首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Progression of medial compartment knee osteoarthritis (OA) has been associated with repetitive mechanical loading during walking, often characterized by the peak knee adduction (KAM) and knee flexion moments (KFM). However, the relative contributions of these components to the knee total joint moment (TJM) can change as the disease progresses since KAM and KFM are influenced by different factors that change over time. This study tested the hypothesis that the relative contributions of KAM, KFM, and the rotational moment (KRM) to the TJM change over time in subjects with medial compartment knee OA. Patients with medial compartment knee OA (n = 19) were tested walking at their self‐selected speed at baseline and a 5‐year follow‐up. For each frame during stance, the TJM was calculated using the KAM, KFM, and KRM. The peaks of the TJM and the relative contributions of the moment components at the time of the peaks of the TJM were tested for changes between baseline and follow‐up. The percent contribution of KFM to the first peak of the TJM (TJM1) significantly decreased (p < 0.001) and the percent contribution of KAM to TJM1 significantly increased (p < 0.001), while the magnitude of the TJM1 did not significantly change over the 5‐year follow‐up. These gait changes with disease progression appear to maintain a constant TJM1, but the transition from a KFM to a KAM dominance appears to reflect gait changes associated with progressing OA and pain. Thus, the TJM and its component analysis captures a comprehensive metric for total loading on the knee over time. Published 2018. This article is a U.S. Government work and is in the public domain in the USA. 36:2373–2379, 2018.
  相似文献   

2.
In this exploratory study, gait analysis and quantitative MRI (QMRI) were used to assess biomechanical differences in patients that present with cyclops lesions at 12 months after ACL‐reconstruction (ACLR). Thirty ACLR patients without and 10 ACLR patients with cyclops lesions underwent 3T MR T mapping of the reconstructed knee joint prior to ACLR and at 12 months after ACLR, as well as a gait assessment during a fixed walking speed at 12 months after ACLR. Both external sagittal and frontal plane knee joint moments and joint moment impulses were calculated and assessed throughout the stance phase of gait. ACLR patients with cyclops lesions demonstrated a significantly greater (34% larger, p = 0.03) first peak knee flexion moment (KFM) and KFM impulse (42% larger, p = 0.05), compared to those without cyclops lesions, which may suggest an increased load during the loading response phase of gait. There were no differences (p > 0.05) in knee extension or adduction joint moments or moment impulses. ACLR patients with cyclops lesions demonstrated a significantly increased change in T T = 4.7 ms, p = 0.03), over 12 months, within the central medial tibia. The results of the study suggest that ACLR patients with cyclops lesions demonstrate altered sagittal plane loading patterns which may be related to an increased rate of medial tibiofemoral cartilage degeneration at 12 months after ACLR. The first peak external KFM may be an important target for intervention programs in ACLR patients with cyclops lesions in order to possibly slow the onset or progression of medial tibiofemoral cartilage degeneration. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2275–2281, 2017.
  相似文献   

3.
The purpose of this study was to longitudinally investigate changes in knee joint kinematics and kinetics from 2 to 8 years post‐ACLR. Seventeen subjects with primary unilateral transtibial ACLR performed bilateral gait analysis approximately 2 years and 8 years post‐ACLR. Seventeen matched healthy control subjects were also analyzed. Kinematic and kinetic comparisons between the ACLR and contralateral limbs over time were completed using a 2 × 2 (time, limb) repeated‐measures ANOVA. Unpaired Student's t‐tests were used to compare the ACLR and contralateral kinematics and kinetics to the control group. The ACLR and contralateral limbs had similar gait changes over time. Kinetic changes over time included a reduction in first (p = 0.048) and second (p < 0.001) peak extension moments, internal rotation moment (p < 0.001), adduction moment (first peak: p = 0.002, second peak: p = 0.009, impulse: p = 0.004) and an increase in peak knee flexion moment (p = 0.002). Kinematic changes over time included increases in peak knee flexion angle in the first half of stance (p = 0.026), minimum knee flexion angle in the second half of stance (p < 0.001), and average external rotation angle during stance (p = 0.007), and a reduction in average anterior femoral displacement during stance (p = 0.006). Comparison to healthy controls demonstrated improvement in some gait metrics over time. The results demonstrated longitudinal changes from 2 to 8 years after ACLR in knee joint kinetics and kinematics that have been related to clinical outcome after ACLR and the progression of knee OA, and support future larger and comprehensive investigations into long‐term changes in joint mechanics in the ACLR population. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1478–1486, 2018.
  相似文献   

