首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteoglycan‐4 (Prg4) protects synovial joints from arthropathic changes by mechanisms that are incompletely understood. Parathyroid hormone (PTH), known for its anabolic actions in bone, increases Prg4 expression and has been reported to inhibit articular cartilage degeneration in arthropathic joints. To investigate the effect of Prg4 and PTH on articular cartilage, 16‐week‐old Prg4 mutant and wild‐type mice were treated with intermittent PTH (1–34) or vehicle control daily for six weeks. Analyses included histology of the knee joint, micro‐CT of the distal femur, and serum biochemical analysis of type II collagen fragments (CTX‐II). Compared to wild‐type littermates, Prg4 mutant mice had an acellular layer of material lining the surfaces of the articular cartilage and menisci, increased articular cartilage degradation, increased serum CTX‐II concentrations, decreased articular chondrocyte apoptosis, increased synovium SDF‐1 expression, and irregularly contoured subchondral bone. PTH‐treated Prg4 mutant mice developed a secondary deposit overlaying the acellular layer of material lining the joint surfaces, but PTH‐treatment did not alter signs of articular cartilage degeneration in Prg4 mutant mice. The increased joint SDF‐1 levels and irregular subchondral bone found in Prg4 mutant mice introduce novel candidate mechanisms by which Prg4 protects articular cartilage. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 183–190, 2013  相似文献   

2.
Osteoarthritis (OA) is a major degenerative joint disease characterized by progressive loss of articular cartilage, synovitis, subchondral bone changes, and osteophyte formation. Currently there is no treatment for OA except temporary pain relief and end‐stage joint replacement surgery. We performed a pilot study to determine the effect of kartogenin (KGN, a small molecule) on both cartilage and subchondral bone in a rat model of OA using multimodal imaging techniques. OA was induced in rats (OA and KGN treatment group) by anterior cruciate ligament transection (ACLT) surgery in the right knee joint. Sham surgery was performed on the right knee joint of control group rats. KGN group rats received weekly intra‐articular injection of 125 μM KGN 1 week after surgery until week 12. All rats underwent in vivo magnetic resonance imaging (MRI) at 3, 6, and 12 weeks after surgery. Quantitative MR relaxation measures (T and T2) were determined to evaluate changes in articular cartilage. Cartilage and bone turnover markers (COMP and CTX‐I) were determined at baseline, 3, 6, and 12 weeks. Animals were sacrificed at week 12 and the knee joints were removed for micro‐computed tomography (micro‐CT) and histology. KGN treatment significantly lowered the T and T2 relaxation times indicating decreased cartilage degradation. KGN treatment significantly decreased COMP and CTX‐I levels indicating decreased cartilage and bone turnover rate. KGN treatment also prevented subchondral bone changes in the ACLT rat model of OA. Thus, kartogenin is a potential drug to prevent joint deterioration in post‐traumatic OA. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1780–1789, 2016.  相似文献   

3.
Proteoglycan 4 (Prg4), known for its lubricating and protective actions in joints, is a strong candidate regulator of skeletal homeostasis and parathyroid hormone (PTH) anabolism. Prg4 is a PTH‐responsive gene in bone and liver. Prg4 null mutant mice were used to investigate the impact of proteoglycan 4 on skeletal development, remodeling, and PTH anabolic actions. Young Prg4 mutant and wild‐type mice were administered intermittent PTH(1–34) or vehicle daily from 4 to 21 days. Young Prg4 mutant mice had decreased growth plate hypertrophic zones, trabecular bone, and serum bone formation markers versus wild‐type mice, but responded with a similar anabolic response to PTH. Adult Prg4 mutant and wild‐type mice were administered intermittent PTH(1–34) or vehicle daily from 16 to 22 weeks. Adult Prg4 mutant mice had decreased trabecular and cortical bone, and blunted PTH‐mediated increases in bone mass. Joint range of motion and animal mobility were lower in adult Prg4 mutant versus wild‐type mice. Adult Prg4 mutant mice had decreased marrow and liver fibroblast growth factor 2 (FGF‐2) mRNA and reduced serum FGF‐2, which were normalized by PTH. A single dose of PTH decreased the PTH/PTHrP receptor (PPR), and increased Prg4 and FGF‐2 to a similar extent in liver and bone. Proteoglycan 4 supports endochondral bone formation and the attainment of peak trabecular bone mass, and appears to support skeletal homeostasis indirectly by protecting joint function. Bone‐ and liver‐derived FGF‐2 likely regulate proteoglycan 4 actions supporting trabeculae formation. Blunted PTH anabolic responses in adult Prg4 mutant mice are associated with altered biomechanical impact secondary to joint failure. © 2012 American Society for Bone and Mineral Research  相似文献   

