of in vitro polarized OVA‐specific OT‐II Th2 cells alone or in combination with Th17 cells followed by OVA and HDM challenge is not sufficient to induce ILC2, despite significant eosinophilic inflammation and T‐cell activation. In this asthma model, ILC2s are therefore not an early source of Th2 cytokines, but rather contribute to type 2 inflammation in which Th2 cells play a key role. Taken together, ILC2 induction in HDM‐mediated allergic airway inflammation in mice critically depends on activation of T cells.  相似文献   

9.
Group 2 innate lymphoid cells (ILC2s) produce a significant amount of interleukin‐5 (IL‐5), which supports eosinophil responses in various tissues; they also produce IL‐13, which induces mucus production and contributes to tissue repair or fibrosis. The ILC2s are activated by alarmins, such as IL‐33 released from epithelia, macrophages and natural killer T (NKT) cells in response to infection and allergen exposure, leading to epithelial injury. We examined gene expression in lung ILC2s and found that ILC2s expressed Ifngr1, the receptor for interferon‐γ (IFN‐γ). Interferon‐γ severely inhibited IL‐5 and IL‐13 production by lung and kidney ILC2s. To evaluate the effects in vivo, we used α‐galactosylceramide (α‐GalCer) to induce NKT cells to produce IL‐33 and IFN‐γ. Intraperitoneal injection of α‐GalCer in mice induced NKT cell activation resulting in IL‐5 and IL‐13 production by ILC2s. Administration of anti‐IFN‐γ together with α‐GalCer significantly enhanced the production of IL‐5 and IL‐13 by ILC2s in lung and kidney. Conversely, cytokine production from ILC2s was markedly suppressed after injection of exogenous IL‐33 in Il33?/? mice pre‐treated with α‐GalCer. Hence, IFN‐γ induced or already present in tissues can impact downstream pleiotropic functions mediated by ILC2s, such as inflammation and tissue repair.  相似文献   

10.
Eosinophils are multifunctional leukocytes involved in allergic reactions as well as adipose tissue regulation. IL‐5 is required for eosinophil survival; however, the in vivo mechanisms of eosinophil regulation are not fully understood. A tg mouse model with il5 promoter‐driven EGFP expression was established for detecting the IL‐5‐producing cells in vivo. Il5‐egfp tg mice expressed high levels of EGFP in gonadal adipose tissue (GAT) cells. EGFP+ cells in GAT were mainly group 2 innate lymphoid cells (ILCs). IL‐33 preferentially expanded EGFP+ cells and eosinophils in GAT in vivo. EGFP+ ILCs were found to upregulate prg2 mRNA expression in GAT eosinophils. These results demonstrate that ILCs activate eosinophils in GAT. The blockage of IL‐33Rα, on the other hand, did not impair EGFP+ ILC numbers but did impair eosinophil numbers in vivo. GAT eosinophils expressed IL‐33Rα and IL‐33 expanded eosinophil numbers in CD90+ cell‐depleted mice. IL‐33 was further observed to induce the expression of retnla and epx mRNA in eosinophils. These findings demonstrate that IL‐33 directly activates eosinophils in GAT, and together with our other findings described above, our findings show that IL‐33 has dual pathways via which it activates eosinophils in vivo: a direct activation pathway and a group 2 ILC‐mediated pathway.  相似文献   

11.
12.
Recent studies identified an emerging role of group 2 and 3 innate lymphoid cells (ILCs) as key players in the generation of T‐dependent and T‐independent antibody production. In this retrospective case‐control study, CD117+ ILCs (including the majority of ILC2 and ILC3) were reduced in patients with common variable immunodeficiency (CVID). The reduction in CD117+ ILCs was distinctive to CVID and could not be observed in patients with X‐linked agammaglobulinemia. Patients with a more pronounced reduction in CD117+ ILC numbers showed significantly lower numbers of peripheral MZ‐like B cells and an increased prevalence of chronic, non‐infectious enteropathy. Subsequent phenotyping of ILC subsets in CVID revealed that the reduction in CD117+ ILC numbers is due to a reduction in ILC2 numbers. In vitro expansion of CVID ILC2 in response to IL‐2, IL‐7, IL‐25 and IL‐33 was impaired. Furthermore, upregulation of MHCII and IL‐2RA in response to IL‐2, IL‐7, IL‐25 and IL‐33 was impaired in CVID ILC2. Thus, our results indicate a dysregulation of ILC subsets with a reduction in ILC2 numbers in CVID, however, further studies are needed to explore whether ILC abnormalities are a primary finding or secondary to disease complications encountered in CVID.  相似文献   

13.
14.
15.
NK cells play a central role in the haploidentical HSC transplantation (HSCT) to cure high‐risk leukemias. Other innate lymphoid cells (ILCs) have been proposed to exert a protective role in graft‐versus‐host disease and could also contribute to anti‐microbial defence and to lymphoid tissue remodeling. Thus, we investigated the ILC differentiation potential of HSCs isolated from BM, mobilized peripheral blood (PB), and umbilical cord blood (UCB). BM CD34+ cells are enriched in lymphoid‐committed precursors, while PB CD34+ cells preferentially contain myeloid precursors. In vitro differentiation experiments revealed that the highest and the lowest CD56+CD161+ ILC recovery was detected in UCB and PB HSC cultures, respectively. Among CD56+CD161+ ILCs, the ratio between NK cells and ILC3s was similar for all HSC analyzed. ILC recovery in PB CD34+ cultures was lower for G‐CSF‐mobilized HSCs (good mobilizers) than for G‐CSF+plerixafor‐mobilized HSC (poor mobilizers). Moreover, G‐CSF inhibited in vitro ILC recovery and the degree of inhibition was proportional to the time of exposure to the cytokine. Thus, although all common sources of HSC for transplant differentiate towards ILCs, substantial differences exist among different sources and G‐CSF may influence ILC recovery. These data offer new clues for a better understanding of the immune reconstitution after HSCT.  相似文献   

