首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE; MIM 600513) has been associated with mutations in the genes coding for the alfa-4 (CHRNA4), beta-2 (CHRNB2), and alpha-2 (CHRNA2) subunits of the neuronal nicotinic acetylcholine receptor (nAChR) and for the corticotropin-releasing hormone (CRH). A four-generation ADNFLE family with six affected members was identified. All affected members presented the clinical characteristics of ADNFLE. Interictal awake and sleep EEG recordings showed no epileptiform abnormalities. Ictal video-EEG recordings showed focal seizures with frontal lobe semiology. Mutation analysis of the CHRNB2 gene revealed a c.859G>A transition (Val287Met) within the second transmembrane domain, identical to that previously described in a Scottish ADNFLE family. To our knowledge, this is the third family reported presenting a mutation in CHRNB2. The clinical phenotype appears similar to that described with mutations in CHRNA4, suggesting that mutations in these two subunits lead to similar functional alterations of the nAChR.  相似文献   

4.
Certain paroxysmal nocturnal behaviors have been established as features of nocturnal frontal lobe epilepsy (NFLE). Despite insight into its genetics, the majority of patients with NFLE are not linked to a known mutation and clinical diagnosis remains a challenge. We describe a family presenting with stereotyped nocturnal arousals from non-rapid eye movement sleep, bilateral hand posturing, and pelvic thrusting in the mother, but subtle motor activity in the daughter, and minimal or no epileptiform EEG discharges. Despite normal IQ, there were moderate and severe verbal memory deficits in the mother and daughter, respectively. Genetic testing revealed the CHRNB2 mutation I312M in transmembrane region 3 (M3) of the neuronal nicotinic acetylcholine receptor. Phenotypic similarities in unrelated families suggest the determining role of this mutation in NFLE, whereas different inter- and intrafamilial cognitive profiles point to other factors. The absence of clear motor features of NFLE in the daughter emphasizes the shortcomings of current clinical criteria and the potential for genetic testing to further guide clinical diagnostic criteria.  相似文献   

5.
Twenty-four autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) probands were analyzed for the presence of V287L and V287M mutations in the CHRNB2 gene, which have been recently associated with the disease. In all patients, the involvement of the two additional loci reported as being associated with ADNFLE (CHRNA4 gene and chromosome 15q24 region) had been previously excluded. Mutational screening was performed by sequencing a polymerase chain reaction-amplified CHRNB2 DNA fragment, spanning the whole exon 5, which contains the V287L and V287M mutations and codes for approximately 65% of the mature protein. In none of the patients were mutations in the analyzed region of CHRNB2 found. These data, obtained in the largest ADNFLE cohort so far analyzed, demonstrate the rarity of the identified CHRNB2 mutations in ADNFLE patients.  相似文献   

6.
7.
D Bertrand 《Revue neurologique》1999,155(6-7):457-462
Identification of genes coding for the neuronal nicotinic acetylcholine receptors (nAChRs) has allowed rapid progress in the field of neuroscience. Determination of a high-affinity binding site for nicotine that correlates with the expression of mRNAs coding for nAChRs as well as protein expression is the best demonstration for localization of these receptors. Reconstitution of functional nAChRs in cells following cDNAs injection opened new ways to study these receptors in isolation. Furthermore, the recent linkage analysis between a form of autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) with a mutation in the gene coding for the alpha 4 subunit of the neuronal nAChRs constituted the first demonstration that alteration of these receptors may be at the origin of epileptic discharges. Physiological and pharmacological studies of these mutated receptors revealed that the two mutations so far identified in ADNFLE patient cause a loss of function. In this work we shall review, in the light of the latest findings, properties of control and mutated receptors and evaluate how their alteration can be at the origin of nocturnal seizures.  相似文献   

