首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A commercial laccase, Suberase® from Novozymes, was used to catalyse the synthesis of 5,6‐dihydroxylated benzo[b]furans and catechol derivatives. The yields were, in some cases, similar to or better than that obtained by other enzymatic, chemical or electrochemical syntheses. The synthesised derivatives were screened against renal (TK10), melanoma (UACC62), breast (MCF7) and cervical (HeLa) cancer cell lines. GI50, TGI and LC50 are reported for the first time. Anticancer screening showed that the cytostatic effects of the 5,6‐dihydroxylated benzo[b]furans were most effective against the melanoma (UACC62) cancer cell line with several compounds exhibiting potent growth inhibitory activities (GI50 = 0.77–9.76 µM), of which two compounds had better activity than the anticancer agent etoposide (GI50 = 0.89 µM). One compound exhibited potent activity (GI50 = 9.73 µM) against the renal (TK10) cancer cell line and two exhibited potent activity (GI50 = 8.79 and 9.30 µM) against the breast (MCF7) cancer cell line. These results encourage further studies of the 5,6‐dihydroxylated benzo[b]furans for their potential application in anticancer therapy.  相似文献   

2.
Groebke–Blackburn–Bienayme reaction has been utilized for the synthesis of new imidazo[1,2‐a]pyrimidine derivatives as novel anticancer agents. The cytotoxic activities of compounds were evaluated against human cancer cell lines including MCF‐7, T‐47D, and MDA‐MB‐231, compared with etoposide as the standard drug. Among the tested compounds, hydroxy‐ and/or methoxy‐phenyl derivatives ( 6a–c and 6k ) with IC50 values of 6.72–14.36 μm were more potent than etoposide against all cell lines. The acridine orange/ethidium bromide double staining and DNA fragmentation studies demonstrated that the cytotoxic effect of 3‐hydroxy‐4‐methoxyphenyl derivative 6c is associated with apoptosis in cancer cells.  相似文献   

3.
The synthesis of a series of certain polymethoxy chalcones and some derived pyrazole, pyrimidine, and thiazolopyrimidine ring structures is reported. Eleven compounds 4 , 6 , 9 , 11 , 14–17 , 22 , 24 , and 25 were selected by the National Cancer Institute (NCI) to be screened for their in‐vitro anticancer activity, whereas all the synthesized compounds were evaluated for their in‐vitro antimicrobial activity. Compounds 4 , 6 , and 11 were found to possess a significant broad spectrum antitumor potential against most of the tested subpanel tumor cell lines. The pyrazolines 4 and 6 displayed remarkable growth inhibitory activities (GI50 MG‐MID values of 2.10 and 1.38 µM, respectively), together with moderate cytostatic effects (TGI MG‐MID values of 47.9 and 42.7 µM, respectively). Meanwhile, the pyrimidin‐2‐one 11 showed a noticeable overall tumor growth inhibitory activity, together with high cytostatic and cytotoxic efficacies (GI50, TGI and LC50 MG‐MID values of 3.39, 17.4, and 61.7 µM, respectively). On the other hand, compounds 3 , 4 , 13 , 15 , 19 , 20 , and 23 were found to be the most active antimicrobial members in this investigation with a broad spectrum of activity. Compound 23 was four times superior to ampicillin against Pseudomonas aeruginosa. The best antifungal activity was demonstrated by compounds 4 , 5 , and 11 which possessed almost half the activity of clotrimazole against Candida albicans. Collectively, the obtained biological results suggest that compound 4 could be considered as a possible dual antimicrobial‐anticancer agent.  相似文献   

4.
A facile strategy was developed for the synthesis of biologically important 4,5-dihydropyrrolo[1,2-a]quinoxalines and pyrrolo[1,2-a]quinoxalin]-2-ones by treating 2-(1H-pyrrol-1-yl)anilines with imidazo[1,2-a]pyridine-3-carbaldehyde or isatin, using amidosulfonic acid (NH3SO3) as a solid catalyst in water at room temperature. The protocol has been extended to electrophile ninhydrin. The catalyst could be recycled for six times without the loss of activity. The compounds were evaluated for their antituberculosis, antibacterial, and anticancer activities. It is worth noting that compounds 3d and 3e demonstrated a minimum inhibitory concentration value of 6.25 µM against Mycobacterium tuberculosis H37Rv, whereas compounds 3d , 3g , 5d , 5e , and 5i showed a remarkable inhibition of A549, DU145, HeLa, HepG2, MCF-7, and B16-F10 cell lines, respectively. Staphylococcus aureus was inhibited by compounds 5b , 5e , 5d , 5g , and 5l at 32 µg/ml.  相似文献   

