首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Hong  M D Lai  Y S Lin  M Z Lai 《Cancer research》1999,59(12):2847-2852
p53-mediated apoptosis is antagonized by growth factor stimulation. Here, we show that p53-dependent cell death induced by DNA damage was effectively prevented by mitogen activation. The levels of Bcl-2, Bcl-xL, and Bax were not altered by cisplatin treatment and mitogen rescue. Instead, the protection against p53-regulated apoptosis was mediated by at least three distinct signaling pathways. Either phosphatidylinositol (PI) 3-kinase or mitogen-activated protein kinase kinase (MEK) antagonized p53-induced apoptosis, and an additive preventive effect was observed when both kinases were activated. However, the combination of PI 3-kinase and MEK was not sufficient to completely prevent apoptosis induced by DNA damage. Mitogen activation further suppressed cisplatin-induced p53 expression, and the inhibition was mainly dependent on the Ca2+ pathway. Our results demonstrate that effective antagonism of p53-dependent apoptosis by mitogenic activation requires the presence of multiple signal pathways, including PI 3-kinase, MEK, and Ca2+.  相似文献   

2.
We examined the sensitivity for cisplatin-induced apoptosis in a panel of four testicular germ cell tumour (TGCT) cell lines and monitored the cellular expression of the apoptosis-related proteins p53, Bcl-2 and Bax. Three of four TGCT cell lines (NT2, NCCIT and S2) were hypersensitive for cisplatin-induced apoptosis, while the TGCT cell line 2102 EP appeared to be resistant for cisplatin-induced apoptosis, even at relatively high drug concentrations (12.5 microM). For all four cell lines, the induction of apoptosis by cisplatin correlated with drug sensitivity in the MTT assay. The differences in chemosensitivity and induction of apoptosis could not be attributed to differences in cellular platinum accumulation, DNA platination or platinum-DNA adduct removal. We next analysed the relationship between p53 status and cisplatin-induced up-regulation of p53, and the susceptibility to cisplatin-induced apoptosis. Wild-type p53 containing NT2 and 2102 EP cells showed p53 up-regulation upon drug treatment, and NCCIT (mutant p53) and S2 (no p53 protein) cells did not. Consistently, the increase in wild-type p53 protein in NT2 and 2102 EP cells led to an increase in mRNA level of the p53 downstream gene p21/WAF/CIP, whereas mutant p53-containing NCCIT cells and p53-non-expressing S2 cells could not transactivate this p53-responsive gene. As NT2, NCCIT and S2 were readily triggered into apoptosis, while 2102 EP cells failed to undergo cisplatin-induced apoptosis, our data suggest that the presence of wild-type and/or transactivation-competent p53 might not be an absolute prerequisite for efficient induction of apoptosis in TGCT cell lines. Also endogenous levels of Bcl-2 and Bax expression did not correlate with cisplatin-induced apoptosis. In addition, the endogenous Bcl-2 and Bax expression was not affected by cisplatin treatment. The present study suggests that, at least in our panel of TGCT cell lines, hypersensitivity for cisplatin-induced apoptosis might not be necessarily correlated with the presence of wild-type p53 and is probably not associated with Bcl-2 and Bax expression.  相似文献   

