首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Grange syndrome (OMIM 602531) is an autosomal recessive condition characterized by severe early onset vascular occlusive disease and variable penetrance of brachydactyly, syndactyly, bone fragility, and learning disabilities. Grange syndrome is caused by homozygous or compound heterozygous loss‐of‐function variants in the YYA1P1 gene. We report on the case of a 53‐year old female with novel homozygous missense variants in YYA1P1 (c.1079C>T, p.Pro360Leu), presenting with a history of brachysyndactyly, hypertension, and ischemic stroke. Imaging studies revealed stenosis of the bilateral internal carotid with extensive collateralization of cerebral vessels in a moyamoya‐like pattern, along with stenosis in the splenic, common hepatic, celiac, left renal, and superior mesenteric arteries. Functional studies conducted with the patient's dermal fibroblasts suggest that the p.Pro360Leu variant decreases the stability of the YY1AP1 protein. This is the first report of a missense variant associated with Grange syndrome characterized by later onset of vascular disease and a lack of developmental delay and bone fragility.  相似文献   

2.
3.
Adaptor protein complex‐4 (AP‐4) is a heterotetrameric protein complex which plays a key role in vesicle trafficking in neurons. Mutations in genes affecting different subunits of AP‐4, including AP4B1, AP4E1, AP4S1, and AP4M1, have been recently associated with an autosomal recessive phenotype, consisting of spastic tetraplegia, and intellectual disability (ID). The overlapping clinical picture among individuals carrying mutations in any of these genes has prompted the terms “AP‐4 deficiency syndrome” for this clinically recognizable phenotype. Using whole‐exome sequencing, we identified a novel homozygous mutation (c.991C>T, p.Q331*, NM_006594.4) in AP4B1 in two siblings from a consanguineous Pakistani couple, who presented with severe ID, progressive spastic tetraplegia, epilepsy, and microcephaly. Sanger sequencing confirmed the mutation was homozygous in the siblings and heterozygous in the parents. Similar to previously reported individuals with AP4B1 mutations, brain MRI revealed ventriculomegaly and white matter loss. Interestingly, in addition to the typical facial gestalt reported in other AP‐4 deficiency cases, the older brother presented with congenital left Horner syndrome, bilateral optic nerve atrophy and cataract, which have not been previously reported in this condition. In summary, we report a novel AP4B1 homozygous mutation in two siblings and review the phenotype of AP‐4 deficiency, speculating on a possible role of AP‐4 complex in eye development.
  相似文献   

4.
We here report a family from Libya with three siblings suffering from early onset achalasia born to healthy parents. We analyzed roughly 5000 disease‐associated genes by a next‐generation sequencing (NGS) approach. In the analyzed sibling we identified two heterozygous variants in CRLF1 (cytokine receptor‐like factor 1). Mutations in CRLF1 have been associated with autosomal recessive Crisponi or cold‐induced sweating syndrome type 1 (CS/CISS1), which among other symptoms also manifests with early onset feeding difficulties. Segregation analysis revealed compound heterozygosity for all affected siblings, while the unaffected mother carried the c.713dupC (p.Pro239Alafs*91) and the unaffected father carried the c.178T>A (p.Cys60Ser) variant. The c.713dupC variant has already been reported in affected CS/CISS1 patients, the pathogenicity of the c.178T>A variant was unclear. As reported previously for pathogenic CRLF1 variants, cytokine receptor‐like factor 1 protein secretion from cells transfected with the c.178T>A variant was severely impaired. From these results we conclude that one should consider a CRLF1‐related disorder in early onset achalasia even if other CS/CISS1 related symptoms are missing.  相似文献   