4.
Elevated chemokine receptor Ccr7 is observed in knee osteoarthritis (OA) and associated with severity of symptoms. In this study, we confirmed that CCR7 protein expression is elevated in synovial tissue from OA patients by immunohistochemical staining. We then investigated whether Ccr7 deficiency impacted structural and functional joint degeneration utilizing a murine model of OA. OA‐like disease was induced in male C57BL/6 and Ccr7‐deficient (Ccr7?/?) mice by destabilization of the medial meniscus (DMM). Functional deficits were measured by computer integrated monitoring of spontaneous activity every 4 weeks after DMM surgery up 16 weeks. Joint degeneration was evaluated at 6 and 19 weeks post‐surgery by histopathology, and subchondral bone changes analyzed by microCT. Results showed reduction in locomotor activities in DMM‐operated C57BL/6 mice by 8 weeks, while activity decreases in Ccr7?/? mice were delayed until 16 weeks. Histopathologic evaluation showed minimal protection from early cartilage degeneration (p = 0.06) and osteophytosis (p = 0.04) in Ccr7?/? mice 6 weeks post‐DMM compared to C57BL/6 controls, but not at 19 weeks. However, subchondral bone mineral density (p = 0.03) and histologic sclerosis (p = 0.02) increased in response to surgery in C57BL/6 mice at 6 weeks, while Ccr7?/? mice were protected from these changes. Our results are the first to demonstrate a role for Ccr7 in early development of functional deficits and subchondral bone changes in the DMM model. Understanding the mechanism of Ccr7 receptor signaling in the initiation of joint pathology and disability will inform the development of innovative therapies to slow symptomatic OA development after injury. Published 2017. This article is a U.S. Government work and is in the public domain in the USA. J Orthop Res 36:864–875, 2018.
  相似文献   

5.
Pirfenidone is an anti‐inflammatory and anti‐fibrotic drug that has shown efficacy in lung and kidney fibrosis. Because inflammation and fibrosis have been linked to the progression of osteoarthritis, we investigated the effects of oral Pirfenidone in a mouse model of cartilage injury, which results in chronic inflammation and joint‐wide fibrosis in mice that lack hyaluronan synthase 1 (Has1?/?) in comparison to wild‐type. Femoral cartilage was surgically injured in wild‐type and Has1?/? mice, and Pirfenidone was administered in food starting after 3 days. At 4 weeks, Pirfenidone reduced the appearance, on micro‐computed tomography, of pitting in subchondral bone at, and cortical bone surrounding, the site of cartilage injury. This corresponded with a reduction in fibrotic tissue deposits as observed with gross joint surface photography. Pirfenidone resulted in significant recovery of trabecular bone parameters affected by joint injury in Has1?/? mice, although the effect in wild‐type was less pronounced. Pirfenidone also increased Safranin‐O staining of growth plate cartilage after cartilage injury and sham operation in both genotypes. Taken together with the expression of selected extracellular matrix, inflammation, and fibrosis genes, these results indicate that Pirfenidone may confer chondrogenic and bone‐protective effects, although the well‐known anti‐fibrotic effects of Pirfenidone may occur earlier in the wound‐healing response than the time point examined in this study. Further investigations to identify the specific cell populations in the joint and signaling pathways that are responsive to Pirfenidone are warranted, as Pirfenidone and other anti‐fibrotic drugs may encourage tissue repair and prevent progression of post‐traumatic osteoarthritis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:365–376, 2018.
  相似文献   

