首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the ability of normal cats, trained to maintain a constant position while walking on a treadmill, to combine the paw-shake response with quadrupedal locomotion. Hindlimb paw-shake responses were elicited during walking after the right hindpaw was wrapped with tape. To assess intralimb and interlimb coordination of the combined behaviors, electromyographic (EMG) recordings from forelimb extensor muscles and from selected flexor and extensor muscles at the three major hindlimb joints were correlated with joint motion by using high-speed, cinefilm analysis. When paw shaking was combined with walking, the response occurred during the swing phase of the taped hindlimb. To accommodate the paw-shake response, swing duration of the shaking hindlimb and of the homolateral forelimb increased and was followed by a brief recovery step. Concurrently, to compensate for the response, stance durations of the contralateral forelimb and hindlimb increased. The magnitude of these adjustments in interlimb coordination was influenced by the number of paw-shake cycles, which ranged from one to four oscillations. Transitions between the muscle synergies for the paw-shake response and swing were smooth in the shaking limb. Early in the swing phase, when the flexor muscles were still active (F phase), the paw shake was initiated by an early onset of knee extensor activity, which preceded extensor activity at the hip and ankle. This action provided a transition from the general reciprocal synergy between flexor and extensor muscles of locomotion to the mixed synergy that is typical of the paw shake (30). Following the last paw-shake cycle, an extensor synergy initiated the E-1 phase of swing, and the resultant joint motion was in-phase extension of the hip, knee, and ankle to lower the paw for stance. Average cycle period and burst duration for muscles participating in the paw-shake response were similar to those reported for normal cats assuming a standing posture (28, 30). The average number of paw-shake cycles, however, decreased from eight to three when the response occurred during walking, suggesting that the response was truncated to provide for continued locomotion. Further, hip motion was variable when the paw shake was combined with swing, and sometimes the hip failed to oscillate and its trajectory was similar to that of an unperturbed swing phase. When hip joint oscillations occurred during the paw-shake response, they were in-phase with ankle motions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
1. To gain new perspectives on the neural control of different forms of quadruped locomotion, we studied adaptations in posture and hindlimb kinematics for backward (BWD) walking in normal cats. Data from four animals were obtained from high-speed (100 fr/s) ciné film of BWD treadmill walking over a range of slow walking speeds (0.3-0.6 m/s) and forward (FWD) treadmill walking at 0.6 m/s. 2. Postural adaptations during BWD walking included flexion of the lumbar spine, compared to a relatively straight spine during FWD walking. The usual paw-contact sequence for FWD walking [right hindlimb (RH), right forelimb (RF), left hindlimb (LH), left forelimb (LF)] was typically reversed for BWD walking (RH, LF, LH, RF). The hindlimbs alternated consistently with a phase difference averaging 0.5 for both forms of walking, but the phasing of the forelimbs was variable during BWD walking. 3. As BWD walking speed increased from 0.3 to 0.6 m/s, average hindlimb cycle period decreased 21%, stance-phase duration decreased 29%, and stride length increased 38%. Compared to FWD walking at 0.6 m/s, stride length was 30% shorter, whereas cycle period and stance-phase duration were 17% shorter for BWD walking. For both directions, stance occupied 64 +/- 4% (mean +/- SD) of the step cycle. 4. During swing for both forms of walking, the hip, knee, and ankle joints had flexion (F) and extension (E1) phases; however, the F-E1 reversals occurred earlier at the hip and later at the knee for BWD than for FWD walking. At the ankle joint, the ranges of motion during the F and E1 phases were similar for both directions. During BWD walking, however, the knee flexed more and extended less, whereas the hip flexed less and extended more. Thus horizontal displacement of the limb resulted primarily from hip extension and knee flexion during BWD swing, but hip flexion and knee extension during FWD swing. 5. At the knee and ankle joints, there were yield (E2) and extension (E3) phases during stance for both forms of walking; however, yields at the knee and ankle joints were reduced during BWD walking. At the hip, angular motion was unidirectional, as the hip flexed during BWD stance but extended during FWD stance. Knee extension was the prime contributor to horizontal displacement of the body during BWD stance, but hip extension was the prime contributor to horizontal displacement during FWD stance. 6. Our kinematic data revealed two discriminators between BWD and FWD walking.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Forelimb crossed extension reflexes were examined in 22 thalamic cats. These reflexes were elicited either by backward passive movement or by repetitive electrical stimulation of cutaneous and joint afferent nerves in the contralateral forelimb. Single stimulation of the superficial radial nerve evoked two types of reflex responses--early (ER) and late (LR)--from the triceps brachii muscle on the contralateral side. The latencies were about 7 and 16-25 ms, corresponding to the propriospinal (PSR) and spino-bulbo-spinal (SBS) reflexes of the ipsilateral flexor, respectively. Repetitive stimulation of the superficial radial nerve evoked the LR but not the ER. The crossed extension reflex and LR were abolished by lesions of the dorsolateral funiculus of the cervical cord on the side opposite to the recording. The tonic EMG activity, crossed extension reflex and LR in the extensor on the side of lesions were abolished by lesions of the ventrolateral funiculus of the cervical cord. During forelimb stepping, the amplitudes of both ER and LR fluctuated depending on the phase of the step cycle. The ER appeared during a narrow period in the early phase of the stance, whereas the LR was observed during a wide period from the middle of the swing to the middle of the stance. Both responses were absent from the middle of the stance to the middle of the swing. These observations suggest that forelimb crossed extension reflexes involve both spinal and supraspinal (SBS) loop mechanisms, and that these are utilized during stepping, with the latter mechanism in particular playing an important part in the extension phase of the forelimb forward movement.  相似文献   

4.