3.
We investigated the role of p53 and of the Bcl-2 family proteins in the apoptotic response of a panel of testicular tumour cell lines (NT2, NCCIT, S2 and 2102 EP). The p53 gene status and the capacity of the p53 protein to transactivate the p21/WAF/CIP gene were determined, and we examined the correlation between p53 status and the susceptibility to cisplatin-induced apoptosis. In contrast to wild-type p53-containing NT2 and 2102 EP cells, NCCIT (mutant p53) and S2 (no p53 protein) cells were shown to be p53-transactivation defective. However, NCCIT and S2 cells with non-functional p53 were readily triggered into apoptosis by cisplatin, whereas p53-transactivation competent 2102 EP cells failed to undergo cisplatin-induced apoptosis. The defective apoptotic pathway in 2102 EP cells was reflected by a 4-fold decreased sensitivity to cisplatin in the MTT assay. We further demonstrated that the p53-independent differential cisplatin sensitivity among the testicular germ cell tumour (TGCT) cell lines was not due to differences in cellular cisplatin accumulation or DNA platination. The pattern of endogenous expression levels of Bax, Bcl-2, Bcl-x and Bak, which was not modulated by cisplatin treatment, demonstrated that these Bcl-2 family proteins are not involved in drug-induced apoptosis in the TGCT cell lines. Our results suggest a lack of correlation between cisplatin-induced apoptosis, p53 status and expression of Bcl-2 family proteins in our panel of TGCT cell lines. We conclude that the cisplatin-induced apoptotic pathway in TGCT cell lines might be p53-independent and is probably not associated with differences in the Bcl-2/Bax rheostat. Int. J. Cancer 73:592–599, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
Cyanidin is an anthocyanin widely distributed in food diet with novel antioxidant activity. Herein, we investigated the protective effects of cyanidin on HK-2 proximal tubular cells against cisplatin-induced apoptosis and elucidated the underlying mechanisms. The results showed that cisplatin-induced apoptosis in HK-2 cells was significantly attenuated by cyanidin. The cleavage of caspases and PARP, activation of p53 and mitochondrial-mediated apoptosis pathways induced by cisplatin were effectively blocked by cyanidin. Moreover, cyanidin significantly suppressed the overproduction of ROS, and activation of ERK and AKT pathways triggered by cisplatin. Our results indicate that cyanidin exhibits therapeutic potential in prevention of cisplatin-induced nephrotoxicity.  相似文献   

5.
hTERT: a novel endogenous inhibitor of the mitochondrial cell death pathway   总被引:7,自引:0,他引:7  
hTERT is the catalytic subunit of the telomerase and is hence required for telomerase maintenance activity and cancer cell immortalization. Here, we show that acute hTERT depletion has no adverse effects on the viability or proliferation of cervical and colon carcinoma cell lines, as evaluated within 72 h after transfection with hTERT-specific small interfering RNAs (siRNAs). Within the same time frame, hTERT depletion facilitated the induction of apoptotic cell death by cisplatin, etoposide, mitomycin C and reactive oxygen species, yet failed to sensitize cells to death induction via the CD95 death receptor. Experiments performed with p53 knockout cells or chemical p53 inhibitors revealed that p53 was not involved in the chemosensitizing effect of hTERT knockdown. However, the proapoptotic Bcl-2 family protein Bax was involved in cell death induction by hTERT siRNAs. Depletion of hTERT facilitated the conformational activation of Bax induced by genotoxic agents. Moreover, Bax knockout abolished the chemosensitizing effect of hTERT siRNAs. Inhibition of mitochondrial membrane permeabilization by overexpression of Bcl-2 or expression of the cytomegalovirus-encoded protein vMIA (viral mitochondrial inhibitor of apoptosis), which acts as a specific Bax inhibitor, prevented the induction of cell death by the combination of hTERT depletion and chemotherapeutic agents. Altogether, our data indicate that hTERT inhibition may constitute a promising strategy for facilitating the induction of the mitochondrial pathway of apoptosis.  相似文献   

6.
Roh JL  Ko JH  Moon SJ  Ryu CH  Choi JY  Koch WM 《Cancer letters》2012,325(1):35-41
We evaluated whether the restoration of p53 function by the p53-reactivating small molecule RITA (reactivation of p53 and induction of tumor cell apoptosis enhances cisplatin-induced cytotoxicity and apoptosis in head-and-neck cancer (HNC). RITA induced prominent accumulation and reactivation of p53 in a wild-type TP53-bearing HNC cell line. RITA showed maximal growth suppression in tumor cells showing MDM2-dependent p53 degradation. RITA promoted apoptosis in association with upregulation of p21, BAX, and cleaved caspase-3; notably, the apoptotic response was blocked by pifithrin-α, demonstrating its p53 dependence. With increasing concentrations, RITA strongly induced apoptosis rather than G2-phase arrest. In combination therapy, RITA enhanced cisplatin-induced growth inhibition and apoptosis of HNC cells invitro and in vivo. Our data suggest that the restoration of p53 tumor-suppressive function by RITA enhances the cytotoxicity and apoptosis of cisplatin, an action that may offer an attractive strategy for treating HNC.  相似文献   