16.
Human innate lymphoid cells have been described to exist in different organs, with functional deregulation of these cells contributing to several disease states. Here, we performed the first detailed characterization of the phenotype, tissue‐residency properties, and functionality of ILC1s, ILC2s, and ILC3s in the human adult and fetal liver. In addition, we investigated changes in the ILC compartment in liver fibrosis. A unique composition of tissue‐resident ILCs was observed in nonfibrotic livers as compared with that in mucosal tissues, with NKp44? ILC3s accounting for the majority of total intrahepatic ILCs. The frequency of ILC2s, representing a small fraction of ILCs in nonfibrotic livers, increased in liver fibrosis and correlated directly with the severity of the disease. Notably, intrahepatic ILC2s secreted the profibrotic cytokine IL‐13 when exposed to IL‐33 and thymic stromal lymphopoetin (TSLP); these cytokines were produced by hepatocytes, hepatic stellate cells (HSCs), and Kupffer cells in response to TLR‐3 stimulation. In summary, the present results provide the first detailed characterization of intrahepatic ILCs in human adult and fetal liver. The results indicate a role for ILC2s in human liver fibrosis, implying that targeting ILC2s might be a novel therapeutic strategy for its treatment.  相似文献   

17.
18.
T helper type 2 (Th2) cells, type 2 innate lymphoid cells (ILC2s) and eosinophil progenitors have previously been described to produce interleukin‐5 (IL‐5) in the airways upon allergen provocation or by direct administration of IL‐33. Eosinophilic airway inflammation is known to be associated with IL‐5‐dependent eosinophil development in the bone marrow, however, the source of IL‐5 remains unclear. T helper cells, ILC2s and CD34+ progenitors have been proposed to be involved in this process, therefore, we investigated whether these cells are taking part in eosinophilopoiesis by producing IL‐5 locally in the bone marrow in IL‐33‐driven inflammation. Airway exposure with IL‐33 led to eosinophil infiltration in airways and elevated eotaxin‐2/CCL24. Importantly, IL‐5 production as well as expression of the IL‐33 receptor increased in ILC2s in the bone marrow under this treatment. A small but significant induction of IL‐5 was also found in CD34+ progenitors but not in T helper cells. Similar results were obtained by in vitro stimulation with IL‐33 where ILC2s rapidly produced large amounts of IL‐5, which coincided with the induction of eosinophil hematopoiesis. IL‐33‐mediated eosinophil production was indeed dependent on IL‐5 as both airway and bone marrow eosinophils decreased in mice treated with anti‐IL‐5 in combination with IL‐33. Interestingly, the responsiveness of ILC2s to IL‐33 as well as IL‐33‐induced eotaxin‐2/CCL24 were independent of the levels of IL‐5. In summary, we demonstrate for the first time that IL‐33 acts directly on bone marrow ILC2s, making them an early source of IL‐5 and part of a process that is central in IL‐33‐driven eosinophilia.  相似文献   

19.
Asthma is a complex and heterogeneous disease that is characterized by airway hyper‐reactivity (AHR) and airway inflammation. Although asthma was long thought to be driven by allergen‐reactive TH2 cells, it has recently become clear that the pathogenesis of asthma is more complicated and associated with multiple pathways and cell types. A very exciting recent development was the discovery of innate lymphoid cells (ILCs) as key players in the pathogenesis of asthma. ILCs do not express antigen receptors but react promptly to “danger signals” from inflamed tissue and produce an array of cytokines that direct the ensuing immune response. The roles of ILCs may differ in distinct asthma phenotypes. ILC2s may be critical for initiation of adaptive immune responses in inhaled allergen‐driven AHR, but may also function independently of adaptive immunity, mediating influenza‐induced AHR. ILC2s also contribute to resolution of lung inflammation through their production of amphiregulin. Obesity‐induced asthma is associated with expansion of IL‐17A‐producing ILC3s in the lungs. Furthermore, ILCs may also contribute to steroid‐resistant asthma. Although the precise roles of ILCs in different types of asthma are still under investigation, it is clear that inhibition of ILC function represents a potential target that could provide novel treatments for asthma.  相似文献   

20.
Influenza virus infection is an important cause of severe asthma exacerbations, but it remains unclear how a Th1‐mediated antiviral response triggers a prototypical Th2 disease. We investigated CD4+ T cells and group 2 innate lymphoid cells (ILC2s) in influenza virus‐infected mice. We found that ILC2s accumulated in the lung rapidly after influenza virus infection, but the induction of IL‐5 and IL‐13 secretion was delayed and concomitant with T cell activation. In an influenza‐induced exacerbation of allergic airway inflammation model we noticed an initial reduction of ILC2 numbers and cytokine production in broncho‐alveolar lavage compared to chronic house dust mite (HDM)‐mediated airway inflammation alone. ILC2s phenotype was characterized by low T1/ST2, ICOS, KLRG1, and CD25 expression, resembling naïve ILC2s. The contribution of ILC2s to type 2 cytokine production in the early stage of the influenza‐induced exacerbation was limited. In contrast, T cells showed increased IL‐4 and IL‐5 production when exposed to both HDM and influenza virus. Upon virus clearance, ILC2s regained an activated T1/ST2highICOShighKLRG1highCD25high phenotype paired with cytokine production and were major contributors to the type 2 cytokine milieu. Collectively, our data indicate that both T cells and ILC2s contribute to influenza‐induced exacerbation of allergic airway inflammation, but with different kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号