5.
6.
Cornelia de Lange syndrome (CdLS) is a clinically heterogeneous disorder characterized by typical facial dysmorphism, cognitive impairment and multiple congenital anomalies. Approximately 75% of patients carry a variant in one of the five cohesin‐related genes NIPBL, SMC1A, SMC3, RAD21 and HDAC8. Herein we report on the clinical and molecular characterization of 11 patients carrying 10 distinct variants in HDAC8. Given the high number of variants identified so far, we advise sequencing of HDAC8 as an indispensable part of the routine molecular diagnostic for patients with CdLS or CdLS‐overlapping features. The phenotype of our patients is very broad, whereas males tend to be more severely affected than females, who instead often present with less canonical CdLS features. The extensive clinical variability observed in the heterozygous females might be at least partially associated with a completely skewed X‐inactivation, observed in seven out of eight female patients. Our cohort also includes two affected siblings whose unaffected mother was found to be mosaic for the causative mutation inherited to both affected children. This further supports the urgent need for an integration of highly sensitive sequencing technology to allow an appropriate molecular diagnostic, genetic counseling and risk prediction.  相似文献   

7.
The ryanodine receptor 1 (RYR1) is a calcium release channel essential for excitation‐contraction coupling in the sarcoplasmic reticulum of skeletal muscles. Dominant variants in the RYR1 have been well associated with the known pharmacogenetic ryanodinopathy and malignant hyperthermia. With the era of next‐generation gene sequencing and growing number of causative variants, the spectrum of ryanodinopathies has been evolving with dominant and recessive variants presenting with RYR1‐related congenital myopathies such as central core disease, minicore myopathy with external ophthalmoplegia, core‐rod myopathy, and congenital neuromuscular disease. Lately, the spectrum was broadened to include fetal manifestations, causing a rare recessive and lethal form of fetal akinesia deformation sequence syndrome (FADS)/arthrogryposis multiplex congenita (AMC) and lethal multiple pterygium syndrome. Here we broaden the spectrum of clinical manifestations associated with homozygous/compound heterozygous RYR1 gene variants to include a wide range of manifestations from FADS through neonatal hypotonia to a 35‐year‐old male with AMC and PhD degree. We report five unrelated families in which three presented with FADS. One of these families was consanguineous and had three affected fetuses with FADS, one patient with neonatal hypotonia who is alive, and one individual with AMC who is 35 years old with normal intellectual development and uses a wheelchair. Muscle biopsies on these cases demonstrated a variety of histopathological abnormalities, which did not assist with the diagnostic process. Neither the affected living individuals nor the parents who are obligate heterozygotes had history of malignant hyperthermia.  相似文献   

8.
Ellis‐van Creveld syndrome (EvC) is a chondral and ectodermal dysplasia caused by biallelic mutations in the EVC, EVC2 and WDR35 genes. A proportion of cases with clinical diagnosis of EvC, however, do not carry mutations in these genes. To identify the genetic cause of EvC in a cohort of mutation‐negative patients, exome sequencing was undertaken in a family with 3 affected members, and mutation scanning of a panel of clinically and functionally relevant genes was performed in 24 additional subjects with features fitting/overlapping EvC. Compound heterozygosity for the c.2T>C (p.Met1?) and c.662C>T (p.Thr221Ile) variants in DYNC2LI1, which encodes a component of the intraflagellar transport‐related dynein‐2 complex previously found mutated in other short‐rib thoracic dysplasias, was identified in the 3 affected members of the first family. Targeted resequencing detected compound heterozygosity for the same missense variant and a truncating change (p.Val141*) in 2 siblings with EvC from a second family, while a newborn with a more severe phenotype carried 2 DYNC2LI1 truncating variants. Our findings indicate that DYNC2LI1 mutations are associated with a wider clinical spectrum than previously appreciated, including EvC, with the severity of the phenotype likely depending on the extent of defective DYNC2LI1 function.  相似文献   

9.
10.
Background : Gabriele-de Vries syndrome is a rare autosomal dominant genetic disease caused by de novo pathogenic variants in YY1. In this study, we report a 10-year-old boy with a de novo novel pathogenic variant in YY1, the first Iranian patient with Gabriele-de Vries Syndrome. Methods : The novel de novo pathogenic variant detected in this study (NM_003403:c.690delA, p.Glu231Ilefs*25) was identified by whole-exome sequencing and confirmed by Sanger sequencing. Results : The proband presented with delayed motor and speech development, ataxia, abnormal gait, autistic behavior, brain atrophy, and severe learning disability. Finally, we provide a case-based review of the clinical features associated with Gabriele-de Vries Syndrome. Thus far, merely 13 Gabriele-de Vries Syndrome patients have been reported in the literature. Conclusion : The investigations for a suspected case of Gabriele-de Vries Syndrome must involve molecular diagnosis of the disease and its underlying genetic defect because the clinical investigations are generally variable and nonspecific.  相似文献   