7.
Non-small cell lung cancer (NSCLC) often shows intrinsic multidrug resistance, which is one of the most serious problems in cisplatin-based adjuvant chemotherapy. Anticancer drugs exert at least part of their cytotoxic effect by triggering apoptosis. In order to understand the molecular alterations leading to heterogeneous cisplatin sensitivity and apoptosis inducibility in NSCLC cells, we analyzed various apoptotic pathways, including the activation of caspase-8, -9 and -3, the release of cytochrome c from mitochondria and the expression levels of pro- and anti-apoptotic proteins such as Bax, Bad, Bcl-2, Bcl-xL, Fas and p53 using heterogeneously apoptosis-sensitive cells (Ma-10, Ma-31 and Ma-46). Cisplatin treatment induced the activation of caspase-8, -9 and -3 and the release of cytochrome c in apoptosis-sensitive Ma-46. The expression of Bcl-xL was the highest and p53 was not expressed in apoptosis-resistant Ma-31, and Fas was not expressed in Ma-46. These expression levels were not correlated with the apoptosis inducibility of the three cell lines. These results suggest that blockage of the apoptotic signal from mitochondria is responsible for apoptosis resistance in NSCLC cell lines. Our findings also indicate that anti-apoptotic Bcl-xL and pro-apoptotic p53 are necessary but not sufficient for resistance to cisplatin-induced apoptosis in NSCLC cells.  相似文献   

8.
Activation of the mitogen-activated protein kinases ERK1/2 by the chemotherapeutic agent cisplatin has been shown to result in either survival or cell death. The downstream mediators of these opposing effects are unknown, as are the upstream signaling molecules. Activation of ERK is required for accumulation and phosphorylation of p53 following cisplatin treatment. We studied the role of ERK activation after cisplatin treatment under p53-negative and p53-positive conditions using a tetracycline-dependent expression vector in Saos-2 osteosarcoma cells. Dose-dependent activation of ERK first occurred 3-6 h after a 2-h cisplatin incubation and declined after 12-24 h in several tumor cell lines. Incubation of cell lines with the MEK1 inhibitors PD98059 or UO126 after, but not during, cisplatin treatment completely inhibited cisplatin-induced activation of ERK. The activation of ERK by cisplatin was inhibited by transient transfection with dominant-negative Ras-N17 in Saos-2 cells. Treatment of cells with PD98059 or UO126 after cisplatin incubation or inhibition of signaling through ERK by tetracycline-regulated expression of dominant-inhibitory ERK enhanced resistance to cisplatin in p53-negative osteosarcoma cells and reduced cisplatin-induced apoptosis. P53 was stabilized and phosphorylated in a MEK1-dependent manner after cisplatin incubation in Kelly neuroblastoma cells. Inhibition of signaling through ERK increased cell survival after cisplatin treatment in these cells as well. Expression of functional p53 did not change the proapoptotic effects of ERK activation in response to cisplatin in Saos-2 cells. Our results suggest that cisplatin-induced activation of ERK is mediated by Ras. ERK activation increased cisplatin-induced cell death independently of p53 in osteosarcoma and neuroblastoma cell lines.  相似文献   

9.
Hossini AM  Geilen CC  Fecker LF  Daniel PT  Eberle J 《Oncogene》2006,25(15):2160-2169
Pro- and antiapoptotic proteins of the large Bcl-2 family are critical regulators of apoptosis via the mitochondrial pathway. Whereas antiapoptotic proteins of the family share all four Bcl-2 homology domains (BH1-BH4), proapoptotic members may lack some of these domains, but all so far described proapoptotic Bcl-2 proteins enclose BH3. The bcl-x gene gives rise to several alternative splice products resulting in proteins with distinct functions as the antiapoptotic Bcl-xL and proapoptotic Bcl-xS. Here, we describe a novel Bcl-x splice product of 138 amino acids termed Bcl-xAK (Atypical Killer), which encloses the Bcl-2 homology domains BH2 and BH4 as well as the transmembrane domain, but lacks BH1 and BH3. Weak endogenous expression of Bcl-xAK was seen in melanoma and other tumor cells. Interestingly, its overexpression by applying a tetracycline-inducible expression system resulted in significant induction of apoptosis in melanoma cells, which occurred in synergism with drug-induced apoptosis. After exogenous overexpression, Bcl-xAK was localized both in mitochondrial and in cytosolic cell fractions. By these findings, a completely new class of Bcl-2-related proteins is introduced, which promotes apoptosis independently from the BH3 domain and implies additional, new mechanisms for apoptosis regulation in melanoma cells.  相似文献   