6.
Lubricin encoded by the proteoglycan 4 (Prg4) gene is produced from superficial zone (SFZ) cells of articular cartilage and synoviocytes, which is indispensable for lubrication of joint surfaces. Loss-of-function of human and mouse Prg4 results in early-onset arthropathy accompanied by lost SFZ cells and hyperplastic synovium. Here, we focused on increases in the thickness of articular cartilage in Prg4-knockout joints and analyzed the underlying mechanisms. In the late stage of articular cartilage development, the articular cartilage was thickened at 2 to 4 weeks and the SFZ disappeared at 8 weeks in Prg4-knockout mice. Similar changes were observed in cultured Prg4-knockout femoral heads. Cell tracking showed that Prg4-knockout SFZ cells at 1 week of age expanded to deep layers after 1 week. In in vitro experiments, overexpression of Prg4 lacking a mucin-like domain suppressed differentiation of ATDC5 cells markedly, whereas pellets of Prg4-knockout SFZ cells showed enhanced differentiation. RNA sequencing identified matrix metalloproteinase 9 (Mmp9) as the top upregulated gene by Prg4 knockout. Mmp9 expressed in the SFZ was further induced in Prg4-knockout mice. The increased expression of Mmp9 by Prg4 knockout was canceled by IκB kinase (IKK) inhibitor treatment. Phosphorylation of Smad2 was also enhanced in Prg4-knockout cell pellets, which was canceled by the IKK inhibitor. Expression of Mmp9 and phosphorylated Smad2 during articular cartilage development was enhanced in Prg4-knockout joints. Lubricin contributes to homeostasis of articular cartilage by suppressing differentiation of SFZ cells, and the nuclear factor-kappa B-Mmp9-TGF-β pathway is probably responsible for the downstream action of lubricin. © 2020 American Society for Bone and Mineral Research (ASBMR).  相似文献   

7.
The objective of this study was to identify and characterize cartilaginous deposits aggregates in the subchondral bone in areas of the human osteoarthritic knee with exposed bone. A specific aim was to determine the distribution of the joint lubrication molecule, lubricin/superficial zone protein [referred to by its gene, proteoglycan4 (PRG4)], in these cartilaginous deposits and in osteoarthritic cartilage. This work was carried out in the context of assessing the potential contribution of these chondrocyte aggregates for joint resurfacing in certain cartilage repair procedures. The discarded bone cuts of femoral condyles and tibial plateaus were collected from 11 patients with advanced osteoarthritis (OA) of the knee during total knee arthroplasty; 9 women and 2 men with a mean age of 68 years. Sections of paraffin-embedded tissue were stained with Safranin-O, and with antibodies to type II collagen, alpha-smooth muscle actin (SMA), and PRG4. Chondrocyte aggregates were found in the subchondral bone of regions of exposed bone in sections from five individuals. The average diameter of cartilaginous aggregates was 152 microm, and the average depth of the aggregates below the surface was about 475 microm. Most aggregates were fibrocartilaginous and stained positive for type II collagen. Of interest was the finding that the cartilaginous deposits and osteoarthritic cartilage contained PRG4. Only a small percentage of chondrocytes stained positive for SMA. Cartilaginous deposits containing chondrocyte aggregates exist in subchondral bone in regions of exposed bone in some patients with advanced OA of the knee. These cells may be able to contribute to the resurfacing of the joint in certain cartilage repair procedures.  相似文献   