11.
Aicardi‐Goutières syndrome (AGS) is a rare inborn multisystemic disease, resembling intrauterine viral infection and resulting in psychomotor retardation, spasticity and chilblain‐like skin lesions. Diagnostic criteria include intracerebral calcifications and elevated interferon‐alpha and pterin levels in cerebrospinal fluid (CSF). We report on four adult siblings with unknown neurodegenerative disease presenting with cerebrovascular stenoses, stroke and glaucoma in childhood, two of whom died at the age of 40 and 29 years. Genome‐wide homozygosity mapping identified 170 candidate genes embedded in a common haplotype of 8Mb on chromosome 20q11‐13. Next generation sequencing of the entire region identified the c.490C>T (p.Arg164X) mutation in SAMHD1, a gene most recently described in AGS, on both alleles in all affected siblings. Clinical diagnosis of AGS was then confirmed by demonstrating intracerebral calcifications on cranial computed tomography in all siblings and elevated pterin levels in CSF in three of them. In patient fibroblasts, lack of SAMHD1 protein expression was associated with increased basal expression of IL8, while stimulated expression of IFNB1 was reduced. We conclude that cerebrovascular stenoses and stroke associated with the Arg164X mutation in SAMHD1 extend the phenotypic spectrum of AGS. The observed vascular changes most likely reflect a vasculitis caused by dysregulated inflammatory stress response. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Retinal dystrophies are a heterogeneous group of disorders of visual function leading to partial or complete blindness. We report the genetic basis of an unusual retinal dystrophy in five families with affected females and no affected males. Heterozygous missense variants were identified in the X‐linked phosphoribosyl pyrophosphate synthetase 1 (PRPS1) gene: c.47C > T, p.(Ser16Phe); c.586C > T, p.(Arg196Trp); c.641G > C, p.(Arg214Pro); and c.640C > T, p.(Arg214Trp). Missense variants in PRPS1 are usually associated with disease in male patients, including Arts syndrome, Charcot–Marie–Tooth, and nonsyndromic sensorineural deafness. In our study families, affected females manifested a retinal dystrophy with interocular asymmetry. Three unrelated females from these families had hearing loss leading to a diagnosis of Usher syndrome. Other neurological manifestations were also observed in three individuals. Our data highlight the unexpected X‐linked inheritance of retinal degeneration in females caused by variants in PRPS1 and suggest that tissue‐specific skewed X‐inactivation or variable levels of pyrophosphate synthetase‐1 deficiency are the underlying mechanism(s). We speculate that the absence of affected males in the study families suggests that some variants may be male embryonic lethal when inherited in the hemizygous state. The unbiased nature of next‐generation sequencing enables all possible modes of inheritance to be considered for association of gene variants with novel phenotypic presentation.  相似文献   

13.
We report two Colombian siblings affected by overgrowth, intellectual disability and facial dysmorphism. Exome (via NGS) and Sanger sequencing revealed that biallelic sequence variants in a novel gene (HERC1) might be related to the disease pathogenesis. These results provide useful data for future genotype–phenotype correlations and for a molecular diagnosis of overgrowth.  相似文献   

14.
15.
Hartsfield syndrome is a rare clinical entity characterized by holoprosencephaly and ectrodactyly with the variable feature of cleft lip/palate. In addition to these symptoms patients with Hartsfield syndrome can show developmental delay of variable severity, isolated hypogonadotropic hypogonadism, central diabetes insipidus, vertebral anomalies, eye anomalies, and cardiac malformations. Pathogenic variants in FGFR1 have been described to cause phenotypically different FGFR1‐related disorders such as Hartsfield syndrome, hypogonadotropic hypogonadism with or without anosmia, Jackson–Weiss syndrome, osteoglophonic dysplasia, Pfeiffer syndrome, and trigonocephaly Type 1. Here, we report three patients with Hartsfield syndrome from two unrelated families. Exome sequencing revealed two siblings harboring a novel de novo heterozygous synonymous variant c.1029G>A, p.Ala343Ala causing a cryptic splice donor site in exon 8 of FGFR1 likely due to gonadal mosaicism in one parent. The third case was a sporadic patient with a novel de novo heterozygous missense variant c.1868A>G, p.(Asp623Gly).  相似文献   