10.
11.
Bcl-2 family proteins play central roles in the regulation of most, if not all, apoptotic pathways, and hence this family plays a critical role in oncogenesis. The Bcl-2 homology 3 (BH3)-only members of this family are "proapoptotic," promoting apoptosis by sensing cellular stresses: that is, they are activated or induced in response to stress stimuli. These BH3-only proteins then interfere with the function of "prosurvival" Bcl-2 family members, thereby promoting the progression of apoptosis. It has long been recognized that the induction and activation of each of the BH3-only proteins are subject to the type of stress stimulus. Although it was originally assumed that all the BH3-only proteins exert similar effects on the downstream apoptotic machinery, recent studies have uncovered their distinct functional properties, indicating the operation of more intricate, versatile control mechanisms of apoptosis. In this review, we will summarize recent findings on the diversity in the activation and function of BH3-only proteins. In particular, we focus on the overlapping and individual roles of 2 BH3-only proteins, Puma and Noxa, in the context of the apoptotic response induced by the tumor suppressor p53.  相似文献   

12.
Wang J  Zhou JY  Wu GS 《Cancer research》2007,67(24):11933-11941
Mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) is the MAPK phosphatase family member that negatively regulates MAPK signaling. Our previous study showed that MKP-1 is involved in cisplatin resistance, but the mechanism underlying its resistance is not understood. Here, we show that ERK2-mediated MKP-1 expression is critical for cisplatin resistance. Specifically, we showed that in the human ovarian cancer cell lines, cisplatin induces MKP-1 through phosphorylation. We also showed that inhibition of ERK2 activity by the MEK1/2 inhibitor U0126 or by small interfering RNA silencing decreases MKP-1 induction, leading to an increase in cisplatin-induced cell death, which mimicked the results obtained with cells in which MKP-1 is down-regulated. Importantly, down-regulation of ERK2 decreased cisplatin-induced MKP-1 phosphorylation, suggesting that MKP-1 phosphorylation depends on ERK2 activity. Furthermore, down-regulation of ERK2 or MKP-1 enhanced cisplatin-induced apoptosis. In addition, we showed that down-regulation of ERK2 or MKP-1 decreases the basal level of Bcl-2 protein and that inhibition of Bcl-2 activity sensitizes ovarian cancer cells to cisplatin. Collectively, our results indicate that induction of MKP-1 by cisplatin is through phosphorylation involving ERK signaling and that MKP-1 plays a critical role in ERK-mediated cisplatin resistance. Thus, our results suggest that targeting ERK-MKP-1 signaling could overcome cisplatin resistance in human ovarian cancer.  相似文献   