4.
The purpose of our study was to determine the association between biomechanical outcomes of walking gait (peak vertical ground reaction force [vGRF], vGRF loading rate [vGRF‐LR], and knee adduction moment [KAM]) 6 months following anterior cruciate ligament reconstruction (ACLR) and biochemical markers of serum type‐II collagen turnover (collagen type‐II cleavage product to collagen type‐II C‐propeptide [C2C:CPII]), plasma degenerative enzymes (matrix metalloproteinase‐3 [MMP‐3]), and a pro‐inflammatory cytokine (interleukin‐6 [IL‐6]). Biochemical markers were evaluated within the first 2 weeks (6.5 ± 3.8 days) following ACL injury and again 6 months following ACLR in eighteen participants. All peak biomechanical outcomes were extracted from the first 50% of the stance phase of walking gait during a 6‐month follow‐up exam. Limb symmetry indices (LSI) were used to normalize the biomechanical outcomes in the ACLR limb to that of the contralateral limb (ACLR/contralateral). Bivariate correlations were used to assess associations between biomechanical and biochemical outcomes. Greater plasma MMP‐3 concentrations after ACL injury and at the 6‐month follow‐up exam were associated with lesser KAM LSI. Lesser KAM was associated with greater plasma IL‐6 at the 6‐month follow‐up exam. Similarly, lesser vGRF‐LR LSI was associated with greater plasma MMP‐3 concentrations at the 6‐month follow‐up exam. Lesser peak vGRF LSI was associated with higher C2C:CPII after ACL injury, yet this association was not significant after accounting for walking speed. Therefore, lesser biomechanical loading in the ACLR limb, compared to the contralateral limb, 6 months following ACLR may be related to deleterious joint tissue metabolism that could influence future cartilage breakdown. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2288–2297, 2017.
  相似文献   

5.
This study aimed to determine the extent to which changes over 2.5 years in medial knee cartilage thickness and volume were predicted by: (1) Peak values of the knee adduction (KAM) and flexion moments; and (2) KAM impulse and loading frequency, representing cumulative load, after controlling for age, sex and body mass index (BMI). Adults with clinical knee osteoarthritis participated. At baseline and approximately 2.5 years follow‐up, cartilage thickness and volume of the medial tibia and femur were segmented from magnetic resonance imaging scans. Gait kinematics and kinetics, and daily knee loading frequency were also collected at baseline. Multiple linear regressions predicted changes in cartilage morphology from baseline gait mechanics. Data were collected from 52 participants (41 women) [age 61.0 (6.9) y; BMI 28.5 (5.7) kg/m2] over 2.56 (0.51) years. There were significant KAM peak‐by‐BMI (p = 0.023) and KAM impulse‐by‐BMI (p = 0.034) interactions, which revealed that larger joint loads in those with higher BMIs were associated with greater loss of medial tibial cartilage volume. In conclusion, with adjustments for age, sex, and cartilage measurement at baseline, large magnitude KAM peak and KAM impulse each interacted with BMI to predict loss of cartilage volume of the medial tibia over 2.5 years among individuals with knee osteoarthritis. These data suggest that, in clinical knee osteoarthritis, exposure to large KAMs may be detrimental to cartilage in those with larger BMIs. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2476–2483, 2017.
  相似文献   

6.
Osteoarthritis development after ACL reconstruction (ACLR) is not well understood. Investigators have examined associations between knee biomechanical alterations and quantitative MRI (qMRI) variables, reflective of cartilage health, 12–60 months following ACLR; however, none have done so early after surgery. As part of an exploratory study, 45 individuals (age, 23 ± 7 years) underwent motion analysis during walking and qMRI 3 months after ACLR. For each limb, peak knee adduction moment (pKAM) and peak knee flexion moment (pKFM) were determined using inverse dynamics and peak medial compartment force was calculated using a neuromusculoskeletal model. T2 relaxation times in the medial compartment and linear regressions were used to determine the associations between gait variables and deep and superficial cartilage T2 relaxation times in six regions. pKAM was positively associated with deep layer T2 relaxation times within the femoral central and posterior regions when examined in the involved limb and from an interlimb difference perspective (involved limb – uninvolved limb). After adjusting for age, the association between interlimb difference of pKAM and interlimb difference of deep layer T2 relaxation times in the tibial central region became significant (p = .043). Interlimb difference of pKFM was negatively associated with interlimb difference of deep layer T2 relaxation times within the femoral central and posterior regions. These associations suggest that degenerative pathways leading to osteoarthritis may be detectable as early as 3 months after reconstruction. Preventative therapeutic techniques may need to be employed early in the rehabilitation process to prevent cartilage degradation.  相似文献   

