首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amygdalin, D-mandelonitrile-β-D-glucoside-6-β-glucoside, belongs to aromatic cyanogenic glycoside group derived from rosaceous plant seed. Mounting evidence has supported the anti-cancer effects of amygdalin. However, whether amygdalin indeed acts as an anti-tumor agent against breast cancer cells is not clear. The present study aimed to investigate the effect of amygdalin on the proliferation of human breast cancer cells. Here, we show that amygdalin exerted cytotoxic activities on estrogen receptors (ER)-positive MCF7 cells, and MDA-MB-231 and Hs578T triple-negative breast cancer (TNBC) cells. Amygdalin induced apoptosis of Hs578T TNBC cells. Amygdalin downregulated B-cell lymphoma 2 (Bcl-2), upregulated Bcl-2-associated X protein (Bax), activated of caspase-3 and cleaved poly ADP-ribose polymerase (PARP). Amygdalin activated a pro-apoptotic signaling molecule p38 mitogen-activated protein kinases (p38 MAPK) in Hs578T cells. Treatment of amygdalin significantly inhibited the adhesion of Hs578T cells, in which integrin α5 may be involved. Taken together, this study demonstrates that amygdalin induces apoptosis and inhibits adhesion of breast cancer cells. The results suggest a potential application of amygdalin as a chemopreventive agent to prevent or alleviate progression of breast cancer, especially TNBC.  相似文献   

2.
3.
To gain further insight into how estrogens modulate cell function, the effects of estrogen on cell proliferation were studied in human breast cancer cells. We examined the effects of estrogen on the proliferation of three human breast cancer cell lines that differed in their estrogen receptor contents. Ten nM estradiol markedly stimulated the proliferation of MCF-7 human breast cancer cells that contained high levels of estrogen receptor (1.15±0.03 pmole/mg protein) over that of control. In T47D cells that contained low levels of estrogen receptor (0.23±0.05 pmole/mg protein), Ten nM estrogen slightly stimulated the proliferation over that of control. MDA-MB-231 cells, that contained no detectable levels of estrogen receptors, had their growth unaffected by estrogen. These results showed their sensitivity to growth stimulation by estrogen correlated well with their estrogen receptor content. Also we examined the effect of estrogen on cellular progesterone receptor level as well as plasminogen activator activity in MCF-7 cells. Ten nM estradiol showed maximal stimulation of progesterone receptor level as well as plasminogen activator activity in MCF-7 cells. It is not clear whether these stimulations of progesterone receptor and plasminogen activator activity by estrogen are related to the estrogen stimulation of cell proliferation of MCF-7 cells. Studies with estrogen in human breast cancer cells in culture indicate that sensitivity to growth stimulation by estrogen correlates well with estrogen receptor contents.  相似文献   

4.
Kim JB  Lee KM  Ko E  Han W  Lee JE  Shin I  Bae JY  Kim S  Noh DY 《Planta medica》2008,74(1):39-42
The effects of berberine on the behavior of breast tumors have not yet been established. To determine whether this compound is useful in the treatment of breast cancer, we analyzed the impact of berberine on the human breast cancer cell lines MCF-7 and MDA-MB-231 cells. Berberine was added to proliferating MCF-7 and MDA-MB-231 cells in culture. Following treatment, changes in cell growth characteristics such as proliferation, cell cycle duration, and the degree of apoptosis were assayed. Following berberine treatment, a time-dependent reduction in proliferation was observed in both cell lines at differing concentrations: 20 microM for MCF-7 and 10 microM for MDA-MB-231 cells. Annexin V staining showed an increase in apoptosis in both cell lines of 31 % in MCF-7 and 12 % in MDA-MB-231 cells compared to their respective controls. In addition, 12 % of the MCF-7 cells were arrested at G0/G1, compared to 62 % of control cells. These results demonstrate that treatment with berberine inhibits growth in both MDA-MB-231 and MCF-7 cells. In addition, they show that this partly occurs through the induction of apoptosis in MDA-MB-231 cells, and through both cell cycle arrest and induction of apoptosis in MCF-7 cells. Thus, berberine may be a novel therapeutic drug for breast cancer.  相似文献   