8.
We studied the effects of intra‐articularly injected bone marrow derived mesenchymal stem cells (MSCs), as well as freshly isolated bone marrow mononuclear cells (BMMNCs), on pain, cartilage damage, bone changes and inflammation in an in‐vivo rat osteoarthritis (OA) model. OA was induced unilaterally by injection of mono‐iodoacetate (MIA) and allowed to develop for 3 weeks. Then, animals were treated by intra‐articular injection with MSCs, BMMNCs, or saline as a control. Four weeks later, pain was assessed with an incapitance tester, subchondral bone alterations were measured with µCT and cartilage quality and joint inflammation were assessed by histological analysis. Animals treated with MSCs distributed significantly more weight to the affected limb after treatment, which was not observed in the other groups. No statistically significant differences between treatment groups regarding cartilage damage, subchondral bone alterations and synovial inflammation were observed. Additional cell tracking experiments indicated adequate intra‐articular cell injection and cell survival up to 2 weeks. In our OA model, injected MSCs were able to reduce MIA induced pain, as measured by an increased weight distribution to the affected limb. No statistically significant effects of the cellular therapies on structural damage and synovial inflammation were found. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:1167–1174, 2014.  相似文献   

9.
Osteoarthritis (OA) and osteoporosis (OP) are two skeletal disorders associated with joint structures. Occasionally, OA and OP occur in the same patient. However, the effect of OP changes on OA progression in patients with osteoporotic OA (OP-OA) has not been reported, especially the potential association between subchondral bone and articular cartilage. Thus we investigated the alterations in the microstructure, biomechanical properties, and remodeling of subchondral bone as well as their association with cartilage damage in the hip joint of patients with OP-OA. Thirty-nine femoral head specimens were obtained from patients who underwent total hip arthroplasty (OA group, n = 19; OP-OA group, n = 20), and healthy specimens from cadaver donors were used (control group, n = 10). The microstructure and biomechanical properties of subchondral bone were evaluated by micro–computed tomography and micro–finite-element analysis. Histology, histomorphometric measurements, and immunohistochemistry were used to assess subchondral bone remodeling and cartilage damage. Linear regression analysis was performed to elucidate the relationship between subchondral bone and articular cartilage. In the subchondral bone of the OP-OA group, compared with that of the OA group, aberrant bone remodeling leads to an inferior microstructure and worsening biomechanical properties, potentially affecting transmission of loading stress from the cartilage to the subchondral bone, and then resulting in accelerated OA progression in patients with OP-OA. The results indicate that changes in subchondral bone could affect OA development and the improvement in subchondral bone with bone-metabolism agents may help mitigate OA progression when OP and OA coexist in the same patients. © 2019 American Society for Bone and Mineral Research.  相似文献   

10.
Osteoarthritis (OA) is a degenerative joint disease, and the mechanism of its pathogenesis is poorly understood. Recent human genetic association studies showed that mutations in the Frzb gene predispose patients to OA, suggesting that the Wnt/β‐catenin signaling may be the key pathway to the development of OA. However, direct genetic evidence for β‐catenin in this disease has not been reported. Because tissue‐specific activation of the β‐catenin gene (targeted by Col2a1‐Cre) is embryonic lethal, we specifically activated the β‐catenin gene in articular chondrocytes in adult mice by generating β‐catenin conditional activation (cAct) mice through breeding of β‐cateninfx(Ex3)/fx(Ex3) mice with Col2a1‐CreERT2 transgenic mice. Deletion of exon 3 of the β‐catenin gene results in the production of a stabilized fusion β‐catenin protein that is resistant to phosphorylation by GSK‐3β. In this study, tamoxifen was administered to the 3‐ and 6‐mo‐old Col2a1‐CreERT2;β‐cateninfx(Ex3)/wt mice, and tissues were harvested for histologic analysis 2 mo after tamoxifen induction. Overexpression of β‐catenin protein was detected by immunostaining in articular cartilage tissues of β‐catenin cAct mice. In 5‐mo‐old β‐catenin cAct mice, reduction of Safranin O and Alcian blue staining in articular cartilage tissue and reduced articular cartilage area were observed. In 8‐mo‐old β‐catenin cAct mice, cell cloning, surface fibrillation, vertical clefting, and chondrophyte/osteophyte formation were observed. Complete loss of articular cartilage layers and the formation of new woven bone in the subchondral bone area were also found in β‐catenin cAct mice. Expression of chondrocyte marker genes, such as aggrecan, Mmp‐9, Mmp‐13, Alp, Oc, and colX, was significantly increased (3‐ to 6‐fold) in articular chondrocytes derived from β‐catenin cAct mice. Bmp2 but not Bmp4 expression was also significantly upregulated (6‐fold increase) in these cells. In addition, we also observed overexpression of β‐catenin protein in the knee joint samples from patients with OA. These findings indicate that activation of β‐catenin signaling in articular chondrocytes in adult mice leads to the premature chondrocyte differentiation and the development of an OA‐like phenotype. This study provides direct and definitive evidence about the role of β‐catenin in the development of OA.  相似文献   