8.
OBJECTIVE: To identify the mutation responsible for autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) in a nonwhite family. BACKGROUND: ADNFLE is newly recognized as an entity of idiopathic partial epilepsy. Recently, two different mutations of the neuronal nicotinic acetylcholine receptor alpha4 subunit (CHRNA4) gene were identified in a white family as a cause of ADNFLE. METHODS: Four affected and three unaffected individuals in three generations of a Japanese family with ADNFLE, and 100 unrelated healthy Japanese volunteers were studied. Clinical features and EEG findings in affected individuals were consistent with those of ADNFLE reported in white families with ADNFLE. Mutations within the CHRNA4 gene were screened for using single-strand conformation polymorphism analysis (SSCA) and were determined by direct sequencing. The mutation identified was sought in volunteers by the amplification refractory mutation system. RESULTS: A C-to-T exchange (C755T) was found in exon 5 of the CHRNA4 gene on one allele of affected individuals. C755T segregated in affected individuals and was not found in 200 alleles obtained from the volunteers. C755T replaced serine 252 (Ser252) in the second membrane-spanning domain (M2) of CHRNA4 with a leucine. Ser252 is conserved characteristically in the alpha-subunit of acetylcholine receptor and is considered to play an important role in channel function. CONCLUSION: C755T is a novel missense mutation of the CHRNA4 gene causing autosomal dominant nocturnal frontal lobe epilepsy in this Japanese family.  相似文献   

9.
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a nonlesional condition associated with mutation of the gene coding for the α4 nicotinic acetylcholine receptor (nAChR). The nAChR modulates aspects of memory and attention. We examined the neuropsychological phenotype of ADNFLE, with a particular emphasis on understanding the impact on frontal lobe functions. We used standard clinical tests as well as focused measures of frontal lobe function in a well-defined group of patients with ADNFLE. Their performance was compared with that of a group of age-, sex-, and education-matched control participants. Patients with ADNFLE showed impairments on tasks requiring cognitive flexibility against a background of well-preserved intellectual abilities. In accord with existing research, verbal memory impairments were identified in the patient group; the level of impairment on these tasks correlated with disease-related factors. In our study of ADNFLE associated with one mutation, cognitive flexibility appears to be the core cognitive deficit.  相似文献   

10.
Members of the ligand-gated neuronal nicotinic acetylcholine receptor (nAChR) gene family (CHRNA4 and CHRNB2, coding for the α4 and β2 subunits, respectively) are involved in autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). However, ADNFLE is genetically heterogeneous and mutations in CHRNA4 and CHRNB2 account for only a minority of ADNFLE cases. Additional nAChR subunits expressed in the brain are candidates for this epilepsy. The involvement of all genes coding for brain-expressed nAChR subunits, with known chromosome localization (CHRNB2, 1q21; CHRNA2, 8p21; CHRNA6, CHRNB3, 8p11.2; CHRNA7, 15q14; CHRNA5/A3/B4, 15q24 and CHRNA4, 20q13.2) was investigated in four unrelated ADNFLE Italian families for at least three generations. Families were selected on the basis of anamnestic and videopolysomnographic analyses. Individuals were typed for polymorphic markers located in the above mentioned chromosome regions. Linkage and mutation analyses were performed. In none of the families was linkage between ADNFLE and the analysed chromosome regions detected. These findings support the hypothesis that genes different from those coding for α2-7 and β2-4 neuronal nAChR subunits could be responsible for ADNFLE. Received: 17 July 2001 Received in revised form: 21 January 2002 Accepted: 29 January 2002  相似文献   

11.
12.
BACKGROUND: A large family with autosomal dominant nocturnal frontal lobe epilepsy from the south of Spain was studied. The clinical appearance of the disease in this family, which included 28 members, of whom 11 were affected and 2 were obligate carriers, was identical to that previously described in an Australian family and a Norwegian family, in which mutations in exon 5 of the CHRNA4 gene were found. METHODS: Following DNA extraction, the family was genotyped with 4 fluorescent markers flanking the locus to the CHRNA4 gene on chromosome 20q13.3, and lod score computations were performed. The exon 5 of the CHRNA4 gene was amplified between nucleotides 535 and 825 and polymerase chain reaction products were purified and sequenced directly. RESULTS: The same missense mutation as that found in the Australian family, C-->T, which causes the replacement of a serine with phenylalanine in amino acid 252 in exon 5, was detected. This mutation segregated with the disorder in all 11 affected members, in the 2 obligate carriers, and in 1 asymptomatic sibling, and was not found in 1 spouse and 1 daughter. Neither of the 2 polymorphisms found in a series of families with epilepsy were found in our sample [corrected]. CONCLUSIONS: These data confirm the clinical homogeneity in the phenotypic expression of autosomal dominant nocturnal frontal lobe epilepsy caused by mutation in the CHRNA4 gene, and the pathogenic role of the Ser252Phe mutation in this disorder.  相似文献   