13.
PURPOSE: Bcl-xL overexpression is common in head and neck squamous cell carcinomas (HNSCC) and correlates with resistance to chemotherapy. Thus, a nonpeptidic, cell-permeable small molecule that mimics the BH3 domain of proapoptotic proteins may inhibit Bcl-xL function and have therapeutic potential for HNSCC by overcoming drug-resistance. (-)-Gossypol, the levorotatory isomer of a natural product isolated from cottonseeds and roots, was recently discovered to bind to the BH3 binding groove of Bcl-xL and Bcl-2. EXPERIMENTAL DESIGN: We investigated the in vitro effects of (-)-gossypol on HNSCC cell lines as well as on fibroblast and keratinocyte cultures by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell survival assays and assessed the results with respect to Bcl-2 family protein expression. RESULTS: We observed dose-dependent growth inhibition of 10 HNSCC cell lines at biologically achievable doses (2.5-10 micromol/L). (-)-Gossypol doses required to inhibit the growth of human fibroblast cell lines by 50% were 2- to 10-fold higher than for HNSCC cell lines. To inhibit human oral keratinocyte growth by 50%, (-)-gossypol concentrations were 2-to 3-fold higher than for HNSCC cell lines. CONCLUSIONS: There is a direct correlation between Bcl-xL-to-Bcl-xS ratios and sensitivity to (-)-gossypol. This agent induced apoptosis in a much higher proportion of cells with wild-type p53. Importantly, cell lines resistant to cisplatin were very sensitive to (-)-gossypol. These results demonstrate that (-)-gossypol has potent antitumor activity in HNSCC in vitro. This agent may be developed as a novel therapeutic agent for HNSCC, either alone or in combination with existing chemotherapeutic agents.  相似文献   

14.
We investigated cisplatin-induced apoptosis and the effects on cell cycle-related proteins and cell cycle changes. Two human hepatoma cell lines, HepG2 (with wild-type p53) and Hep3B (with deleted p53), were treated with different concentrations of cisplatin. Cisplatin induced apoptosis in both cell lines as assessed by cell morphology, DNA fragmentation analysis,TdT-mediated dUTP nick end labeling assay and flow cytometry. HepG2 cells were more sensitive to cisplatin than Hep3B. Low-dose cisplatin induced a transient G(1) arrest, S phase block and upregulation of p53 and p21(WAF1/CIP1) expression in HepG2, but not in Hep3B cells. With cisplatin at a high dose, both cell lines underwent apoptosis that was accompanied by downregulation of p27(KIP1) and Bcl-x(L). In HepG2, upregulation of p53 and p21(WAF1/CIP1) was observed before apoptosis occurred, suggesting that cisplatin-induced apoptosis in HepG2 might be p53-dependent. Expression of Fas was also increased following cisplatin treatment in HepG2. However, there was no induction of p53, p21(WAF1/CIP1) and Fas observed in Hep3B cells. In conclusion, cisplatin induced apoptosis in hepatoma cells via both p53-dependent and -independent pathways.  相似文献   

15.
M Yang  F Yuan  P Li  Z Chen  A Chen  S Li  C Hu 《Molecular cancer》2012,11(1):54
ABSTRACT: BACKGROUND: Our previous work demonstrated that ectopic expression of interferon regulatory factor 4 binding protein (IBP) was correlated with the malignant behaviour of human breast cancer cells. The mechanisms controlling differential expression of IBP in breast cancer still remain unknown. RESULTS: To investigate the mechanism of IBP dysregulation in breast cancer, we identified IBP was a novel p53 target gene. IBP expression was negatively regulated by wild-type p53 and was p53 dependently suppressed by DNA damage agent cisplatin. Furthermore, high levels of IBP were found to decrease cisplatin-induced growth suppression and apoptotic cell death, which was associated with decreased p53 activity and imbalanced Bcl-2 family member expression. CONCLUSIONS: IBP is a novel p53 target gene which suppresses cisplatin-mediated apoptosis of breast cancer cells via negative feedback regulation of the p53 signalling pathway, suggesting IBP may serve as a target for pharmacologic intervention of breast cancer resistant to cisplatin therapy.  相似文献   

16.
17.
Quercetin, a flavonoid found in onion, grapes, green vegetables, etc., has been shown to possess potent antiproliferative effects against various malignant cells. We report insulin-like growth factor-binding protein-3 (IGFBP-3) as an effector of quercetin-induced apoptosis in human prostate cancer cell lines in a p53-independent manner. We evaluated the production of IGFBP-3 in quercetin-treated cells. Apoptosis was studied in quercetin-treated cells to study the IGFBP-3-mediated role with flow cytometry and DNA fragmentation. Protein expressions of Bcl-2, Bcl-x(L), and Bax were studied by Western blot. Increased production of IGFBP-3 was associated with the increased ratio of proapoptotic to antiapoptotic members of the Bcl-2 family. In quercetin-treated PC-3 cells, an increase in Bax protein expression and a decrease in Bcl-x(L) protein and Bcl-2 protein were observed. As PC-3 is a p53-negative cell line, these modulations of proapoptotic proteins and induction of apoptosis were independent of p53. The level of IGFBP-3 on the response of PC-3 cells to quercetin was examined. There was a twofold increase in IGFBP-3 level in conditioned media of 100 microM quercetin-treated cells. Quercetin also brought a peak at sub-G1 in PC-3 cells. Thus, increased level of IGFBP-3 was associated with increased proapoptotic proteins and apoptosis in response to quercetin, suggesting it may be a p53-independent effector of apoptosis in prostate cancer cells via its modulation of the Bax/Bcl-2 protein ratio.  相似文献   