Effects of red nucleus microstimulation on the locomotor pattern and timing in the intact cat: a comparison with the motor cortex. To determine the extent to which the rubrospinal tract is capable of modifying locomotion in the intact cat, we applied microstimulation (cathodal current, 330 Hz; pulse duration 0.2 ms; maximal current, 25 microA) to the red nucleus during locomotion. The stimuli were applied either as short trains (33 ms) of impulses to determine the capacity of the rubrospinal tract to modify the level of electromyographic (EMG) activity in different flexors and extensors at different phases of the step cycle or as long trains (200 ms) of pulses to determine the effect of the red nucleus on cycle timing. Stimuli were also applied with the cat at rest (33-ms train). This latter stimulation evoked short-latency (average = 11.8-19.0 ms) facilitatory responses in all of the physiological flexor muscles of the forelimb that were recorded; facilitatory responses were also common in the elbow extensor, lateral head of triceps but were rare in the physiological wrist and digit extensor, palmaris longus. Responses were still evoked in most muscles when the current was decreased to near threshold (3-10 microA). Stimulation during locomotion with the short trains of stimuli evoked shorter-latency (average = 6.0-12.5 ms) facilitatory responses in flexor muscles during the swing phase of locomotion and, except in the case of the extensor digitorum communis, evoked substantially smaller responses in stance. The same stimuli also evoked facilitatory responses in the extensor muscles during swing and produced more complex effects involving both facilitation and suppression in stance. Increasing the duration of the train to 200 ms modified the amplitude and duration of the EMG activity of both flexors and extensors but had little significant effect on the cycle duration. In contrast, whereas stimulation of the motor cortex with short trains of stimuli during locomotion had very similar effects to that of the red nucleus, increasing the train duration to 200 ms frequently produced a marked reset of the step cycle by curtailing stance and initiating a new period of swing. The results suggest that whereas both the motor cortex and the red nucleus have access to the interneuronal circuits responsible for controlling the structure of the EMG activity in the step cycle, only the motor cortex has access to the circuits responsible for controlling cycle timing.  相似文献   

5.
Summary In walking cats decerebrated at the premammillary level, single neurone activity of Purkinje cells (P-cells) with long corticofugal axons was recorded in the cerebellar vermis. The P-cells (N = 145) were identified as they showed spontaneous simple and complex spikes and also antidromic activation from Deiters' nucleus. These P-cells were classified into 6 groups according to the receptive fields of the climbing fibre responses (CFRs) which were evoked by electrical stimulation in each limb at the radial and sciatic nerve bundles. One group designated as forelimb units received the CFRs from both forelimbs and from neither hindlimb. According to previous studies, this group of P-cells is thought to make inhibitory connections with Deiters neurones projecting to the ipsilateral cervicothoracic spinal cord.For the forelimb units, two types of discharge patterns for simple spikes were found in relation to limb movements during locomotion. Type I cells showed one peak in their firing rate in the late swing (E1) or early stance (E2) phase of the ipsilateral forelimb. Type II cells showed two peaks and two valleys during one step cycle: one peak was in the E1 phase, the other in the late stance (E3) or early swing (F) phase; each of the two valleys followed the peak. Complex spikes of the forelimb units occurred more frequently in the E1 phase than during the other phases. The increased activity of simple and complex spikes of the forelimb units in the E1 phase is suggested to have a functional significance in preparing the appropriate floor reaction forces that appear upon touchdown of the ipsilateral forelimb.This work was supported by Grants 410803 and 457039 from the Japanese Ministry of Education, Science and Culture  相似文献   

6.
