首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although 5-aminolevulinic acid, ALA, and its derivatives, have been widely studied and applied in clinical photodynamic therapy (PDT), there is still a lack of reliable and non-invasive methods and technologies to evaluate physiological parameters of relevance for the therapy, such as erythema, melanogenesis, and oxygen level. We have investigated the kinetics of these parameters in human skin in vivo during and after PDT with the hexyl ester of ALA, ALA-Hex. Furthermore, the depth of photosensitizer (protoporphyrin IX, PpIX) production after different application times was investigated. It was found that the depth increased with increasing application time of ALA-Hex. We also investigated the depth of PpIX before and after light exposure causing 50% photobleaching at 407 nm. The PpIX localized in superficial layers of the normal tissue was removed during the bleaching. Thus, after bleaching, the remaining PpIX was localized mainly in the deeper layers of normal tissue. We have applied fluorescence emission spectroscopy, fluorescence excitation spectroscopy, and reflectance spectroscopy in the study of the above-mentioned parameters. In conclusion, fluorescence excitation spectroscopy and reflectance spectroscopy are simple, useful, reliable, and noninvasive techniques in the evaluation of the processes taking place in human skin in vivo during and after PDT. Using these methods we were able to quantify melanogenesis, O2 level, erythema, vasoconstriction, and vasodilatation.  相似文献   

2.
We present protoporphyrin IX (PpIX) fluorescence measurements acquired from patients presenting with superficial basal cell carcinoma during photodynamic therapy (PDT) treatment, facilitating in vivo photobleaching to be monitored. Monte Carlo (MC) simulations, taking into account photobleaching, are performed on a three-dimensional cube grid, which represents the treatment geometry. Consequently, it is possible to determine the spatial and temporal changes to the origin of collected fluorescence and generated singlet oxygen. From our clinical results, an in vivo photobleaching dose constant, β of 5-aminolaevulinic acid-induced PpIX fluorescence is found to be 14 ± 1 J/cm(2). Results from our MC simulations suggest that an increase from our typical administered treatment light dose of 75-150 J/cm(2) could increase the effective PDT treatment initially achieved at a depth of 2.7-3.3 mm in the tumor, respectively. Moreover, this increase reduces the surface PpIX fluorescence from 0.00012 to 0.000003 of the maximum value recorded before treatment. The recommendation of administrating a larger light dose, which advocates an increase in the treatment time after surface PpIX fluorescence has diminished, remains valid for different sets of optical properties and therefore should have a beneficial outcome on the total treatment effect.  相似文献   

3.
Photodynamic therapy (PDT) involves a combination of a lesion-localizing photosensitizer with light and has been established as a new modality for some medical indications. Much evidence has shown the correlation between subcellular localization of a photosensitizer with its photodynamic efficiency. However, the fluorescence of most photosensitizers in cells is weak and easily photobleached. We compare the effect of single-photon excitation (SPE) with that of two-photon excitation (TPE) on fluorescence detection of protoporphyrin IX (PpIX), a potent photosensitizer, in the PLC hepatoma cells in vitro. By using laser scanning confocal fluorescence microscopy, both fluorescence images and spectra of intracellular PpIX are studied with SPE of 405- and 488-nm lasers, and TPE of 800-nm femtosecond laser. The 405-nm laser is more efficient at exciting PpIX fluorescence than the 488-nm laser, but causes a considerable photobleaching of the PpIX fluorescence and induces weak autofluorescence signals of native flavins in the cells as well. The 800-nm TPE is found to significantly improve the quality of PpIX fluorescence images with negligible PpIX photobleaching and minimized endogenous autofluorescence, indicating the potential of 800-nm TPE for studying cellular localization of porphyrin photosensitizers for PDT.  相似文献   