5.
High concentrations of specific catechins [epigallocatechin gallate (EGCG), epigallocatechin (EGC) and epicatechin gallate (ECG)] inhibit the proliferation of many different cancer cell lines. The aim of this work was to determine if low concentrations of catechins with and without 4-hydroxytamoxifen (4-OHT) co-treatment would cause significant cytotoxicity in estrogen receptor-positive (ERalpha+) and -negative (ERalpha-) human breast cancer cells. Therefore, MCF-7, T47D, MDA-MB-231 and HS578T cells were incubated with EGCG, EGC or ECG (5-25 microM) individually and in combination with 4-OHT for 7 days. Cell number was determined by the sulforhodamine B cell proliferation assay. As single agents, none of the catechins were cytotoxic to T47D cells, while only EGCG (20 microM) elicited cytotoxicity in MCF-7 cells. Additionally, no benefit was gained by combination treatment with 4-OHT. ERalpha- human breast cancer cells were more susceptible as all three catechins were significantly cytotoxic to HS578T cells at concentrations of 10 microM. In this cell line, combination with 4-OHT did not increase cytotoxicity. However, the most striking results were produced in MDA-MB-231 cells. In this cell line, EGCG (25 microM) produced a greater cytotoxic effect than 4-OHT (1 microM) and the combination of the two resulted in synergistic cytotoxicity. In conclusion, low concentrations of catechins are cytotoxic to ERalpha- human breast cancer cells, and the combination of EGCG and 4-OHT elicits synergistic cytotoxicity in MDA-MB-231 cells.  相似文献   

6.
To gain further insight into how estrogens modulate cell function, the effects of estrogen on cell proliferation were studied in human breast cancer cells. We examined the effects of estrogen on the proliferation of three human breast cancer cell lines that differed in their estrogen receptor contents. Ten nM estradiol markedly stimulated the proliferation of MCF-7 human breast cancer cells that contained high levels of estrogen receptor (1.15+/-0.03 pmole/mg protein) over that of control. In T47D cells that contained low levels of estrogen receptor (0.23+/-0.05 pmole/mg protein), Ten nM estrogen slightly stimulated the proliferation over that of control. MDA-MB-231 cells, that contained no detectable levels of estrogen receptors, had their growth unaffected by estrogen. These results showed their sensitivity to growth stimulation by estrogen correlated well with their estrogen receptor content. Also we examined the effect of estrogen on cellular progesterone receptor level as well as plasminogen activator activity in MCF-7 cells. Ten nM estradiol showed maximal stimulation of progesterone receptor level as well as plasminogen activator activity in MCF-7 cells. It is not clear whether these stimulations of progesterone receptor and plasminogen activator activity by estrogen are related to the estrogen stimulation of cell proliferation of MCF-7 cells. Studies with estrogen in human breast cancer cells in culture indicate that sensitivity to growth stimulation by estrogen correlates well with estrogen receptor contents.  相似文献   

7.
Genes that suppress tumorigenesis can be silenced by epigenetic events, such as aberrant DNA methylation and modification of chromatin structure. Inhibitors of DNA methylase and histone deacetylase (HDAC) can potentially reverse these events. The aim of this study was to determine the in vitro antineoplastic activity of 5-aza-2'-deoxycytidine (5-AZA-CdR), a potent inhibitor of DNA methylase, in combination with depsipeptide (depsi), an inhibitor of HDAC, on human breast carcinoma cells. We observed a synergistic antineoplastic interaction between 5-AZA-CdR and depsi in their capacity to inhibit colony formation of Hs578T and MCF-7 breast carcinoma cells. In order to understand the molecular mechanism of this interaction, we investigated the effect of these drugs on the activation of the 14-3-3sigma, E-cadherin and tissue inhibitor of metalloproteinase 3 (TIMP3) cancer-related genes, which were reported to be silenced by aberrant methylation in many breast tumor cell lines. 14-3-3sigma was reported to produce G cell cycle arrest following DNA damage. E-cadherin and TIMP3 function as suppressors of tumor metastasis. Semi-quantitative RT-PCR was used to determine the effect of the co-administration of 5-AZA-CdR and depsi on four breast carcinoma cell lines for the reactivation of these genes. We observed a synergistic activation of E-cadherin by the combination in Hs578T, MDA-MB-231 and MDA-MB-435 tumor cells. For 14-3-3sigma, we demonstrated an additive to synergistic activation by the combination for Hs578T and MDA-MB-435 tumor cells, respectively. In the MCF-7 tumor cells, the drug combination produced a synergistic activation of TIMP3. The association between the synergistic antineoplastic activity and the synergistic activation of the target genes in this study suggests that the mechanism of anticancer activity of 5-AZA-CdR, in combination with depsi, is probably related to their enhanced activation of different types of tumor suppressor genes that have been silenced by epigenetic events.(2)  相似文献   