5.
A series of new 2‐anilinoquinolines 6a – o possessing the substantial N‐methylpicolinamide motif at C5 has been designed and synthesized as sorafenib analogs. The antiproliferative activities of the target compounds were preliminarily appraised against a panel of three human cancer cell lines (MCF‐7, SK‐BR3, and HCT116), and a selected array was further tested over a panel of approximately 60 cancer cell lines at NCI at 10 μM concentration. Interestingly, compounds 6c , 6d , 6j , 6k , and 6l showed promising selective anticancer activities (growth inhibition >80%) toward certain cancer cells at 10 μM testing dose. Compounds 6d and 6j were advanced to five‐dose testing mode to determine their GI50 values and compared with our previously reported ureidoquinoline B and sorafenib as reference compounds. The 4‐chloro‐3‐trifluoromethylaniline derivative 6j manifested superior potency than both compound B and sorafenib over eleven and eight cell lines, respectively. It showed GI50 values of 0.36, 0.66, 0.68, and 0.60 μM against the breast MDA‐MB‐468, renal A498, and melanoma SK‐MEL‐5 and UACC‐62 cell lines, respectively. Moreover, both 6d and 6j exerted low cytotoxic effects against HFF‐1 normal cell line. Furthermore, compounds 6d and 6j were tested against both B‐RafV600E and C‐Raf kinases and displayed modest inhibitory activities, which were justified by molecular docking study. Compound 6j could serve as a promising candidate for further development of potent anticancer chemotherapeutics.  相似文献   

6.
A new series of 1,2‐diaryl‐4‐substituted‐benzylidene‐5(4H)‐imidazolone derivatives 4a–l was synthesized. Their structures were confirmed by different spectroscopic techniques (IR, 1H NMR, DEPT‐Q NMR, and mass spectroscopy) and elemental analyses. Their cytotoxic activities in vitro were evaluated against breast, ovarian, and liver cancer cell lines and also normal human skin fibroblasts. Cyclooxygenase (COX)‐1, COX‐2 and lipoxygenase (LOX) inhibitory activities were measured. The synthesized compounds showed selectivity toward COX‐2 rather than COX‐1, and the IC50 values (0.25–1.7 µM) were lower than that of indomethacin (IC50 = 9.47 µM) and somewhat higher than that of celecoxib (IC50 = 0.071 µM). The selectivity index for COX‐2 of the oxazole derivative 4e (SI = 3.67) was nearly equal to that of celecoxib (SI = 3.66). For the LOX inhibitory activity, the new compounds showed IC50 values of 0.02–74.03 µM, while the IC50 of the reference zileuton was 0.83 µM. The most active compound 4c (4‐chlorobenzoxazole derivative) was found to have dual COX‐2/LOX activity. All the synthesized compounds were docked inside the active site of the COX‐2 and LOX enzymes. They linked to COX‐2 through the N atom of the azole scaffold, while C?O of the oxazolone moiety was responsible for the binding to amino acids inside the LOX active site.
  相似文献   

7.
Liu Y  Zhang S  Li Y  Wang J  Song Y  Gong P 《Archiv der Pharmazie》2012,345(4):287-293
A new series of 1,4‐disubstituted phthalazinylpiperazine derivatives 7a–f , 12a–f and 20a–f were designed and synthesized in order to develop potent and selective antitumor agents. The target compounds were screened for their cytotoxic activities against A549, HT‐29 and MDA‐MB‐231 cancer cell lines in vitro. Among them, compounds 7a–f exhibited excellent selectivity for MDA‐MB‐231 with IC50 values ranging from 0.013 µM to 0.079 µM. The most promising compound, 7e (IC50 = 2.19 µM, 2.19 µM, 0.013 µM), was 9.3, 10, and 4.9 × 103 times more active than vatalanib (IC50 = 20.27 µM, 21.96 µM, 63.90 µM), respectively.  相似文献   