11.
The role of the inflammatory response in articular cartilage degeneration and/or repair is often debated. Chemokine networks play a critical role in directing the recruitment of immune cells to sites of injury and have been shown to regulate cell behavior. In this study, we investigated the role of the CCL2/CCR2 signaling axis in cartilage regeneration and degeneration. CCL2?/?, CCR2?/?, CCL2?/?CCR2?/?, and control (C57) mice were subjected to full‐thickness cartilage defect (FTCD) injuries (n = 9/group) within the femoral groove. Cartilage regeneration at 4 and 12 weeks post‐FTCD was assessed using a 14‐point histological scoring scale. Mesenchymal stem cells (MSCs) (Sca‐1+, CD140a+), macrophages (M1:CD38+, M2:CD206+, and M0:F4/80+) and proliferating cells (Ki67+) were quantified within joints using immunofluorescence. The multi‐lineage differentiation capacity of Sca1+ MSCs was determined for all mouse strains. ACL transection (ACL‐x) was employed to determine if CCL2?/?CCR2?/? mice were protected against osteoarthritis (OA) (n = 6/group). Absence of CCR2, but not CCL2 nor both (CCL2 and CCR2), enhanced spontaneous articular cartilage regeneration by 4 weeks post‐FTCD. Furthermore, increased chondrogenesis was observed in MSCs derived from CCR2?/? mice. CCL2 deficiency promoted MSC homing to the adjacent synovium and FTCD at both 4 and 12 weeks post‐injury; with no MSCs present at the surface of the FTCD in the remaining strains. Lower OA scores were observed in CCL2?/?CCR2?/? mice at 12 weeks post‐ACL‐x compared with C57 mice. Our findings demonstrate an inhibitory role for CCR2 in cartilage regeneration after injury, while CCL2 is required for regeneration, acting through a CCR2 independent mechanism. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2561–2574, 2019  相似文献   

12.
Destruction of articular cartilage and subchon-dral bone loss in the affected joints of rat adjuvant arthritis have never been quantified histologically. This study aimed to evaluate the effect of incadronate disodium on joint destruction and periarticular bone loss, using histomorphometric measurements. Seven-week-old female Lewis rats were injected with 0.1 mg of heat-killed Mycobacterium butyricum into the tail base. Immediately after sensitization, vehicle, or incadronate at 10 or 100 µg/kg per day, was administered subcutaneously, three times per week. Hind-paw volume was measured weekly and the animals were killed at 2, 4, 6, and 10 weeks after sensitization. After taking X-rays, decalcified sagittal sections of the ankle joint were prepared and stained with toluidine blue and tartarate-resistant acid phosphatase. Articular cartilage destruction and subchondral bone loss were evaluated histomorphometrically. At 2 weeks after sensitization, no radiographic or histologic changes were observed. However, at 4 weeks, severe articular cartilage destruction and subchondral bone loss were found in the arthritic control group, while these changes were inhibited dose-dependently by incadronate treatment. At 6 and 10 weeks, both the destructive changes and the bone loss had further progressed, and they were not inhibited by incadronate treatment. Incadronate dose-dependently inhibited articular cartilage destruction and subchondral bone loss at 4 weeks after sensitization in this adjuvant arthritis model. However, the suppressive effects of incadronate did not continue until 6 and 10 weeks.  相似文献   

13.