8.
Breast cancer is a complex disease and encompassing different types of tumor. Although advances in understanding of the molecular bases of breast cancer biology, the therapeutic proposals available still are not effective. In this scenario, the present study aimed to evaluate the mechanisms associated to antitumor activity of 7-Epiclusianone (7-Epi), a tetraprenylated benzophenone, on luminal A (MCF-7) and claudin-low (Hs 578T) breast cancer cell lines. We found that 7-Epi efficiently inhibited cell proliferation and migration of these cells; however MCF-7 was slightly more responsive than Hs 578T. Cell cycle analysis showed accumulation of cells at G0/G1 phase with drastic reduction of S population in treated cultures. This effect was associated to downregulation of CDKN1A (p21) and cyclin E in both cell lines. In addition, 7-Epi reduced cyclin D1 and p-ERK expression levels in MCF-7 cell line. Cytotoxic effect of 7-Epi on breast cancer cell lines was associated to its ability to increase BAX/BCL-2 ratio. In conclusion, our findings showed that 7-Epi is a promising antitumor agent against breast cancer by modulating critical regulators of the cell cycle and apoptosis.  相似文献   

9.
Cordycepin (3-deoxyadenosine), found in Cordyceps spp., has been known to have many therapeutic effects including immunomodulatory, anti-inflammatory, antimicrobial, and anti-aging effects. Moreover, anti-tumor and anti-metastatic effects of cordycepin have been reported, but the mechanism causing cancer cell death is poorly characterized. The present study was designed to investigate whether the mechanisms of cordycepin-induced cell death were associated with estrogen receptor in breast cancer cells. Exposure of both MDA-MB-231 and MCF-7 human breast cancer cells to cordycepin resulted in dose-responsive inhibition of cell growth and reduction in cell viability. The cordycepin-induced cell death in MDA-MB-231 cells was associated with several specific features of the mitochondria-mediated apoptotic pathway, which was confirmed by DNA fragmentation, TUNEL, and biochemical assays. Cordycepin also caused a dose-dependent increase in mitochondrial translocation of Bax, triggering cytosolic release of cytochrome c and activation of caspases-9 and -3. Interestingly, MCF-7 cells showed autophagy-associated cell death, as observed by the detection of an autophagosome-specific protein and large membranous vacuole ultrastructure morphology in the cytoplasm. Cordycepin-induced autophagic cell death has applications in treating MCF-7 cells with apoptotic defects, irrespective of the ER response. Although autophagy has a survival function in tumorigenesis of some cancer cells, autophagy may be important for cordycepin-induced MCF-7 cell death. In conclusion, the results of our study demonstrate that cordycepin effectively kills MDA-MB-231 and MCF-7 human breast cancer cell lines in culture. Hence, further studies should be conducted to determine whether cordycepin will be a clinically useful, ER-independent, chemotherapeutic agent for human breast cancer.  相似文献   