8.
Xie L  Zhao Y  Zhai X  Li P  Liu C  Li Y  Gong P 《Archiv der Pharmazie》2011,344(10):631-638
Three series of novel artemisinin–guanidine hybrids 4a–4f , 8a–8h and 9a–9h have been facilely synthesized via four‐component reaction (aza‐Wittig reaction) and evaluated for their anti‐tumor activities against A549, HT‐29 and MDA‐MB‐231 cell lines in vitro. All of the tested compounds showed enhanced anti‐tumor activities with IC50 values ranging from 0.02 µM to 12.0 µM as compared to DHA (dihydroartemisinin). Among them, artemisinin derived dimers, compounds 9b (IC50 = 0.05 µM), 9d (IC50 = 0.06 µM) and 9f (IC50 = 0.02 µM) were found to be most active against HT29 cells.  相似文献   

9.
We herein disclose a series of novel diaryl urea derivatives possessing a 4H‐pyrido[1,2‐a]pyrimidin‐4‐one group as novel potent anticancer compounds. The structures were confirmed by IR, 1H‐NMR, and MS. All the compounds were screened for their antiprofilerative activity agaist the human breast cancer cell line (MDA‐MB‐231). The pharmacological results indicated that most of the compounds showed moderate activity. The best of this series is compound 4c (IC50 = 0.7 μmol/L), with a potency 3.6‐fold higher than Sorafenib (IC50 = 2.5 μmol/L), which was approved in 2005.  相似文献   

10.
A series of compounds bearing quinoline‐imidazole ( 8a–e , 9a–e , 10a–e , 11a–e , and 12a–e ) not reported previously were designed and synthesized. The target compounds were evaluated for antitumor activity against A549, PC‐3, HepG2, and MCF‐7 cells by the MTT method, with NVP‐BEZ235 being the positive control. Most compounds showed moderate activity and compound 12a showed the best activity against HepG2, A549, and PC‐3 cells, with half‐maximal inhibitory concentration (IC50) values of 2.42 ± 1.02 µM, 6.29 ± 0.99 µM, and 5.11 ± 1.00 µM, respectively, which was equal to NVP‐BEZ235 (0.54 ± 0.13 µM, 0.36 ± 0.06 µM, 0.20 ± 0.01 µM). Besides, the IC50 value of 12a against the cell line WI‐38 (human fetal lung fibroblasts) was 32.8 ± 1.23 µM, indicating that the target compounds were selective for cancer cells. So, 11a and 12a were evaluated against PI3Kα and mTOR to find out if the compounds acted through the PI3K‐Akt‐mTOR signal transduction pathway. The inhibition ratios to PI3Kα and mTOR were slightly lower than that of NVP‐BEZ235, suggesting there may be some other mechanisms of action. The structure–activity relationships and docking study of 11a and 12a revealed that the latter was superior. Moreover, the target compounds showed better in vitro anticancer activity when the C‐6 of the quinoline ring was replaced by a bromine atom.
  相似文献   

11.
Synthesis and biological evaluation of novel pyrazoles and pyrazolo[3,4‐d]pyrimidines are reported. Fourteen compounds were selected by the NCI and tested for their preliminary in‐vitro anticancer activity, whereas all the synthesized compounds were evaluated for their in‐vitro antimicrobial activity. Compound 12a was proven to possess the highest anticancer activity with a broad spectrum profile. It showed particular effectiveness towards leukemia HL‐60 (TB), K‐562, non‐small cell lung cancer NCI‐H23, and colon cancer HT 29, KM 12 cell lines (GI50 = 6.59, 4.44, 1.37, 3.33, and 9.63 μM, respectively). Out of the synthesized compounds, thirteen derivatives were found to display pronounced antimicrobial activity especially against P. aeruginosa. Compounds 2c , 5b , 10 , 11b , 17b , 18b , and 19 were proven to be the most active with a broad spectrum of activity. Compound 19 was found to be equipotent to ampicillin against B. subtilis, whereas compounds 11b and 19 were four times superior to ampicillin against P. aeruginosa, while compounds 5b and 18b were equipotent to ampicillin against the same organism. Moreover, compounds 2c , 10 , and 11b were nearly equipotent to ampicillin against E. coli. On the other hand, compounds 2c , 5b , 10 , 11a , 17b , and 18b exerted nearly half the activity of clotrimazole against C. albicans.  相似文献   