7.
Post-traumatic patellofemoral osteoarthritis (OA) is prevalent after anterior cruciate ligament reconstruction (ACLR) and early cartilage degradation may be especially common in the femoral trochlear cartilage. Determining the presence of and factors associated with early femoral trochlear cartilage degradation, a precursor to OA, is a critical preliminary step in identifying those at risk for patellofemoral OA development and designing interventions to combat the disease. Early cartilage degradation can be detected using quantitative magnetic resonance imaging measures, such as tissue T2 relaxation time. The purposes of this study were to (i) compare involved (ACLR) versus uninvolved (contralateral) femoral trochlear cartilage T2 relaxation times 6 months after ACLR, and (ii) determine the relationship between walking speed and walking mechanics 3 months after ACLR and femoral trochlear cartilage T2 relaxation times 6 months after ACLR. Twenty-six individuals (age 23 ± 7 years) after primary, unilateral ACLR participated in detailed motion analyses 3.3 ± 0.6 months after ACLR and quantitative magnetic resonance imaging 6.3 ± 0.5 months after ACLR. There were no limb differences in femoral trochlear cartilage T2 relaxation times. Slower walking speed was related to higher (worse) femoral trochlear cartilage T2 relaxation times in the involved limb (Pearson's r: −0.583, p = 0.002) and greater interlimb differences in trochlear T2 relaxation times (Pearson's r: −0.349, p = 0.080). Walking mechanics were weakly related to trochlear T2 relaxation times. Statement of clinical significance: Slower walking speed was by far the strongest predictor of worse femoral trochlear cartilage health, suggesting slow walking speed may be an early clinical indicator of future patellofemoral OA after ACLR. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:645–652, 2020  相似文献   

8.
Cartilage T2 relaxation time in isolated anterior cruciate ligament reconstruction (ACLR) without concomitant meniscal pathology and their changes over time remain unclear. The purpose of this exploratory study was to: (i) compare cartilage T2 relaxation time (T2 values) in people with isolated ACLR at 2–3 years post‐surgery (baseline) and matched healthy controls and; (ii) evaluate the subsequent 2‐year change in T2 values in people with ACLR. Twenty‐eight participants with isolated ACLR and nine healthy volunteers underwent knee magnetic resonance imaging (MRI) at baseline; 16 ACLR participants were re‐imaged 2 years later. Cartilage T2 values in full thickness, superficial layers, and deep layers were quantified in the tibia, femur, trochlear, and patella. Between‐group comparisons at baseline were performed using analysis of covariance adjusting for age, sex, and body mass index. Changes over time in the ACLR group were evaluated using paired sample t‐tests. ACLR participants showed significantly higher (p = 0.03) T2 values in the deep layer of medial femoral condyle at baseline compared to controls (mean difference 4.4 ms [13%], 95%CI 0.4, 8.3 ms). Over 2 years, ACLR participants showed a significant reduction (p = 0.04) in T2 value in the deep layer of lateral tibia (mean change 1.4 ms [?7%], 95%CI 0.04, 2.8 ms). The decrease in T2 values suggests improvement in cartilage composition in the lateral tibia (deep layer) of ACLR participants. Further research with larger ACLR cohorts divided according to meniscal status and matched healthy cohorts are needed to further understand cartilage changes post‐ACLR. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2022–2029, 2018.
  相似文献   

9.
External knee adduction moment can be reduced using footwear interventions, but the exact changes in in vivo medial joint loading remain unknown. An instrumented knee replacement was used to assess changes in in vivo medial joint loading in a single patient walking with a variable‐stiffness intervention shoe. We hypothesized that during walking with a load modifying variable‐stiffness shoe intervention: (1) the first peak knee adduction moment will be reduced compared to a subject's personal shoes; (2) the first peak in vivo medial contact force will be reduced compared to personal shoes; and (3) the reduction in knee adduction moment will be correlated with the reduction in medial contact force. The instrumentation included a motion capture system, force plate, and the instrumented knee prosthesis. The intervention shoe reduced the first peak knee adduction moment (13.3%, p = 0.011) and medial compartment joint contact force (12.3%; p = 0.008) compared to the personal shoe. The change in first peak knee adduction moment was significantly correlated with the change in first peak medial contact force (R2 = 0.67, p = 0.007). Thus, for a single subject with a total knee prosthesis the variable‐stiffness shoe reduces loading on the affected compartment of the joint. The reductions in the external knee adduction moment are indicative of reductions in in vivo medial compressive force with this intervention. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:1548–1553, 2010  相似文献   