Objectives

(1) assess the molecular weight dependence of hyaluronan’s (HA) cartilage boundary lubricating ability, alone and in combination with proteoglycan 4 (PRG4), at physiological concentrations; (2) determine if HA and PRG4 interact in solution via electrophoretic mobility shift assay (EMSA).

Methods

The cartilage boundary lubricating ability of a broad range of MW HA (20 kDa, 132 kDa, 780 kDa, 1.5 MDa, and 5 MDa) at 3.33 mg/ml, both alone and in combination with PRG4 at 450 μg/ml, was assessed using a previously described cartilage-on-cartilage friction test. Static, μstatic, Neq, and kinetic, <μkinetic, Neq>, were calculated. An EMSA was conducted with PRG4 and monodisperse 150 kDa and 1,000 kDa HA.

Results

Friction coefficients were reduced by HA, in a MW-dependent manner. Values of <μkinetic, Neq> in 20 kDa HA, 0.098 (0.089, 0.108), were significantly greater compared to both 780 kDa, 0.080 (0.072, 0.088), and 5 MDa, 0.079 (0.070, 0.089). Linear regression showed a significant correlation between both μstatic, Neq and <μkinetic, Neq>, and log HA MW. Friction coefficients were also reduced by PRG4, and with subsequent addition of HA; however the synergistic effect was not dependent on HA MW. Values of <μkinetic, Neq> in PRG4, 0.080 (0.047, 0.113), were significantly greater than values of PRG4 + various MW HA (similar in value, averaging 0.040 (0.033, 0.047)). EMSA indicated that migration of 150 kDa and 1,000 kDa HA was retarded when combined with PRG4 at high PRG4:HA ratios.

Conclusions

These results suggest alterations in HA MW could significantly affect synovial fluid’s cartilage boundary lubricating ability, yet this diminishment in function could be circumvented by physiological levels of PRG4 forming a complex, potentially in solution, with HA.  相似文献   

14.
The boundary lubrication function of articular cartilage is mediated in part by proteoglycan 4 (PRG4) molecules, found both in synovial fluid (SF) and bound to the articular cartilage surface. Currently the mechanism by which PRG4 binds to the articular surface is not well understood. The objectives of this study were to determine (1) the effect of bathing fluid contents on PRG4 concentration at the articular surface ([PRG4](cart)), and (2) whether native PRG4 can be removed from the surface and subsequently repleted with PRG4 from synovial fluid. In one experiment, cylindrical cartilage disks were stored in solutions of various PRG4 concentrations, either in phosphate-buffered saline (PBS) or SF as the carrier fluid. In a separate experiment, cartilage disks were stored in solutions expected to remove native PRG4 from the articular surface and allow subsequent repletion with PRG4 from SF. [PRG4](cart) was independent of PRG4 concentration of the bathing fluid, and was similar for both carrier fluids. PRG4 was removed from cartilage by treatment with hyaluronidase, reduction/alkylation, and sodium dodecyl sulphate, and was repleted fully by subsequent bathing in SF. These results suggest that the articular surface is normally saturated with tightly bound PRG4, but this PRG4 can exchange with the PRG4 in SF under certain conditions. This finding suggests that all tissues surrounding the joint cavity that secrete PRG4 into the SF may help to maintain lubrication function at the articular surface.  相似文献   