12.
A novel series of imidazo[4,5‐c]pyridine‐based CDK2 inhibitors were designed from the structure of CYC202 via scaffold hopping strategy. These compounds were synthesized and biologically evaluated for their CDK2 inhibitory and in vitro anti‐proliferation potential against cancer cell lines. Several compounds exhibited potent CDK2 inhibition with IC50 values of less than 1 µM. The most potent compound 5b showed excellent CDK2 inhibitory (IC50 = 21 nM) and in vitro anti‐proliferation activity against three different cell lines (HL60, A549, and HCT116). The molecular docking and dynamic studies portrayed the potential binding mechanism between 5b and CDK2, and several key interactions between them were observed, which would be the reason for its potent CDK2 inhibitory and anti‐proliferation activities. Therefore, the pyridin‐3‐ylmethyl moiety would serve as an excellent pharmacophore for the development of novel CDK2 inhibitors for targeted anti‐cancer therapy.
  相似文献   

13.
A novel series of 1-benzylquinazoline-2,4(1H,3H)-dione derivatives, 6a , b to 11a – e , was designed, synthesized, and evaluated for their anticancer activity against HepG2, HCT-116, and MCF-7 cells. Compounds 11b , 11e , and 11c were found to be the most potent derivatives of all tested compounds against the HepG2, HCT-116, and MCF-7 cancer cell lines, with GI50 = 9.16 ± 0.8, 5.69 ± 0.4, 5.27 ± 0.2 µM, 9.32 ± 0.9, 6.37 ± 0.7, 5.67 ± 0.5 µM, and 9.39 ± 0.5, 6.87 ± 0.7, 5.80 ± 0.4 µM, respectively. These compounds exhibited nearly the same activity as sorafenib against HepG2 and HCT-116 cells and a higher activity against MCF-7 cells (GI50 = 9.18 ± 0.6, 5.47 ± 0.3, and 7.26 ± 0.3 µM, respectively). Also, these compounds displayed a lower activity than doxorubicin against HepG2 cells and a higher activity against HCT-116 and MCF-7 cells (GI50 = 7.94 ± 0.6, 8.07 ± 0.8, and 6.75 ± 0.4 µM, respectively). The most active antiproliferative derivatives, 6a , b , 8 , 9 , and 11a – e , were selected to evaluate their enzymatic inhibitory activity against VEGFR-2. Compounds 11b , 11e , and 11c potently inhibited VEGFR-2 at IC50 values of 0.12 ± 0.02, 0.12 ± 0.02, and 0.13 ± 0.02 µM, respectively, which are nearly equipotent as sorafenib IC50 value (0.10 ± 0.02 µM). Furthermore, molecular docking studies were performed for all synthesized compounds to assess their binding pattern and affinity toward the VEGFR-2 active site.  相似文献   

14.
Etodolac hydrazide and a novel series of etodolac hydrazide‐hydrazones 3 – 15 and etodolac 4‐thiazolidinones 16 – 26 were synthesized in this study. The structures of the new compounds were determined by spectral (FT‐IR, 1H NMR, 13C NMR, HREI‐MS) methods. Some selected compounds were determined at one dose toward the full panel of 60 human cancer cell lines by the National Cancer Institute (NCI, Bethesda, USA). 2‐(1,8‐Diethyl‐1,3,4,9‐tetrahydropyrano[3,4‐b]indole‐1‐yl)acetic acid[(4‐chlorophenyl)methylene]hydrazide 9 demonstrated the most marked effect on the prostate cancer cell line PC‐3, with 58.24% growth inhibition at 10?5 M (10 µM). Using the MTT colorimetric method, compound 9 was evaluated in vitro against the prostate cell line PC‐3 and the rat fibroblast cell line L‐929, for cell viability and growth inhibition at different doses. Compound 9 exhibited anticancer activity with an IC50 value of 54 µM (22.842 µg/mL) against the PC‐3 cells and did not display any cytotoxicity toward the L‐929 rat fibroblasts, compared to etodolac. In addition, this compound was evaluated for caspase‐3 and Bcl‐2 activation in the apoptosis pathway, which plays a key role in the treatment of cancer.  相似文献   