10.
This study examined the influence of a 6‐week gait retraining program on the knee adduction moment (KAM) and knee pain and function. Ten subjects with medial compartment knee osteoarthritis and self‐reported knee pain participated in weekly gait retraining sessions over 6 weeks. Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores and a 10‐point visual‐analog pain scale score were measured at baseline, post‐training (end of 6 weeks), and 1 month after training ended. Gait retraining reduced the first peak KAM by 20% (p < 0.01) post‐training as a result of a 7° decrease in foot progression angle (i.e., increased internal foot rotation), compared to baseline (p < 0.01). WOMAC pain and function scores were improved at post‐training by 29% and 32%, respectively (p < 0.05) and visual‐analog pain scale scores improved by two points (p < 0.05). Changes in WOMAC pain and function were approximately 75% larger than the expected placebo effect (p < 0.05). Changes in KAM, foot progression angle, WOMAC pain and function, and visual‐analog pain score were retained 1 month after the end of the 6‐week training period (p < 0.05). These results show that a 6‐week gait retraining program can reduce the KAM and improve symptoms for individuals with medial compartment knee osteoarthritis and knee pain. © 2013 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 31:1020–1025, 2013  相似文献   

11.
This study compared femoral cartilage characteristics between age- and sex-matched individuals with (n = 48, age = 22.8 ± 3.5 years; body mass index [BMI] = 33.1 ± 4.1 kg/m2) and without obesity (n = 48 age = 22.0 ± 2.6 years; BMI = 21.7 ± 1.7 kg/m2) and evaluated the associations between body composition, quadriceps function, and gait kinetics with femoral cartilage characteristics. Medial and lateral femoral cartilage thickness, medial:lateral thickness ratio and medial and lateral cartilage echo intensity were measured using ultrasound imaging. Body composition was assessed using air displacement plethysmography. Quadriceps function was assessed via maximal isometric knee extension. Three-dimensional gait biomechanics were recorded to extract peak external knee flexion and adduction moments, and peak loading rate of the vertical ground reaction force. Cartilage outcomes were compared between groups using one-way multivariate analysis of variance. Stepwise moderated regression evaluated the association between body composition, quadriceps function, and gait kinetics with femoral cartilage outcomes in individuals with and without obesity. Medial (75.24 vs 65.84; P < .001, d = 1.02) and lateral (58.81 vs 52.22; P < .001, d = 0.78) femoral cartilage echo intensity were higher in individuals with compared with those without obesity. A higher body fat percentage was associated with higher medial and lateral cartilage echo intensity (ΔR2 = 0.09-0.12) in individuals with obesity. A higher knee adduction moment was associated with a larger medial:lateral thickness ratio (ΔR2 = 0.09) in individuals without obesity. No associations were found between quadriceps function and cartilage outcomes. These findings suggest that high body fat in adults with obesity is associated with cartilage echo intensity. The obese body mass index was also associated with a lack of a positive relationship between cartilage thickness and joint loading during walking.  相似文献   

12.
This study aimed to determine the impact of wearing a lateral‐offset sole shoe (LOSS) on knee adduction moment (KAM) in patients with medial knee osteoarthritis (OA). From December 2012 to November 2016, patients with medial knee OA were recruited. Ninety‐three knees (50 left, 43 right) of 93 female patients were analyzed. The first peak KAMs were measured with patients (i) walking barefoot; (ii) walking in conventional shoes; and (iii) walking in LOSSs. The patients had grade 1 (n = 19), grade 2 (n = 49), grade 3 (n = 20), and grade 4 (n = 5) knee OA. First peak KAMs differed significantly in all three conditions (p = 0.031). In the post hoc analysis, first peak KAMs were significantly lower during LOSS walking than during conventional shoe walking (p = 0.001), but there were no differences in peak KAMs between barefoot and LOSS walking (p = 0.784). In the subgroup analysis, patients with grades 2 and 3 OA showed significantly lower first peak KAMs during LOSS walking than during conventional shoe walking (p = 0.029 and p = 0.011, respectively). Both the peak eversion ankle angle and moment of barefoot walking showed a significant increase compared with LOSS and conventional shoe walking, while there was no significant difference between LOSS and conventional shoe walking (p = 0.612 and p = 0.197, respectively). Our results suggest that LOSS wearing caused significant KAM reductions compared with conventional shoe wearing. Since LOSS wearing does not cause changes in the peak eversion ankle angle and moment during the load response, it may be an effective method to reduce the KAM in women with knee OA. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1694–1700, 2018.
  相似文献   