10.
In the present work, lipophilic caffeic and ferulic acid derivatives were synthesized, and their cytotoxicity on cultured breast cancer cells was compared. A total of six compounds were initially evaluated: caffeic acid (CA), hexyl caffeate (HC), caffeoylhexylamide (HCA), ferulic acid (FA), hexyl ferulate (HF), and feruloylhexylamide (HFA). Cell proliferation, cell cycle progression, and apoptotic signaling were investigated in three human breast cancer cell lines, including estrogen-sensitive (MCF-7) and insensitive (MDA-MB-231 and HS578T). Furthermore, direct mitochondrial effects of parent and modified compounds were investigated by using isolated liver mitochondria. The results indicated that although the parent compounds presented no cytotoxicity, the new compounds inhibited cell proliferation and induced cell cycle alterations and cell death, with a predominant effect on MCF-7 cells. Interestingly, cell cycle data indicates that effects on nontumor BJ fibroblasts were predominantly cytostatic and not cytotoxic. The parent compounds and derivatives also promoted direct alterations on hepatic mitochondrial bioenergetics, although the most unexpected and never before reported one was that FA induces the mitochondrial permeability transition. The results show that the new caffeic and ferulic acid lipophilic derivatives show increased cytotoxicity toward human breast cancer cell lines, although the magnitude and type of effects appear to be dependent on the cell type. Mitochondrial data had no direct correspondence with effects on intact cells suggesting that this organelle may not be a critical component of the cellular effects observed. The data provide a rational approach to the design of effective cytotoxic lipophilic hydroxycinnamic derivatives that in the future could be profitably applied for chemopreventive and/or chemotherapeutic purposes.  相似文献   

11.
Traditional medicinal herbs are an untapped source of potential pharmaceutical compounds. This study aims to determine whether the proliferation of breast cancer cell lines could be inhibited by germacrone, a natural product isolated from Rhizoma curcuma. Germacrone treatment significantly inhibited cell proliferation, increased lactate dehydrogenase (LDH) release, and induced mitochondrial membrane potential (ΔΨm) depolarization in both MCF-7 and MDA-MB-231 cells in a dose-dependent manner. Germacrone induced MDA-MB-231 and MCF-7 cell cycle arrest at the G0/G1 and G2/M phases respectively and induced MDA-MB-231 cell apoptosis. Furthermore, germacrone treatment significantly increased Bok expression and cytochrome c release from mitochondria without affecting Bcl-2, Bcl-xL, Bax, and Bim protein expressions. In addition, germacrone treatment induced caspase-3, 7, 9, PARP cleavage. We concluded that germacrone inhibited the proliferation of breast cancer cell lines by inducing cell cycle arrest and apoptosis through mitochondria-mediated caspase pathway. These results might provide some molecular basis for the anti-tumor activity of Rhizoma curcuma.  相似文献   

12.
Overexpression of Skp2, the ubiquitin ligase subunit that targets p27 for degradation, is often observed in cancers, and is associated with aggressive tumor proliferation and poor prognosis. As there is no drug at present that specifically targets Skp2, studies were undertaken to examine the effects of commonly used drugs on Skp2 regulation. Doxorubicin is among the most effective antitumor agents used for the management of breast cancer, but its effect on Skp2 expression is unknown. The objective of this study was to examine the effect of doxorubicin on Skp2 expression regulation in breast cancer cell lines. The expression of Skp2 mRNA and the protein levels of Skp2, p27, p21 and cyclin B were examined in doxorubicin-treated MCF-7 and MDA-MB-231 breast cancer cells. The effect of doxorubicin on the cell cycle profile was assessed by fluorescence-activated cell sorting analysis. Doxorubicin decreased Skp2 mRNA and protein levels in MCF-7 cells, but had the opposite effect in MDA-MB-231 cells. p27 levels were slightly decreased, whereas p53 and p21 levels were significantly upregulated in doxorubicin-treated MCF-7 cells. In contrast, p27 levels were unaffected by doxorubicin treatment in MDA-MB-231 cells, but cyclin B levels were markedly increased. Doxorubicin arrested MCF-7 cells at G1/S and G2/M checkpoints, whereas MDA-MB-231 cells were arrested at G2/M only. The differential effects of doxorubicin on Skp2 expression in breast cancer cells depend upon the specific cell cycle checkpoints activated by the drug. These changes induced by doxorubicin, however, do not significantly affect p27 expression in these cell lines, suggesting that the potential of a given drug to alter p27 expression through Skp2 modulation might depend on its specific action on cell cycle arrest.  相似文献   