13.
《Sleep medicine》2015,16(2):232-236
ObjectiveMost cases of sudden unexpected death in epilepsy (SUDEP) follow a seizure, and most deaths occur while people are in bed, presumably sleeping. Nocturnal seizures are reported to be a risk factor for SUDEP. People with nocturnal frontal lobe epilepsy (NFLE) have seizures predominantly or exclusively during sleep, often many times per night. The present study aimed to assess whether NFLE represents a high-risk condition for SUDEP.MethodsThe present study retrospectively assessed the incidence of SUDEP in a cohort reconstructed from a dedicated database of consecutive patients referred to the Epilepsy and Sleep Centres of the Institute of Neurological Sciences of Bologna from 1980 to 2012 with: (1) a diagnosis of NFLE, (2) at least 90% of seizures during sleep, and (3) at least one-year of follow-up.ResultsOne hundred and three people were included. The median time from seizure onset to last observation was 26 years, equal to a follow-up of 2789 person-years. One person died of SUDEP during the follow-up period. The incidence rate of SUDEP was 0.36 per 1000 person-years (95% CI 0.01 to 2.0).ConclusionsThe incidence of SUDEP in the participant population was not higher than the rates previously reported in prevalent epilepsy populations (0.4 to 2.3 per 1000 person-years). The low prevalence of SUDEP might reflect the low occurrence of generalised tonic-clonic seizures in people with NFLE.  相似文献   

14.
PURPOSE: Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is the first described partial epilepsy syndrome known to be due to a single gene mutation. We found a first Japanese ADNFLE family with a novel mutation of the neuronal nicotinic acetylcholine receptor (nAChR) alpha4 subunit (CHRNA4) gene. The aim of this report is precisely to describe the electroclinical manifestations of ADNFLE in this family and to compare these findings with those of other families reported previously in the literature. METHODS: Three affected family members were investigated electroclinically by close clinical observation, interictal EEG, video-EEG monitoring, magnetic resonance imaging, and single-photon-emission tomography. Information about other affected family members was obtained from either the spouse or the parents. Mutations within the CHRNA4 gene were examined in seven family members. RESULTS: The clinical manifestations and diagnostic findings in the members of this family were consistent with ADNFLE. However, there were intrafamilial and interfamilial variations in clinical features. The seizures of the patients were brief tonic seizures, with hyperventilation in children and secondarily generalized tonic-clonic convulsions in adults. The onset of the children's seizures began in infancy and early childhood. The children's seizures were sometimes provoked by movement and sound stimulation, and did not respond to antiepileptic drugs. On the other hand, the adults' seizures disappeared spontaneously or were easily controlled with carbamazepine. Three children showed hyperactivity, and two children had mild mental retardation. All patients had impaired consciousness during their seizures and no auras. A novel missense mutation (c755C>T) in exon 5 of the CHRNA4 gene was found in four affected family members. CONCLUSIONS: The electroclinical pictures of a Japanese family with ADNFLE were basically the same as those of other families reported, but with slight differences. ADNFLE is probably not uncommon, and it is very likely that there are unidentified patients with this inherited disorder in Japan.  相似文献   