13.
Osteoarthritis (OA) is prevalent after anterior cruciate ligament (ACL) injury, but mechanismsunderlying its development are poorly understood. The purpose of this study was to determine if gait biomechanics and daily physical activity (PA) associate with cartilage T2 relaxation times, a marker of collagen organization and water content, 1 month after ACL injury. Twenty-seven participants (15–35 years old) without chondral lesions completed magnetic resonance imaging, three-dimensional gait analysis, and 1 week of PA accelerometry. Interlimb differences and ratios were calculated for gait biomechanics and T2 relaxation times, respectively. Multiple linear regression models adjusted for age, sex, and concomitant meniscus injury were used to determine the association between gait biomechanics and PA with T2 relaxation times, respectively. Altered knee adduction moment (KAM) impulse, less knee flexion excursion (kEXC) and higher daily step counts accounted for 35.8%–65.8% of T2 relaxation time variation in the weightbearing and posterior cartilage of the medial and lateral compartment (all p ≤ .011). KAM impulse was the strongest factor for T2 relaxation times in all models (all p ≤ .001). Lower KAM impulse associated with longer T2 relaxation times in the injured medial compartment (β = ?.720 to ?.901) and shorter T2 relaxation in the lateral compartment (β = .713 to .956). At 1 month after ACL injury, altered KAM impulse, less kEXC, and higher PA associated with longer T2 relaxation times, which may indicate poorer cartilage health. Statement of Clinical Significance: Gait biomechanics and daily PA are modifiable targets that may improve cartilage health acutely after ACL injury and slow progression to OA.  相似文献   

14.
This study tested the effects of variable‐stiffness shoes on knee adduction moment, pain, and function in subjects with symptoms of medial compartment knee osteoarthritis over 6 months. Patients were randomly and blindly assigned to a variable‐stiffness intervention or constant‐stiffness control shoe. The Western Ontario and McMaster Universities (WOMAC) score served as the primary outcome measure. Joint loading, the secondary outcome measure, was assessed using the external knee adduction moment. Peak external knee adduction moment, total WOMAC, and WOMAC pain scores were assessed at baseline and after 6 months. The total WOMAC and WOMAC pain scores for the intervention group were reduced from baseline to 6 months (p = 0.017 and p = 0.002, respectively), with no significant reductions for the control group. There was no difference between groups in magnitude of the reduction in total WOMAC (p = 0.50) or WOMAC pain scores (p = 0.31). The proportion of patients achieving a clinically important improvement in pain was greater in the intervention group than in the control group (p = 0.012). The variable‐stiffness shoes reduced the peak knee adduction moment (?6.6% vs. control, p < 0.001) in the 34 intervention subjects at 6 months. The adduction moment reduction significantly improved (p = 0.03) from the baseline reduction. The constant‐stiffness control shoe increased the peak knee adduction moment (+6.3% vs. personal, p = 0.004) in the 26 control subjects at 6 months. The results of this study showed that wearing the variable‐stiffness shoe lowered the adduction moment, reduced pain, and improved functionality after 6 months of wear. The lower adduction moment associated with wearing this shoe may slow the rate of progression of osteoarthritis after long‐term use. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:873–879, 2010  相似文献   