13.
Aim: Receptor-interacting protein 3 (RIP3) is involved in tumor necrosis factor receptor signaling, and results in NF-KB-mediated prosurvival signaling and programmed cell death. The aim of this study was to determine whether overexpression of the RIP3 gene could sensitize human breast cancer cells to parthenolide in vitro. Methods: The expression of RIP3 mRNA in human breast cancer cell lines (MCF-7, MDA-MB-231, MDA-MB-435 and T47D) was detected using RT-PCR. Both MDA-MB-231 and MCF-7 cells were transfected with RIP3 expression or blank vectors via lentivirus. Cell viability was measured with MTT assay; intracellular ROS level and cell apoptosis were analyzed using flow cytometry. Results: RIP3 mRNA expression was not detected in the four human breast cancer cell lines tested. However, the transfection induced higher levels of RIP3 protein in MCF-7 and MDA-MB-231 cells. Furthermore, overexpression of RIP3 decreased the IC50 values of parthenolide from 17.6 to 12.6 μmol/L in MCF-7 cells, and from 16.6 to 9.9 μmol/L in MDA-MB-231 cells. Moreover, overexpression of RIP3 significantly increased parthenolide-induced apoptosis and ROS accumulation in MCF-7 and MDA-MB-231 cells. Pretreatment with N-acetyl-cysteine abrogated the increased sensitivity of RIP3-transfected MCF-7 and MDA-MB-231 cells to parthenolide. Conclusion: Overexpression of RIP3 sensitizes MCF-7 and MDA-MB-231 breast cancer cells to parthenolide in vitro via intracellular ROS accumulation.  相似文献   

14.
The formation of reactive oxygen species (ROS) plays a critical role in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced toxicities in mammalian cells since it promotes cell proliferation, growth arrest, and apoptosis. In this study, we investigated whether TCDD induces oxidative stress and DNA damage in human ERalpha(+)/MCF-7 and ERalpha(-)/MDA-MB-231 breast cancer cells and whether this is accompanied by the initiation of DNA repair events. Results indicated that viability of MCF-7 and MDA-MB-231 cells was concentration- and time-dependently reduced by TCDD. Further, we observed significant increases in ROS formation and decreases in intracellular glutathione (GSH) in these two cell lines after TCDD treatment. Overall, the extent of cell death was greater in MCF-7 cells than in MDA-MB-231 cells whereas the magnitude of ROS formation and GSH depletion was greater in MDA-MB-231 cells than in MCF-7 cells. In addition, we observed that at non-cytotoxic concentration (1nM for 5h), TCDD induced decreases in intracellular NAD(P)H and NAD(+) in MCF-7 and MDA-MB-231 cells. These decreases were completely blocked by three types of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. The catalytic activation of PARP-1 in cells treated with TCDD was confirmed by detection of the presence of polymers of ADP-ribose-modified PARP-1 using Western blotting. Moreover, we demonstrated increases in the number of DNA strand breaks in MCF-7 and MDA-MB-231 cells exposed to TCDD as measured by the single-cell gel electrophoresis (Comet) assay. Overall, this evidence confirms that TCDD induces decreases in intracellular NAD(P)H and NAD(+) through PARP-1 activation mediated by formation of DNA strand breaks. In addition, we demonstrated that the extent of oxidative stress and DNA damage was greater in MDA-MB-231 cells than in MCF-7 cells, with a strong correlation to estrogen receptor (ER) status. In conclusions, our findings add further support to the theme that ROS formation is a significant determinant factor in mediating the induction of oxidative DNA damage and repair in human breast cancer cells exposed to TCDD and that the TCDD-induced oxidative stress and DNA damage may, in part, contribute to TCDD-induced carcinogenesis.  相似文献   