4.
This investigation considered a novel method of enhancing penetration of the topical photosensitizing agent methyl aminolevulinate (MAL) into nodular basal cell carcinomas (BCCs) using an oxygen pressure injection device. Oxygen pressure injection (OPI) is a method to drive compounds into skin using pressured oxygen. The study was an observer-blinded pilot of a single application of MAL to nBCCs, with or without the use of OPI. The BCCs were then excised at different time intervals (0-180 min) and the depth of penetration of the MAL examined using microscopic fluorescence photometry to detect the production of the naturally fluorescent active photosensitiser protoporphyrin IX (PpIX). A highly selective and homogeneous distribution of MAL-induced porphyrin fluorescence was seen in all nBCC tumors studied, and showed a high lesion-to-normal-tissue ratio with very little fluorescence in the surrounding normal tissue. Although it was difficult to compare quantitatively, as individual tumors in each of the different study groups varied, a definite trend of increase in relative tumor concentration of MAL-induced PpIX was observed over time, and this was enhanced when OPI was employed.  相似文献   

5.
Photodynamic therapy (PDT) typically involves systemic or topical administration of a tumor-localizing photosensitizer or prodrug and its subsequent activation by visible light. This results primarily in singlet oxygen-induced photodamage to the tumor. 5-Aminolevulinic acid (ALA) and its derivatives have recently been widely used for PDT due to their selective induction in tumor of endogenous protoporphyrin IX (PpIX), a potent photosensitizer. Although ALA-PDT has achieved successful results in the treatment of several clinical oncological and nononcological diseases, the mechanisms of this modality are still not fully elucidated. In the present study, the human colon carcinoma cell line 320DM was treated in vitro with PDT using hexaminolevulinate (HAL), a hexylester of ALA known to be 50 to 100 times more efficient at producing PpIX formation than ALA itself. PpIX production increased with increasing HAL concentrations in the cells and phototoxicity of the cells was enhanced with increasing light (450 nm) doses. HAL-PDT induced apoptotic cell death, as measured by nuclear staining of Hoechst 33342 for fluorescence microscopy, DNA electrophoresis and TdT staining for flow cytometry. PDT with 5 muM of HAL and a light dose of 640 mJ/cm2 produced a 75% apoptotic cell population 40 hr after the treatment. Furthermore, the loss of mitochondrial membrane potential coincident with the release of cytochrome c from the mitochondria into the cytosol led to a rapid activation of caspase-9 and caspase-3 (an executioner), indicating that the selective damage to the mitochondria by HAL-PDT can induce a cytochrome-c-mediated apoptotic response in the 320DM cells.  相似文献   

6.
We compared light-induced fluorescence (LIF) to nominal injected drug dose for predicting the depth of necrosis response to photodynamic therapy (PDT) in a murine tumor model. Mice were implanted with radiation-induced fibrosarcoma (RIF) and were injected with 0, 5, or 10 mg/kg Photofrin. 630-nm light (30 J/cm(2), 75 mW/cm(2)) was delivered to the tumor after 24 hours. Fluorescence emission (lambda(excitation)=545 nm, lambda( emission)=628 nm) from the tumor was measured. The LIF data had less scatter than injected drug dose, and was found to be at least as good as an injected drug dose for predicting the depth of necrosis after PDT. Our observations provide further evidence that fluorescence spectroscopy can be used to quantify tissue photosensitizer uptake and to predict PDT tissue damage.  相似文献   

7.
Topical photodynamic therapy (PDT) with 5-aminolevulinic acid (ALA), or so-called ALA-PDT, is a standard procedure in the clinical practice. For optimal treatment of nonmelanoma skin cancer, actinic keratoses and other dermatoses improvements are required because of adverse side effects, which include pruritus, erythema, edema, and pain. (R)L-sulforaphane (SF) is a compound that protects against erythema, but it can also induce DNA fragmentation that leads to cell death by apoptosis. The aim of our study was to investigate whether SF has any impact on protoporphyrin IX (PpIX) production and on PDT effectiveness. We have investigated some relevant properties of SF: its photostability in dimethyl sulfoxide (DMSO), its effect on ALA-induced production of PpIX in A431 human squamous carcinoma cells and in human skin, its effect on the photoinactivation of PpIX sensitized cells, and its effect on the rate of photobleaching of PpIX. SF had no influence on PpIX photodegradation, neither in solution nor in A431 cells. The synthesis of PpIX was increased by SF in human skin, but not in A431 cells. The average increase in PpIX fluorescence in human skin was 18% +/- 6% and 43% +/- 10% for ALA combined with 80 nmol/L SF and 120 nmol/L SF, respectively. Pretreatment with (R)L-sulforaphane before topical ALA-PDT may improve penetration of ALA through the stratum corneum, and, subsequently, increase PpIX synthesis.  相似文献   