15.
Safe and effective chemotherapeutic agents for the treatment of pancreatic cancer remain elusive. We found that chalcone epoxides (1,3‐diaryl‐2,3‐epoxypropanones) inhibited growth in two pancreatic cancer cell lines, BxPC‐3 and MIA PaCa‐2. Three compounds were active, with GI50 values of 5.6 to 15.8 µM. Compound 4a , 1,3‐bis‐(3,4,5‐trimethoxyphenyl)‐2,3‐epoxypropanone, had an average GI50 of 14.1 µM in the NCI 60‐cell‐line panel. To investigate the mode of action, cell cycle analyses of BxPC‐3 cells were carried out. Treatment of cells with 50 µM 4a resulted in dramatic accumulation at G2/M (61% after 12 h for 4a vs. 15% for untreated cells). The cells rapidly entered apoptosis. After 12 h, 26% of cells treated with 50 µM 4a had entered apoptosis vs. 4% for cells treated with 100 µM etoposide and 2% for untreated cells. Compound 4a interfered with paclitaxel enhancement of tubulin polymerization, suggesting microtubules as the site of action. Reaction of thiol nucleophiles with 4a under basic conditions resulted in epoxide ring‐opening and retroaldol fragmentation, yielding alkylated thiol. MALDI mass spectrometry showed that retroaldol reaction occurred upon treatment of β‐tubulin with 4a . The site of alkylation was identified as Cys354. Chalcone epoxides warrant further study as potential agents for treatment of cancer.  相似文献   

16.
New quinolines substituted with various heterocycles and chalcone moieties were synthesized and evaluated as antitumor agents. All the synthesized compounds were in vitro screened against 60 human cancer cell lines. Compound 13 showed the highest cytotoxicity toward 58 cell lines, exhibiting distinct growth inhibition values (GI50) against the majority of them, including SR, HL‐60 (TB) strains (leukemia), and MDA‐MB‐435 strains (melanoma), with GI50 values of 0.232, 0.260, and 0.300 µM, respectively. It exhibited great selectivity toward cancer cell lines, with less toxic effect against normal cells represented by skin fibroblast (BJ) and breast epithelial cell lines (MCF‐10F). The enzyme inhibitory activity of compound 13 was evaluated against topoisomerase 1 (Topo 1), epidermal growth factor receptor and vascular endothelial growth factor receptor 2, where it displayed worthy Topo 1 inhibition activity with an IC50 value of 0.278 µM compared with camptothecin as a reference drug (IC50 0.224 µM). Docking studies were performed to investigate the recognition profile of compound 13 with the Topo 1 enzyme binding site.  相似文献   

17.
A series of 27 cinchona alkaloid derivatives ( 1f–w , 2a–e and 3a–d ) were investigated for their cytotoxic and trypanocidal activities using seven different cancer cell lines (KB, HeLa, MCF‐7, A‐549, Hep‐G2, U‐87 and HL‐60), two normal cell lines (HDF and CHO) and bloodstream forms of Trypanosoma brucei brucei, respectively. Four compounds ( 1u , 1w , 2e and 3d ) were identified with promising cytotoxic activity with 50% growth inhibition (GI50) values below 10 μM. Two ( 2e and 3d ) of the four compounds also exhibited potent anti‐trypanosomal activity with GI50 values of 0.3–0.4 μM. All four active compounds represented derivatives modified at their C‐9 hydroxy group. With respect to anti‐proliferative activity and selectivity, 2e (epiN‐quinidyl‐N′‐bis(3,5‐trifluoromethyl)phenylthiourea) proved to be the most promising derivative for both cancer cells and bloodstream forms of T. b. brucei. The cytotoxic activity of compounds 1u , 1w , 2e and 3d was attributed to their ability to induce apoptosis in cancer cells. The results demonstrate the potential of cinchona alkaloid derivatives as novel anti‐cancer and anti‐trypanosome drug candidates.  相似文献   