15.
Continuous passive motion (CPM) is currently a part of patient rehabilitation regimens after a variety of orthopedic surgical procedures. While CPM can enhance the joint healing process, the direct effects of CPM on cartilage metabolism remain unknown. Recent in vivo and in vitro observations suggest that mechanical stimuli can regulate articular cartilage metabolism of proteoglycan 4 (PRG4), a putative lubricating and chondroprotective molecule found in synovial fluid and at the articular cartilage surface. OBJECTIVES: (1) Determine the topographical variation in intrinsic cartilage PRG4 secretion. (2) Apply a CPM device to whole joints in bioreactors and assess effects of CPM on PRG4 biosynthesis. METHODS: A bioreactor was developed to apply CPM to bovine stifle joints in vitro. Effects of 24h of CPM on PRG4 biosynthesis were determined. RESULTS: PRG4 secretion rate varied markedly over the joint surface. Rehabilitative joint motion applied in the form of CPM regulated PRG4 biosynthesis, in a manner dependent on the duty cycle of cartilage sliding against opposing tissues. Specifically, in certain regions of the femoral condyle that were continuously or intermittently sliding against meniscus and tibial cartilage during CPM, chondrocyte PRG4 synthesis was higher with CPM than without. CONCLUSIONS: Rehabilitative joint motion, applied in the form of CPM, stimulates chondrocyte PRG4 metabolism. The stimulation of PRG4 synthesis is one mechanism by which CPM may benefit cartilage and joint health in post-operative rehabilitation.  相似文献   

16.
Subchondral bone is a candidate for treatment of osteoarthritis (OA). We investigated the effects of intra‐articular injection of hyaluronan (IAI‐HA) on subchondral bone in rabbit OA model. OA was induced by anterior cruciate ligament transection, with some rabbits receiving IAI‐HA. OA was graded morphologically, and expression of mRNA was assessed by real‐time RT‐PCR. Tissue sections were stained with hyaluronan‐binding protein, and penetration of fluorescent hyaluronan was assessed. The in vitro inhibitory effect of hyaluronan on MMP‐13 was analyzed in human osteoarthritic subchondral bone osteoblasts (OA Ob) by real‐time RT‐PCR and ELISA. Binding of hyaluronan to OA Ob via CD44 was assessed by immunofluorescence cytochemistry. Expression of MMP‐13 and IL‐6 mRNA in cartilage and subchondral bone, and morphological OA grade, increased over time. IAI‐HA ameliorated the OA grade and selectively suppressed MMP‐13 mRNA in subchondral bone. IAI‐HA enhanced the hyaluronan staining of subchondral bone marrow cells and osteocyte lacunae. Fluorescence was observed in the subchondral bone marrow space. In OA Ob, hyaluronan reduced the expression and production of MMP‐13, and anti‐CD44 antibody blocked hyaluronan binding to OA Ob. These findings indicate that regulation of MMP‐13 in subchondral bone may be a critical mechanism during IAI‐HA. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 29:354–360, 2011  相似文献   

17.
The purpose of this study is to investigate the morphometric changes of the subchondral bone during the development of osteoarthritis (OA) in transgenic mice with achondroplasia (Fgfr3ach) carrying a heterozygous gain‐of‐function mutation in Fgfr3. Two OA models (spontaneously developed with age: The aging model, and surgically induced by destabilization of the medial meniscus: The DMM model) were established. Articular cartilage, epiphysis, and metaphysis of the knee joint were histologically and morphometrically compared between wild‐type mice, and Fgfr3ach mice in both OA models. Articular cartilage degeneration was scored according to the Osteoarthritis Research Society International (OARSI) scoring system. Several morphometric parameters including bone mineral density (BMD), bone volume/tissue volume (BV/TV), trabecular bone thickness (Tb.Th), and subchondral bone thickness in the medial tibial plateau (MTP) (Sb.Th med) were quantified by micro‐computed tomography (CT). In the aging model, although there were no significant differences in the OARSI score between wild‐type mice and Fgfr3ach mice, Sb.Th med and Tb.Th in the epiphysis significantly increased in wild‐type mice. In the DMM model, the OARSI score of the medial compartment was significantly lower in Fgfr3ach mice than in wild‐type mice. BMD, BV/TV, and Tb.Th in the epiphysis increased in wild‐type mice and unchanged in Fgfr3ach mice, and the Sb.Th med was significantly larger in wild‐type mice after surgery. Subchondral sclerosis, which preceded the cartilage degeneration, was inhibited in Fgfr3ach mice. Activated FGFR3 signaling prevented sclerotic changes of the subchondral bone and subsequent cartilage degeneration. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:300–308, 2018.  相似文献   