15.
PURPOSE: To describe the clinical features of a family from Northern Norway in which autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is associated with a Ser248Phe amino acid exchange in the second transmembrane domain of the neuronal nicotinic acetylcholine receptor alpha4 subunit (CHRNA4). We also tested for evidence of a de novo mutation or founder effect by comparing haplotypes with the original Australian family where the Ser248Phe mutation was first described. METHODS: Clinical details were obtained from 19 family members. Personal interviews and genetic analysis were carried out in 17. Parts of the coding region of CHRNA4 were sequenced, and two known polymorphisms (bp555/FokI, bp594/CfoI) were typed by restriction analysis. RESULTS: Eleven individuals had ADNFLE. The haplotypes of the mutation-carrying alleles of affected individuals from the Northern Norwegian and the Australian ADNFLE family are different. The phenotypic expressions are remarkably similar. CONCLUSIONS: The Ser248Phe mutation occurred independently in both families. Given the rarity of the disease, this suggests that not only the position of a mutation in the coding sequence but also the type of an amino acid exchange is important for the etiology of ADNFLE. The phenotypic similarity of these two families with different genetic backgrounds suggests that the Ser248Phe mutation largely determines the phenotype, with relatively little influence of other background genes.  相似文献   

16.
17.
Mutations in NPRL3, one of three genes that encode proteins of the mTORC1‐regulating GATOR1 complex, have recently been reported to cause cortical dysplasia with focal epilepsy. We have now analyzed a multiplex epilepsy family by whole exome sequencing and identified a frameshift mutation (NM_001077350.2; c.1522delG; p.E508Rfs*46) within exon 13 of NPRL3. This truncating mutation causes an epilepsy phenotype characterized by early childhood onset of mainly nocturnal frontal lobe epilepsy. The penetrance in our family was low (three affected out of six mutation carriers), compared to families with either ion channel‐ or DEPDC5‐associated familial nocturnal frontal lobe epilepsy. The absence of apparent structural brain abnormalities suggests that mutations in NPRL3 are not necessarily associated with focal cortical dysplasia but might be able to cause epilepsy by different, yet unknown pathomechanisms.  相似文献   

18.
PURPOSE OF REVIEW: While epilepsy describes a heterogeneous array of syndromes, the conventional view is that there is a common underlying failure in the ability of GABAergic inhibition to overcome excessive synaptic excitation. This review explores the possibility that enhanced GABAergic inhibition in the neocortex could also be proepileptogenic. RECENT FINDINGS: Recently, two mouse strains carrying mutant alleles of the alpha4 subunit of the nicotinic acetylcholine receptor that are associated with autosomal dominant nocturnal frontal lobe epilepsy have been found to show spontaneous seizures. Recordings from neocortical pyramidal neurons in vitro show that the autosomal dominant nocturnal frontal lobe epilepsy mutations are associated with large selective increases in nicotine-evoked GABAergic inhibition, which may be key factor in epileptogenesis, as the seizures in vivo are blocked by subconvulsive doses of the GABAA receptor antagonist, picrotoxin. SUMMARY: The precise links between the observed gain of neocortical inhibition and development of seizures in autosomal dominant nocturnal frontal lobe epilepsy mice remain unknown. Recent insights into the functional properties of cortical GABAergic circuits, however, suggest several possible pathways to be explored, whose elucidation could enable selective therapeutic interventions.  相似文献   

19.
PURPOSE: To identify mutations of the neuronal nicotinic acetylcholine receptor alpha4 subunit gene (CHRNA4) responsible for autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) in a group of white patients. METHODS: A group of 47 patients from 21 unrelated families with ADNFLE were screened for mutations in CHRNA4. Clinical features and EEG findings in the patients were consistent with those reported in the literature for other affected families. The entire gene was amplified from genomic DNA by polymerase chain reaction (PCR) followed by multitemperature single-strand conformation polymorphism analysis (MSSCP) and sequencing. RESULTS: A c.851C>T transition in exon 5 of CHRNA4 was identified in three affected individuals from two generations of the same family, but not in the remaining patients or in 100 healthy volunteers. This mutation caused an S284L substitution in the transmembrane domain M2 segment of the alpha4 subunit of the neuronal nicotinic acetylcholine receptor. The same mutation had previously been detected in a single Japanese family with ADNFLE, and in an Australian woman with a sporadic form of NFLE. CONCLUSIONS: This is the first report of an occurrence of c.851C>T transition in a white family with ADNFLE.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号