8.
Drug resistance remains one of the primary obstacles to the success of cancer chemotherapy. In this work, we demonstrate a singlet-oxygen producible polymeric (SOPP) micelle based on photosensitizer (PS, chlorin e6 (Ce6)) conjugated amphiphilic copolymer (pluronic F127®, PF127) for overcoming drug resistance in cancer by applying photochemical internalization (PCI). The doxorubicin (DOX)-loaded SOPP micelles were self-assembled from Ce6-PF127 conjugates, which have a spherical shape with a uniform size of ∼30 nm. Compared with free Ce6, enhanced singlet-oxygen generation efficiency in the DOX-loaded SOPP micelles have been demonstrated in aqueous environments due to their increased water-dispersibility. Under low dose of laser power and anti-cancer drug (DOX) conditions, in vitro and in vivo studies on drug-resistant cancer cells demonstrated that singlet-oxygen-mediated cellular membrane damage (caused by lipid peroxidation) significantly increased the cellular uptake of drug (DOX), which led to overcoming the drug resistance in cancer cells without undesirable side effects. We believe this approach could represent a promising platform for drug-resistant cancer treatment.  相似文献   

9.
AL A脂类衍生物是目前光动力疗法领域中最活跃的光敏剂前体物 ,它因能够有效地通过外源加入的方式在肿瘤细胞内内源生成进而积聚的原卟啉 (Pp IX)光敏剂而在光动力疗法领域独树一帜。本文将沿着 AL A脂类衍生物的光动力疗法实验过程这一主线而对它的光动力疗法机理及实验研究结果作一综述。主要包括 :细胞对外源 AL A脂类衍生物的摄取及转化为 AL A的生化机制 ;由 AL A生成内源原卟啉 Pp IX的生化机理 ;由 AL A内源生成的光敏剂引起的光致敏过程  相似文献   

10.
Topical 5-aminolevulinic acid (ALA) is widely used in photodynamic therapy (PDT) of actinic keratoses (AK), a type of premalignant skin lesion. However, the optimal time between ALA application and exposure to light has not been carefully investigated. Our objective is to study the kinetics of protoporphyrin IX (PpIX) accumulation in AK after short contact ALA and relate this to erythemal responses. Using a noninvasive dosimeter, PpIX fluorescence measurements (5 replicates) were taken at 20-min intervals for 2 h following ALA application, in 63 AK in 20 patients. Data were analyzed for maximal fluorescent signal obtained, kinetic slope, and changes in erythema. Our results show that PpIX accumulation was linear over time, becoming statistically higher than background in 48% of all lesions by 20 min, 92% of lesions by 1 h, and 100% of lesions by 2 h. PpIX accumulation was roughly correlated with changes in lesional erythema post-PDT. We conclude that significant amounts of PpIX are produced in all AK lesions by 2 h. The linear kinetics of accumulation suggest that shorter ALA application times may be efficacious in many patients. Noninvasive fluorescence monitoring of PpIX may be useful to delineate areas of high PpIX accumulation within precancerous areas of the skin.  相似文献   

11.
The ability to quantitatively determine tissue fluorescence is of interest for the purpose of better understanding the details of photodynamic therapy of skin cancer. In particular, we are interested in quantifying protoporphyrin IX (PpIX) in vivo. We present a method of correcting fluorescence for effects of native tissue absorption and scattering properties in a spatially resolved manner that preserves the resolution of the fluorescence imaging system, based off a homogeneous representation of tissue. Validation was performed using a series of liquid turbid phantoms having varying concentrations of absorber, scatterer, and fluorophore (PpIX). Through the quantification of tissue optical properties via spatial frequency domain imaging, an empirical model based on Monte Carlo simulations was deployed to successfully decouple the effects of absorption and scattering from fluorescence. From this we were able to deduce the concentration of the PpIX to within 0.2 μg/ml of the known concentration. This method was subsequently applied to the determination of PpIX concentration from in vivo normal skin where the model-based correction determined a concentration of 1.6 μg/ml, which is in agreement with literature.  相似文献   