15.
目的 探讨LincRNA-P21通过靶向miR-17-3p对三阴性乳腺癌(TNBC)细胞迁移和侵袭作用的影响。方法 qPCR检测30例TNBC患者肿瘤组织、癌旁正常组织以及6种乳腺细胞(乳腺正常细胞MCF-10A,乳腺癌细胞MDA-MB-231、MDA-MB-435、MDA-MB-468、BT549、T47D)LincRNA-P21和miR-17-3p的表达。取MDA-MB-231细胞,单独过表达LincRNA-P21(实验设对照组、pcDNA3.1空白组、pcDNA-LincRNA-P21组),抑制miR-17-3p表达(实验设对照组、miR-17-3p空白组、miR-17-3p抑制剂组),过表达LincRNA-P21+抑制miR-17-3p表达(实验设对照组、miR-17-3p抑制剂组和pcDNA-LincRNA-P21+miR-17-3p inhibitor组)。CCK-8法检测MDA-MB-231细胞增殖,集落形成实验检测细胞的集落数量,细胞划痕实验检测细胞的迁移能力,Transwell实验检测细胞侵袭能力。Western blot检测E-cadherin和Vimentin蛋白表达。结果 TNBC患者组织中LincRNA-P21的表达明显低于癌旁组织(0.48±0.03 vs. 1.03±0.06,t=11.714,P<0.01),miR-17-3p的表达显著高于癌旁组织(2.93±0.17 vs. 1.02±0.04,t=15.593,P<0.01)。乳腺癌细胞系中LincRNA-P21表达量明显低于MCF-10A,miR-17-3p表达量高于MCF-10A(P<0.01)。单独过表达LincRNA-P21或抑制miR-17-3p后,MDA-MB-231细胞增殖能力、集落形成数量、迁移和侵袭能力均明显下降。过表达LincRNA-P21的同时抑制miR-17-3p,MDA-MB-231细胞增殖能力、集落形成数量、迁移和侵袭能力出现进一步下降,且上调E-cadherin的表达,抑制Vimentin的表达(P<0.05)。结论 LincRNA-P21通过竞争性结合miR-17-3p来抑制MDA-MB-231细胞增殖、集落形成、迁移和侵袭。  相似文献   

16.
Chemotherapeutic drugs are usually designed to induce cancer cell death via cell cycle arrest and/or apoptosis pathways. In this study, we used the chemical drug 15,16-dihydrotanshinone I (DHTS) to inhibit breast cancer cell proliferation and tumor growth, and investigate the underlying molecular mechanisms. Human breast cancer cell lines MCF-7 and MDA-MB-231 were both used in this study, and DHTS was found to significantly decrease cell proliferation by a dose-dependent manner in both cells. Flow cytometry indicated that DHTS induced G1 phase arrest in synchronous MCF-7 and MDA-MB-231 cells. When analyzing the expression of cell cycle-related proteins, we found that DHTS reduced cyclin D1, cyclin D3, cyclin E, and CDK4 expression, and increased CDK inhibitor p27 expression in a dose-dependent manner. In addition, DHTS inhibited the kinase activities of CDK2 and CDK4 by an immunocomplex kinase assay. In addition, DHTS also induced apoptosis in both cells through mainly mitochondrial apoptosis pathways. We found that DHTS decreased the anti-apoptotic protein Bcl-xL level and increased the loss of mitochondria membrane potential and the amount of cytochrome c released. Moreover, DHTS activated caspase-9, caspase-3, and caspase-7 and caused cell apoptosis. The fact that DHTS-induced apoptosis could be blocked by pretreating cells with pan-caspase inhibitor confirmed that it is mediated through activation of the caspase-3-dependent pathway. In a nude mice xenograft experiment, DHTS significantly inhibited the tumor growth of MDA-MB-231 cells. Taken together, these results suggest that DHTS can inhibit human breast cancer cell proliferation and tumor growth, and might have potential chemotherapeutic applications.  相似文献   

17.
Chalcones are discussed to represent cancer preventive food components in a human diet that is rich in fruits and vegetables. In this study, we examined chalcone (1,3-diphenyl-2-propenone) for its effect on proliferation in human breast cancer cell lines, MCF-7 and MDA-MB-231. The results showed that chalcone inhibited the proliferation of MCF-7 and MDA-MB-231 by inducing apoptosis and blocking cell cycle progression in the G2/M phase. Immunoblot assay showed that chalcone significantly decreased the expression of cyclin B1, cyclin A and Cdc2 protein, as well as increased the expression of p21 and p27 in a p53-independent manner, contributing to cell cycle arrest. An enhancement in Fas/APO-1 and its two form ligands, membrane-bound Fas ligand (mFasL) and soluble Fas ligand (sFasL), was responsible for the apoptotic effect induced by chalcone. In addition, chalcone also triggered the mitochondrial apoptotic signaling by increasing the amount of Bax and Bak and reducing the level of Bcl-2 and Bcl-X(L), and subsequently activated caspase-9 in MCF-7 and MDA-MB-231 cells. Taken together, our study suggests that the blockade of cell cycle progression and initiation of cell apoptotic system may participate in the antiproliferative activity of chalcone in human breast cancer cells.  相似文献   