18.
New 2-mercapto-quinazolin-4-one analogs were synthesized and tested for their in vitro anticancer activity, dihydrofolate reductase (DHFR) inhibition, and epidermal growth factor tyrosine kinase (EGFR-TK) inhibition activities. Compound 24 , which is characterized by a 2-benzyl-thio function, showed broad-spectrum anticancer activity with high safety profile and selectivity index. The concentrations of 24 causing 50% growth inhibition (GI50) and total cell growth inhibition (TGI) and its lethal concentration 50 (LC50) were 15.1, 52.5, and 91.2 µM, respectively, using 5-fluorouracil as a positive control. Also, it showed EGFR-TK inhibitory activity with IC50 = 13.40 nM compared to gefitinib (IC50 = 18.14 nM) and DHFR inhibitory potency with 0.30 μM compared to methotrexate (MTX; IC50 = 0.08 μM). In addition, compound 24 caused cell cycle arrest and apoptosis on COLO-205 colon cancer cells. Compounds 37, 21 , and 54 showed remarkable DHFR inhibitory activity with IC50 values of 0.03, 0.08, and 0.08 μM, respectively. The inhibitory properties of these compounds are due to an electron-withdrawing group on the quinazolinone ring, except for compound 54 . In a molecular modeling study, compound 24 showed the same binding mode as gefitinib as it interacted with the amino acid Lys745 via π–π interaction. Compound 37 showed a similar binding mode as MTX through the binding interaction with Lys68, Asn64 via hydrogen bond acceptor, and Phe31 via arene–arene interaction. The obtained model and substitution pattern could be used for further development.  相似文献   

19.
In continuance of our search for new anticancer agents, we report herein the design, synthesis, and anticancer evaluation of oxadiazole analogues. Two series (4a-h and 4i-q) of new oxadiazole analogues were designed based on heterocyclic (1,3,4-oxadiazole)-linked aryl core of IMC-038525 (tubulin polymerization inhibitor), NSC 776715, and NSC 776715 and synthesized. All the compounds were fully characterized by infrared, nuclear magnetic resonance spectroscopy, and mass spectral data and the purity of compounds was checked by elemental analysis (C, H, and N analysis). Further seven compounds were evaluated for anticancer activity on nine different panels of 60 cell lines (60 NCI cancer cell lines) according to the National Cancer Institute screening protocol and percent growth and percent growth inhibition was calculated at 10?µM drug concentration. Ten compounds were evaluated for anticancer activity on two cancer cell lines (HeLa and MDA-MB-435) as per the standard protocol reported at four different drug concentrations (10?7, 10?6, 10?5, and 10?4?µM) and GI50, LC50, and TGI dose-related parameters were calculated. The compound 4j showed maximum anticancer activity at 10?µM, and was found to have higher sensitivity against MOLT-4, IGROV1, HCT-116, and K-562 with percent growth inhibitions of 50.38, 48.45, 46.26, and 46.26 respectively. The compound 4j showed superior anticancer activity than imatinib on 41 human cancer cell lines. The compound 4p showed anticancer activity with GI50 of 36.7 and 46.5?µM against HeLa and MDA-MB-435 cell lines, respectively.  相似文献   

20.
Twenty‐seven 3, 7‐disubstituted coumarin derivatives were designed, synthesized, and evaluated in vitro as anticancer agents. Most of the compounds showed moderate‐to‐potent antiproliferative activity against K562 cells. Compounds 7b and 7d were chosen to evaluate the concentration of 50% growth inhibition (GI50) against SN12C, OVCAR, BxPC‐3, KATO‐III, T24, SNU‐1, WiDr, HeLa, K562, and AGS cell lines. The most potent compound 7d was selected for further cell cycle arrest assay in the AGS cell line. The in vitro data indicated that methylation of benzimidazole moiety at the 3‐position of coumarin exhibited significant enhancement of anticancer activity. This study should provide important information for further modification and optimization of coumarin derivatives as anticancer agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号