18.
19.
Our study was designed to investigate the role of the anti-apoptotic proteins Bcl-2 and Bcl-xL in the chemoresistance of cells derived from malignant pleural mesothelioma. First, we determined the basal expression levels of Bcl-2 and Bcl-xL in mesothelioma cells and examined the effect of their downregulation by antisense oligonucleotides. Bcl-xL mRNA and protein could be readily detected in mesothelioma cell lines, whereas only low levels of Bcl-2 mRNA and protein were found. Preferential downregulation of either Bcl-xL alone or of Bcl-xL and Bcl-2 simultaneously was achieved by treatment with antisense oligonucleotides 4259 and 4625, respectively, whereas the expression of other apoptosis-relevant genes remained unaffected. Treatment with oligonucleotides 4259 or 4625 lowered the apoptosis threshold in ZL34 mesothelioma cells, as indicated by an increase in cell death accompanied by increased caspase-3-like activity, a decrease of the mitochondrial transmembrane potential and the cleavage of procaspase-7 and ICAD. In addition to the direct induction of apoptosis, antisense treatment sensitized ZL34 cells to the cytostatic effect of cisplatin and gemcitabine, with the combination of 4625 and cisplatin being the most effective. Our results demonstrate that Bcl-2 and Bcl-xL antisense treatment facilitates apoptosis in mesothelioma cells and suggest the use of Bcl-2/Bcl-xL bispecific antisense treatment in combination with cisplatin or gemcitabine for therapy of malignant pleural mesothelioma.  相似文献   

20.
Resistance to cisplatin-based chemotherapy is a major cause of treatment failure in human ovarian cancer. Wild-type TP53 status is often, but not always, associated with cisplatin sensitivity, suggesting that additional factors may be involved. Overexpression/activation of the phosphatidylinositol-3-kinase/Akt pathway is commonly observed in ovarian cancer, and Akt activation is a determinant of chemoresistance in ovarian cancer cells, an effect that may be due, in part, to its inhibitory actions on p53-dependent apoptosis. To that end, we examined the role and regulation of p53 in chemosensitive ovarian cancer cells, as well as in their chemoresistant counterparts, and investigated if and how Akt influences this pathway. Cisplatin induced apoptosis in chemosensitive, but not chemoresistant cells, and this was inhibited by downregulation of p53. Cisplatin upregulated PUMA in a p53-dependent manner, and the presence of PUMA was necessary, but not sufficient for cisplatin-induced apoptosis. p53 was phosphorylated on numerous N-terminal residues, including Ser15, Ser20, in response to cisplatin in chemosensitive, but not chemoresistant cells. Furthermore, activation of Akt inhibited the cisplatin-induced upregulation of PUMA, and suppressed cisplatin-induced p53 phosphorylation, while inhibition of Akt increased total and phospho-p53 contents and sensitized p53 wild-type, chemoresistant cells to cisplatin-induced apoptosis. Finally, mutation of Ser15 and/or Ser20, but not of Ser37, to alanine significantly attenuated the ability of p53 to facilitate CDDP-induced apoptosis, and this was independent of PUMA expression. These results support the hypothesis that p53 is a determinant of CDDP sensitivity, and suggest that Akt contributes to chemoresistance, in part, by attenuating p53-mediated PUMA upregulation and phosphorylation of p53, which are essential, but independent determinants of sensitivity to CDDP-induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号