12.
We present a detailed investigation of Photofrin photobleaching and photoproduct accumulation. Fisher rats were sensitized with 10 mg kg(-1) Photofrin and irradiated 24 h later with 514 nm light at 5 or 100 mW cm(-2). Fluorescence spectra were collected from the skin throughout treatment, and sensitizer bleaching and fluorescent photoproduct formation were quantified using spectral analysis. Photofrin bleaching was slightly more rapid at the higher irradiance under these conditions. However, accumulation of photoproduct was significantly enhanced at lower irradiance. To interpret these unexpected findings, we developed a new mathematical model in which reactions between singlet oxygen (1O2) and the photosensitizer and reactions between the sensitizer triplet and biological targets are both allowed to contribute to bleaching. Predictions of this model were tested in experiments performed on EMT6 spheroids sensitized with concentrations of 2.5, 10 and 30 microg mL(-1) Photofrin and subjected to PDT. Photofrin bleaching and photoproduct formation in these spheroids were measured using confocal fluorescence spectroscopy. In qualitative agreement with the mixed-mechanism model predictions, at the highest drug concentration Photofrin bleaching was more efficient via 1O2 reactions, while at the lowest concentration triplet reactions were more efficient. At all concentrations, photoproduct accumulation was greater under conditions of abundant oxygen.  相似文献   

13.
Lee SJ  Koo H  Lee DE  Min S  Lee S  Chen X  Choi Y  Leary JF  Park K  Jeong SY  Kwon IC  Kim K  Choi K 《Biomaterials》2011,32(16):4021-4029
Herein, we developed the photosensitizer, protoporphyrin IX (PpIX), conjugated glycol chitosan (GC) nanoparticles (PpIX-GC-NPs) as tumor-homing drug carriers with cellular on/off system for photodynamic imaging and therapy, simultaneously. In order to prepare PpIX-GC-NPs, hydrophobic PpIXs were chemically conjugated to GC polymer and the amphiphilic PpIX-GC conjugates formed a stable nanoparticle structure in aqueous condition, wherein conjugated PpIX molecules formed hydrophobic inner-cores and they were covered by the hydrophilic GC polymer shell. Based on the nanoparticle structure, PpIX-GC-NPs showed the self-quenching effect that is 'off' state with no fluorescence signal and phototoxicity with light exposure. It is due to the compact crystallized PpIX molecules in the nanoparticles as confirmed by dynamic light scattering and X-ray diffraction methods. However, after cellular uptake, compact nanoparticle structure gradually decreased to generate strong fluorescence signal and singlet oxygen generation when irradiated. Importantly, PpIX-GC-NPs-treated mice presented prolonged blood circulation, enhanced tumor targeting ability, and improved in vivo therapeutic efficiency in tumor-bearing mice, compared to that of free PpIX-treated mice. These results proved that this tumor-homing cellular 'on/off' nanoparticle system of PpIX-GC-NPs has a great potential for synchronous photodynamic imaging and therapy in cancer treatment.  相似文献   

14.
A singlet oxygen dose model is developed for PDT with Photofrin. The model is based on photosensitizer photobleaching kinetics, and incorporates both singlet oxygen and non-singlet oxygen mediated bleaching mechanisms. To test our model, in vitro experiments were performed in which MatLyLu (MLL) cells were incubated in Photofrin and then irradiated with 532 nm light. Photofrin fluorescence was monitored during treatment and, at selected fluence levels, cell viability was determined using a colony formation assay. Cell survival correlated well to calculated singlet oxygen dose, independent of initial Photofrin concentration or oxygenation. About 2 x 10(8) molecules of singlet oxygen per cell were required to reduce the surviving fraction by 1/e. Analysis of the photobleaching kinetics suggests that the lifetime of singlet oxygen in cells is 0.048 +/- 0.005 micros. The generation of fluorescent photoproducts was not a result of singlet oxygen reactions exclusively, and therefore did not yield additional information to aid in quantifying singlet oxygen dose.  相似文献   