15.
To identify the biomechanical risk factors associated with symptomatic progression at 1‐year follow‐up in persons with patellofemoral joint (PFJ) osteoarthritis (OA). Patients’ self‐reported Knee Injury and Osteoarthritis Outcome Score questionnaires, magnetic resonance (MR) imaging, and three‐dimensional gait analysis were obtained in 53 subjects with PFJ OA at baseline and after 1 year. Joint OA was diagnosed on knee MR images if cartilage lesions existed. Progression was defined by worsening of patients’ self‐reported symptoms from baseline to 1 year exceeding the minimal detectable change score. Analysis of covariance was used to compare peak knee flexion moment, knee flexion moment impulse, and vertical ground reaction force loading rate between progressors and non‐progressors. Seven (13.2%) subjects exhibited progression in self‐reported symptoms at 1‐year follow‐up. When comparing to non‐progressors, significantly higher peak knee flexion moment during first half of stance (p = 0.017) and higher moment impulse during the both halves of stance were observed among progressors (p = 0.020–0.040). Persons with symptomatic PFJ OA progression with or without concurrent tibiofemoral OA exhibited abnormal joint loading mechanics when compared with individuals who did not progress. Further work is needed to determine if modification to these loading variables results in a change in the symptomatic progression in these individuals. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2593–2600, 2019  相似文献   

16.
BackgroundThe knee adduction moment (KAM) is considered an index for estimating the knee mechanical load, and increased KAM peak and KAM impulse are related to increased medial knee load and progression of knee joint degeneration. We aimed to verify the biomechanical factors of gait related to medial knee loading in patients 6 months after TKA.MethodsThirty-nine women who underwent TKA were enrolled. A three-dimensional gait analysis was performed 6 months postoperatively to generate data on the lower limb joint angle, moment, and power at the backward component (braking phase) and forward component (propulsion phase) peaks of the ground reaction force. Medial knee loading was evaluated using the time-integrated value of KAM during the stance period (KAM impulse). The higher the value of the KAM impulse, the higher the medial knee joint load. The relationships between the KAM impulse and the data for biomechanical factors were evaluated using partial correlation analysis with gait speed as a control factor.ResultsIn the braking phase, the KAM impulse positively correlated with the knee adduction angle (r = 0.377) and negatively correlated with the toe-out angle (r = −0.355). The KAM impulse positively correlated with the knee adduction angle (r = 0.402), the hip flexion moment (r = 0.335), and the hip adduction moment (r = 0.565) and negatively correlated with the toe-out angle (r = −0.357) in the propulsive phase.ConclusionThe KAM impulse 6 months after TKA was related to the knee adduction angle, hip flexion moment, hip adduction moment, and toe-out angle. These findings may provide fundamental data for controlling variable medial knee joint load after TKA and implementing patient management strategies to ensure implant durability.  相似文献   

17.
We assessed the relationship between cartilage MR relaxation times and biomechanical response of tibiofemoral articular cartilage to physiological loading in healthy subjects and patients with osteoarthritis (OA). Female subjects above 40 years of age with (N1 = 20) and without (N2 = 10) OA were imaged on a 3T MR scanner using a custom made loading device. MR images were acquired with the knee flexed at 20° with and without a compressive load of 50% of the subject's bodyweight. The subjects were categorized based on the clinical MRI scoring of medial and lateral cartilage surfaces. Data were stratified twice into two equal groups (low and high) at the median value of T and T2 relaxation time. The change in contact area and cartilage deformation was measured within these groups. Paired Student's t‐test (α = 0.05) was used to analyze the effect of loading on contact area and deformation. The average area of the contact region in the medial compartment was significantly higher in OA subjects compared with normal subjects in both unloaded (314 ± 112 mm2 vs. 227 ± 106 mm2, p = 0.023) and loaded (425 ± 128 mm2 vs. 316 ± 107 mm2, p = 0.01) conditions. The overall relative change of cartilage thickness in the medial compartment was significantly higher than the lateral compartment (?5.3 ± 9.9% vs. ?1.9 ± 9.2%, p = 0.042). When cartilage was divided into deep and superficial layers, superficial layers showed higher changes in relaxation time (T and T2) than the changes in relaxation time of whole cartilage (Normal: 12.5% vs. 6.9%; OA: 10.9% vs. 4.6%). The average T and T2 times, change in area of contact region, and change in cartilage thickness in subjects with OA were higher when compared to normal subjects. This study provides support for a relationship between the mechanical response of cartilage to physiological loading (cartilage‐on‐cartilage contact area and cartilage deformation) and MR relaxation times (T and T2) in both OA patients and normal subjects. © 2011 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:919–926, 2012  相似文献   