18.
丹参酮ⅡA抗乳腺癌细胞增殖作用研究   总被引:6,自引:2,他引:4  
目的利用雌激素受体(estrogenic receptor,ER)阳性乳腺癌T47D细胞和ER阴性乳腺癌MDA-MB-231细胞观察丹参酮ⅡA(TanshinoneⅡA)对细胞增殖活性的影响及其对雌激素受体亚型的调节功能。方法以ER拮抗剂ICI182,780为工具药,采用MTT细胞增殖实验观察1×10-6mol.L-1和1×10-7mol.L-1丹参酮ⅡA对T47D和MDA-MB-231细胞增殖的影响。利用实时荧光定量PCR法及流式细胞术检测其对T47D细胞ERα和ERβmRNA及蛋白表达情况的影响。结果丹参酮ⅡA能够抑制T47D细胞增殖,且该作用可被ICI182,780部分拮抗;对MDA-MB-231细胞增殖的抑制作用较其对T47D细胞的作用更为明显。丹参酮ⅡA可使T47D细胞ERα和ERβmRNA和蛋白表达明显增加,并使ERα/ERβ比值有所上升。结论丹参酮ⅡA具有抑制乳腺癌细胞增殖的作用,抑制强度与对其ER亚型的调节作用相关。  相似文献   

19.
It has reported that many environmental compounds may display estrogenic actions and these findings led to researchers to associate breast cancer risk with the use of some pesticides. The aim of this work was to investigate the effect of chlorpyrifos (CPF) on cell proliferation and the ERα-dependence of this action employing MCF-7 and MDA-MB-231 breast cancer cell lines. We have also analyzed CPF action on the cell cycle distribution and the cyclins that are implicated in G1-S and intra-S checkpoints. Finally, the action on cell death and ROS production were studied. We demonstrated the ability of CPF 0.05μM to induce cell proliferation through ERα in hormone-dependent breast cancer cells. In contrast, CPF 50μM induces intra-S arrest modifying checkpoints proteins, through a mechanism that may involve changes in redox balance in MCF-7. In MDA-MB-231, we have found that CPF 50μM produces an arrest in G2/M phase which could be related to the capacity of the pesticide for binding to tubulin sites altering microtubules polymerization. Altogether, our results provide new evidences on the action of the pesticide CPF as an environmental breast cancer risk factor due to the effects that causes on the mechanisms that modulate breast cell proliferation.  相似文献   

20.
An extract of Mangifera pajang kernel has been previously found to contain a high content of antioxidant phytochemicals. The present research was conducted to investigate the anticancer potential of this kernel extract. The results showed that the kernel crude extract induced cytotoxicity in MCF-7 (hormone-dependent breast cancer) cells and MDA-MB-231 (non-hormone dependent breast cancer) cells with IC50 values of 23 and 30.5 μg/ml, respectively. The kernel extract induced cell cycle arrest in MCF-7 cells at the sub-G1 (apoptosis) phase of the cell cycle in a time-dependent manner. For MDA-MB-231 cells, the kernel extract induced strong G2-M arrest in cell cycle progression at 24 h, resulting in substantial sub-G1 (apoptosis) arrest after 48 and 72 h of incubation. Staining with Annexin V-FITC and propidium iodide revealed that this apoptosis occurred early in both cell types, 36 h for MCF-7 cells and 24 h for MDA-MB-231cells, with 14.0% and 16.5% of the cells respectively undergoing apoptosis at these times. This apoptosis appeared to be dependent on caspase-2 and -3 in MCF-7 cells, and on caspase-2, -3 and -9 in MDA-MB-231 cells. These findings suggest that M. pajang kernel extract has potential as a potent cytotoxic agent against breast cancer cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号