15.
This work evaluates four dose-volume metrics applied to microbeam radiation therapy (MRT) using simulated dosimetric data as input. We seek to improve upon the most frequently used MRT metric, the peak-to-valley dose ratio (PVDR), by analyzing MRT dose distributions from a more volumetric perspective. Monte Carlo simulations were used to calculate dose distributions in three cubic head phantoms: a 2 cm mouse head, an 8 cm cat head and a 16 cm dog head. The dose distribution was calculated for a 4 × 4 mm2 microbeam array in each phantom, as well as a 16 × 16 mm2 array in the 8 cm cat head, and a 32 × 32 mm2 array in the 16 cm dog head. Microbeam widths of 25, 50 and 75 μm and center-to-center spacings of 100, 200 and 400 μm were considered. The metrics calculated for each simulation were the conventional PVDR, the peak-to-mean valley dose ratio (PMVDR), the mean dose and the percentage volume below a threshold dose. The PVDR ranged between 3 and 230 for the 2 cm mouse phantom, and between 2 and 186 for the 16 cm dog phantom depending on geometry. The corresponding ranges for the PMVDR were much smaller, being 2-49 (mouse) and 2-46 (dog), and showed a slightly weaker dependence on phantom size and array size. The ratio of the PMVDR to the PVDR varied from 0.21 to 0.79 for the different collimation configurations, indicating a difference between the geometric dependence on outcome that would be predicted by these two metrics. For unidirectional irradiation, the mean lesion dose was 102%, 79% and 42% of the mean skin dose for the 2 cm mouse, 8 cm cat and 16 cm dog head phantoms, respectively. However, the mean lesion dose recovered to 83% of the mean skin dose in the 16 cm dog phantom in intersecting cross-firing regions. The percentage volume below a 10% dose threshold was highly dependent on geometry, with ranges for the different collimation configurations of 2-87% and 33-96% for the 2 cm mouse and 16 cm dog heads, respectively. The results of this study illustrate that different dose-volume metrics exhibit different functional dependences on MRT geometry parameters, and suggest that reliance on the PVDR as a predictor of therapeutic outcome may be insufficient.  相似文献   

16.
Multifrequency (0 to 0.3 mm(-1)), multiwavelength (633, 680, 720, 800, and 820 nm) spatial frequency domain imaging (SFDI) of 5-aminolevulinic acid-induced protoporphyrin IX (PpIX) was used to recover absorption, scattering, and fluorescence properties of glioblastoma multiforme spheroids in tissue-simulating phantoms and in vivo in a mouse model. Three-dimensional tomographic reconstructions of the frequency-dependent remitted light localized the depths of the spheroids within 500 μm, and the total amount of PpIX in the reconstructed images was constant to within 30% when spheroid depth was varied. In vivo tumor-to-normal contrast was greater than ~1.5 in reduced scattering coefficient for all wavelengths and was ~1.3 for the tissue concentration of deoxyhemoglobin (ctHb). The study demonstrates the feasibility of SFDI for providing enhanced image guidance during surgical resection of brain tumors.  相似文献   

17.
The dose released to the patient skin during a radiotherapy treatment is important when the skin is an organ at risk, or on the contrary, is included in the target volume. Since most treatment planning programs do not predict dose within several millimeters of the body surface, it is important to have a method to verify the skin dose for the patient who is undergoing radiotherapy. A special type of metal oxide semiconductors field-effect transistors (MOSFET) was developed to perform in vivo skin dosimetry for radiotherapy treatments. Water-equivalent depth (WED), both manufacturing and sensor reproducibility, dependence on both field size and angulation of the sensor were investigated using 6 MV photon beams. Patient skin dosimetries were performed during 6 MV total body irradiations (TBI). The resulting WEDs ranged from 0.04 and 0.15 mm (0.09 mm on average). The reproducibility of the sensor response, for doses of 50 cGy, was within +/-2% (maximum deviation) and improves with increasing sensitivity or dose level. As to the manufacturing reproducibility, it was found to be +/-0.055 mm. No WED dependence on the field size was verified, but possible variations of this quantity with the field size could be hidden by the assessment uncertainty. The angular dependence, for both phantom-surface and in-air setups, when referred to the mean response, is within +/-27% until 80 degree rotations. The results of the performed patient skin dosimetries showed that, normally, our TBI setup was suitable to give skin the prescribed dose, but, for some cases, interventions were necessary: as a consequence the TBI setup was corrected. The water-equivalent depth is, on average, less than the thinnest thermoluminescent dosimeters (TLD). In addition, when compared with TLDs, the skin MOSFETs have significant advantages, like immediate both readout and reuse, as well as the permanent storage of dose. These sensors are also waterproof. The in vivo dosimetries performed prove the importance of verifying the dose to the skin of the patient undergoing radiotherapy.  相似文献   