18.
We investigated whether single intraarticular injection of synovial MSCs enhanced meniscal regeneration in a rabbit massive meniscal defect model. Synovium were harvested from the knee joint of rabbits, and the colony‐forming cells were collected. Two weeks after the anterior half of the medial menisci were excised in both knees, 1 × 107 MSCs in 100 μl PBS were injected into the right knee. The MSC and control groups were compared macroscopically and histologically at 1, 3, 4, and 6 months (n = 4). Articular cartilage of the medial femoral condyle was also evaluated histologically at 6 months. Multipotentiality of the colony‐forming cells was confirmed. Injected MSCs labeled with DiI were detected and remained in the meniscal defect at 14 days. The size of meniscus in the MSC group was larger than that in the control group at 1 and 3 months. The difference of the size between the two groups was indistinct at 4 and 6 months. However, histological score was better in the MSC group than in the control group at 1, 3, 4, and 6 months. Macroscopically, the surface of the medial femoral condyle in the control group was fibrillated at 6 months, while looked close to intact in the MSC group. Histologically, defect or thinning of the articular cartilage with sclerosis of the subchondral bone was observed in the control group, contrarily articular cartilage and subchondral bone were better preserved in the MSC group. Synovial MSCs injected into the knee adhered around the meniscal defect, and promoted meniscal regeneration in rabbits. © 2013 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 31:1354–1359, 2013  相似文献   

19.
Introduction: We wanted to test the hypothesis that quality changes occur in early-stage arthritic subchondral cancellous bone after acute subchondral damage. So far, not much attention has been paid to changes of the subchondral bone after traumatic subchondral lesions. Materials and methods: With an established animal model, we produced pure subchondral damage without initial affection of the articular cartilage in 12 Beagle dogs under MRI and histological control. We utilized bone histomorphometry to evaluate bone turnover, its structure and the articular cartilage 6 months after the initial damage. Results: On follow-up, bone remodelling was indicated, e.g. by a significant increase in the trabecular bone volume and thickness, osteoblast number and osteoid surface and a decrease in the trabecular number in all 12 samples. Several other parameters showed a tendency, e.g. osteoblast surface and osteoclast number. Cartilage analysis showed degenerative changes in ten of 12 samples that had not shown any evidence of damage during the initial examination. Discussion: Our investigation indicates a significant deterioration in the architecture of the cancellous bone with degenerative changes of the overlying articular cartilage after subchondral lesions, which change the mechanical properties.  相似文献   

20.
Subchondral bone and articular cartilage play complementary roles in load bearing of the joints. Although the biomechanical coupling between subchondral bone and articular cartilage is well established, it remains unclear whether direct biochemical communication exists between them. Previously, the calcified cartilage between these two compartments was generally believed to be impermeable to transport of solutes and gases. However, recent studies found that small molecules could penetrate into the calcified cartilage from the subchondral bone. To quantify the real‐time solute transport across the calcified cartilage, we developed a novel imaging method based on fluorescence loss induced by photobleaching (FLIP). Diffusivity of sodium fluorescein (376 Da) was quantified to be 0.07 ± 0.03 and 0.26 ± 0.22 µm2/s between subchondral bone and calcified cartilage and within the calcified cartilage in the murine distal femur, respectively. Electron microscopy revealed that calcified cartilage matrix contained nonmineralized regions (~22% volume fraction) that are either large patches (53 ± 18 nm) among the mineral deposits or numerous small regions (4.5 ± 0.8 nm) within the mineral deposits, which may serve as transport pathways. These results suggest that there exists a possible direct signaling between subchondral bone and articular cartilage, and they form a functional unit with both mechanical and biochemical interactions, which may play a role in the maintenance and degeneration of the joint. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:1347–1352, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号