18.
Articular cartilage is sensitive to mechanical loading, so increased risk of osteoarthritis in older or obese individuals may be linked to changes in the relationship between cartilage properties and extrinsic joint loads. A positive relationship has been reported between ambulatory loads and cartilage thickness in young individuals, but whether this relationship exists in individuals who are older or obese is unknown. This study examined the relationship between femoral cartilage thickness and load, measured by weight × height and the peak adduction moment, in young normal‐weight (28 subjects, age: 28.0 ± 3.8 years, BMI: 21.9 ± 1.9 kg/m2), middle‐aged normal‐weight (27 subjects, 47.0 ± 6.5 years, 22.7 ± 1.7 kg/m2), young overweight/obese (27 subjects, 28.4 ± 3.6 years, 33.3 ± 4.6 kg/m2), and middle‐aged overweight/obese (27 subjects, 45.8 ± 7.2 years, 31.9 ± 4.4 kg/m2) individuals. On the lateral condyle, cartilage thickness was positively correlated with weight × height for all groups (R2 = 0.26–0.20) except the middle‐aged overweight/obese. On the medial condyle, weight × height was significantly correlated only in young normal‐weight subjects (R2 = 0.19), as was the case for the correlation between adduction moment and medial–lateral thickness ratio (R2 = 0.20). These results suggest that aging and obesity are both associated with a loss of the positive relationship between cartilage thickness and ambulatory loads, and that the relationship is dependent on the compartment and whether the load is generated by body size or subject‐specific gait mechanics. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:394–402, 2014.  相似文献   

19.
BackgroundFollowing total hip replacement (THR), hip geometry reconstruction parameters such as the femoral offset (FO) correlate with hip stability and wear. The purpose of this study is to determine the relationship between hip geometry parameters and knee and hip joint loading during walking.MethodsForty-one patients were examined before and a minimum of 1 year after primary THR. Pearson correlation coefficient (r) was performed to identify relationships between radiographic parameters and gait data. In addition, we divided patients into 2 groups according to the restoration of the FO (within ±5 mm vs more than 5 mm increment).ResultsThe FO and global offset (GO) showed a positive correlation with the first (r = 0.469, P = .002; r = 0.542, P < .001) and second (r = 0.365, P = .019; r = 0.484, P = .001) knee adduction moment (KAM). The neck-shaft angle revealed a negative correlation with the first hip adduction moment (r = ?0.375, P = .047). The reconstruction of FO with an increment of more than 5 mm was associated with a significant higher first KAM (+16%, P = .045) compared to the restored group.ConclusionOur findings suggest that abnormal hip and knee joint loading during walking after THR have a biomechanical background originating from hip geometry reconstruction. Patients with a high FO/GO were more likely to have an increased KAM during walking or vice versa. Surgeons need to be aware that an accurate control of FO, GO, and neck-shaft angle restoration in THR has an impact on hip and knee joint loading that may influence degenerative changes of the knee and higher wear of the artificial hip joint, respectively.  相似文献   

20.
It remains unclear what role reduced volume and cross‐section area (CSA) of individual quadriceps muscles may play in persistent quadriceps weakness and more global dysfunction following ACL reconstruction (ACLR). The purpose of this investigation was to establish the relationship between cross‐sectional area of the quadriceps muscle group and measures of knee related and quadriceps function following ACLR. Thirty participants with a history of primary, unilateral ACLR experiencing persistent quadriceps activation failure participated in this cohort study. Clinical factors including International Knee Documentation Committee (IKDC) score, normalized knee extension MVIC torque (Nm/kg) and quadriceps central activation ratio (CAR, %) were assessed in addition to CSA. Quadriceps CSA was measured via magnetic resonance imaging (MRI; Siemens Avanto 1.5T). Quadriceps CSA (cm2) and quadriceps volume (cm3) as well as individual muscle estimates were identified within a 10 cm mid‐thigh capture area. Pearson's product‐moment correlation coefficients (r) established relationships between CSA and all other variables. Stepwise linear regression established which CSA factors were able to successfully predict clinical factors. Knee extension MVIC torque was strongly correlated with Vastus Intermedius (VI; r = 0.857, p < 0.001) CSA as well as partial VI (r = 0.849, p < 0.001) and quadriceps (r = 0.830, p < 0.001) volume. Partial VI (r = 0.365, p = 0.047) volume was weakly correlated with IKDC score. Knee extension MVIC torque was strongly predicted using VI CSA alone (R2 = 0.725) or in combination with Vastus Medialis CSA (VM; R2 = 0.756). Statement of Clinical Significance: Atrophy of the VI and VM muscles negatively impacts knee extension strength following ACLR. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1656–1662, 2016.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号