16.
While neurofibromatosis type 1 (NF1) and Noonan syndrome (NS) are clinically distinct genetic syndromes, they have overlapping features because they are caused by pathogenic variants in genes encoding molecules within the Ras‐mitogen‐activated protein kinase signaling pathway. Increased risk for emotional and behavioral challenges has been reported in both children and adults with these syndromes. The current study examined parent‐report and self‐report measures of emotional functioning among children with NF1 and NS as compared to their unaffected siblings. Parents and children with NS (n = 39), NF1 (n = 39), and their siblings without a genetic condition (n = 32) completed well‐validated clinical symptom rating scales. Results from parent questionnaires indicated greater symptomatology on scales measuring internalizing behaviors and symptoms of attention deficit hyperactivity disorder (ADHD) in both syndrome groups as compared with unaffected children. Frequency and severity of emotional and behavioral symptoms were remarkably similar across the two clinical groups. Symptoms of depression and anxiety were higher in children who were also rated as meeting symptom criteria for ADHD. While self‐report ratings by children generally correlated with parent ratings, symptom severity was less pronounced. Among unaffected siblings, parent ratings indicated higher than expected levels of anxiety. Study findings may assist with guiding family‐based interventions to address emotional challenges.  相似文献   

17.
18.
Bi-allelic variants affecting one of the four genes encoding the AP4 subunits are responsible for the “AP4 deficiency syndrome.” Core features include hypotonia that progresses to hypertonia and spastic paraplegia, intellectual disability, postnatal microcephaly, epilepsy, and neuroimaging features. Namely, AP4M1 (SPG50) is involved in autosomal recessive spastic paraplegia 50 (MIM#612936). We report on three patients with core features from three unrelated consanguineous families originating from the Middle East. Exome sequencing identified the same homozygous nonsense variant: NM_004722.4(AP4M1):c.1012C>T p.Arg338* (rs146262009). So far, four patients from three other families carrying this homozygous variant have been reported worldwide. We describe their phenotype and compare it to the phenotype of patients with other variants in AP4M1. We construct a shared single-nucleotide polymorphism (SNP) haplotype around AP4M1 in four families and suggest a probable founder effect of Arg338* AP4M1 variant with a common ancestor most likely of Turkish origin.  相似文献   

19.
20.
Developmental and epileptic encephalopathies are genetic disorders in which both the developmental disability and the frequent epileptic activity are the effect of a specific gene variant. While heterozygous variants in SCN1B have been described in families with generalized epilepsy with febrile seizures plus, Type 1, only three cases of homozygous, missense variants in SCN1B have been reported in association with autosomal recessive inheritance of a severe developmental and epileptic encephalopathy. We present two siblings who are homozygous for a novel, missense variant in SCN1B, c.265C>T, predicting p.Arg89Cys. The proband is an 11‐year‐old female with infantile‐onset, fever‐induced, intractable generalized tonic–clonic seizures, myoclonic seizures, and developmental slowing and autism spectrum disorder occurring later in the course of the disease. Her 4‐year‐old brother had a similar epilepsy phenotype, but still displays normal development. This variant has not been previously reported in the homozygous state in control databases. The variant was predicted to be damaging and occurred in the vicinity of other epileptic encephalopathy‐associated missense variants that are biallelic and located in the extracellular immunoglobulin loop domain of the protein, which mediates interaction of the beta‐1 subunit with cellular adhesion molecules. Our report is the first set of siblings with homozygosity for the p.Arg89Cys variant in SCN1B and further implicates biallelic mutations in this gene as a cause of epileptic encephalopathy mimicking Dravet syndrome. Interestingly, the phenotype we observed was milder compared to that previously described in patients with recessive SCN1B mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号