18.
Fluorescence measurements have been used to track the dosimetry of photodynamic therapy (PDT) for many years, and this approach can be especially important for treatments with aminolevulinic-acid-induced protoporphyrin IX (ALA-PpIX). PpIX photobleaches rapidly, and the bleaching is known to be oxygen dependent, and at the same time, fractionation or reduced irradiance treatments have been shown to significantly increase efficacy. Thus, in vivo measurement of either the bleaching rate and/or the total bleaching yield could be used to track the deposited dose in tissue and determine the optimal treatment plans. Fluorescence in rat esophagus and human Barrett's esophagus are measured during PDT in both continuous and fractionated light delivery treatment, and the bleaching is quantified. Reducing the optical irradiance from 50 to 25 mWcm did not significantly alter photobleaching in rat esophagus, but fractionation of the light at 1-min on and off intervals did increase photobleaching up to 10% more (p value=0.02) and up to 25% more in the human Barrett's tissue (p value<0.001). While two different tissues and two different dosimetry systems are used, the data support the overall hypothesis that light fractionation in ALA-PpIX PDT esophageal treatments should have a beneficial effect on the total treatment effect.  相似文献   

19.
We reported the development of new nanoscale drug carriers, chitosan-based nanoparticles (CNPs) that can be used for photodynamic therapy. These carriers could encapsulate a photosensitizer, protophorphyrin IX (PpIX), and deliver it to tumor tissue. We already reported that CNPs presented the enhanced tumor target specificity in cancer therapy and imbibed various water insoluble anticancer agents into the hydrophobic multicores of nanoscale particles. In this study, we prepared photosensitizer-encapsulated CNPs by self-assembling amphiphilic glycol chitosan–5β-cholanic acid conjugates in an aqueous environment and then encapsulating the water-insoluble photosensitizer (PpIX), with high drug-loading efficiency (>90%) by using a dialysis method. Freshly prepared PpIX-encapsulated CNPs (PpIX-CNPs) had an average diameter of 290 nm and were stable in aqueous solutions for 1 month. As nanoscale drug carriers, PpIX-CNPs exhibited a sustained release profile in vitro and were non-toxic to tumor cells in the dark. In a cell culture system, we observed rapid cellular uptake of the PpIX-CNPs and the released PpIX from CNPs became highly phototoxic upon visible irradiation. In SCC7 tumor-bearing mice, PpIX-CNPs exhibited enhanced tumor specificity and increased therapeutic efficacy compared to free PpIX. Taken together, our results indicate that PpIX-CNPs have potential as an effective drug delivery system for clinical photodynamic therapy.  相似文献   

20.
目的 为探索光敏剂浓度和给药时间对蓝光诱导的荧光诊断的影响,以提高荧光诊断的准确度.方法 常规方法制备荷瘤小鼠,分别给荷瘤小鼠静脉注射不同浓度(0~70 mg/kg体质量)的光敏剂-血卟啉衍生物(HpD),并在给药后不同时间(0~48 h),以前置395~415 nm滤光片的碘镓灯为激发光源,蓝光诱导载体荧光,通过图像采集系统采集荧光图像,取活组织做病理切片检查.结果 HpD浓度为40mg/kg体质量,给药后18 h,可以较为精确地反映肿瘤组织的浸润范围,荧光诊断准确度高于其他实验组;同时假阳性率低于其它实验组,差异有统计学意义.结论 荧光诊断的效果与光敏剂的浓度和观察时间密切相关;优化2者参数,可提高荧光诊断的准确度并降低假阳性率,对临床肿瘤手术方案的制定有重要参考价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号