A kinematic and electromyographic (EMG) analysis was undertaken of the responses evoked in the forelimb of the cat by either mechanical obstruction of the forelimb during the swing phase of locomotion or by electrical stimulation of low-threshold cutaneous afferents during both swing and stance. Mechanical obstruction of the forelimb with a stiff metal rod evoked a complex response that allowed the cat to smoothly negotiate the obstacle without undue disruption of the overall locomotor rhythm. The initial movements were a flexion of the shoulder, together with a locking of the elbow joint, and a dorsiflexion of the wrist, which caused the limb to withdraw from the obstacle. They were followed by an extension of the shoulder, a flexion of the elbow, and a ventroflexion of the wrist, which together brought the limb forward and above the obstacle. The associated and complex pattern of short- and long-latency EMG responses was shown to be related to different aspects of the movement. At the shoulder there was a strong activation of flexor muscles; these responses were of long duration (greater than or equal to 100 ms) and generally lasted throughout the period of shoulder flexion. At the elbow, both flexor and extensor muscles were activated at short latency (9-13 ms). In flexors, this was followed by a cessation and subsequently an augmentation and prolongation of their activity. Dorsiflexors of both the wrist and digits were activated at short latency (10-12 ms) and remained active throughout the period of dorsiflexion of these joints. An injection of a local anesthetic into the area of skin contacted by the metal rod reduced or abolished all of the reflex responses, which suggests that the integrity of cutaneous reflex pathways is essential for the elaboration of these responses. Electrical stimulation of a cutaneous nerve innervating the distal forelimb (the superficial radial nerve) resulted in qualitatively similar, although weaker, responses to those obtained with the mechanical stimulation. Terminal experiments confirmed that these responses were mediated by low-threshold cutaneous afferents. Electrical stimulation also evoked short-latency excitatory responses (10-12 ms) in extensor muscles of the elbow. Generally, the largest reflex effects were obtained during the period of swing for flexor, extensor, and bifunctional muscles. During stance the stimulus was normally ineffective in exciting flexor muscles and in extensors evoked a short-latency inhibition, which was frequently followed by an increase in activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The relationship of the climbing fiber afferent discharge to the unperturbed and perturbed step cycle was evaluated in the cat. Following a precollicular-premamillary decerebration, cats walked spontaneously on a motorized treadmill. Purkinje cells were recorded extracellularly and simple and complex spikes were discriminated. Right forelimb displacement, biceps and triceps EMG activity, as well as treadmill velocity, were also monitored. In some animals pressure measurements of the contact of the footpad with the treadmill were obtained. Cells were studied during both "normal" and perturbed locomotion. The perturbation consisted of a braking of the treadmill at different phases in the step cycle. Histograms of the simple and complex spike activity, and averages of the right forelimb displacement, biceps, and triceps EMG activity and treadmill velocity were constructed. The complex spike activity of 163 Purkinje cells was averaged through a minimum of 50 sweeps in either normal and/or perturbed locomotion. Statistical analysis revealed that the probability of the climbing fiber afferent discharge in 54% of the cells (36/67) studied during normal locomotion was significantly modulated with the step cycle. For most Purkinje cells the onset of the increase in climbing fiber afferent discharge was coupled to triceps activity and the onset of stance phase. A group of cells exhibited complex spike discharge in association with biceps onset and swing. These observations suggest that complex spike discharge occurs preferentially at the phase transition periods in the step cycle when the trajectory of the forelimb changes from swing to stance or stance to swing. During treadmill braking 51% of the cells exhibited complex spike modulation (70/137). A number of different patterns of climbing fiber afferent modulation occurred. The most common pattern was an increase in complex spike discharge with the resumption of the treadmill movement and locomotion. Analysis of the time of these periods of increased climbing fiber activity suggests that, although in some cells the response is coupled to the treadmill onset, in other cells the modulation occurs at longer latencies. Subsequent analysis aligning the EMG, displacement, and treadmill velocity signals with the times of the climbing fiber afferent discharge suggested some responses were coupled to the reinitiation of the locomotor cycle. The second most common pattern was an increase in climbing fiber afferent discharge at the onset of the perturbation. Also, in some cells, complex spike discharge decreased during the period in which the step cycle was arrested.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Summary Chronic recordings were made of electromyographic (EMG) activity, tension, and length of distal hindlimb muscles in six cats performing a variety of normal motor tasks. Muscles studied thoroughly or in part were medial gastrocnemius, lateral gastrocnemius, plantaris, soleus, flexor digitorum brevis, flexor digitorum longus, flexor hallucis longus, tibialis posterior, tibialis anterior, extensor digitorum longus, peroneus longus, and peroneus brevis. Postural and locomotor activities were examined, as well as jumping, landing, scratching, and paw shaking. In general, muscles could be assigned to traditional groupings (e.g. extensor, flexor) related to the demands of the motor task. Patterns of muscle activity were most often consistent with current understanding of muscle mechanics and neural coordination. However, purely functional distinctions between flexor digitorum longus and flexor hallucis longus (anatomical synergists) were made on the basis of activity patterns. Likewise, the activity of plantaris and flexor digitorum brevis, which are attached in series, was differentiated in certain tasks. The rhythmical oscillatory patterns of scratching and paw shaking were found to differ temporally in a manner consistent with the limb mechanics. In several cases, mechanical explanations of specific muscle activity required length and force records, as well as EMG patterns. Future efforts to study motor patterns should incorporate information about the relationships between muscle activation, tension, length and velocity.Abbreviations EDL extensor digitorum longus - FDB flexor digitorum brevis - FDL flexor digitorum longus - FHL flexor hallucis longus - LG lateral gastrocnemius - MG medial gastrocnemius - PB peroneus brevis - PL peroneus longus - PLT plantaris - SOL soleus - TA tibialis anterior - TP tibialis posterior Limbs A ankle - K knee - LF left forelimb - LH left hindlimb - RF right forelimb - RH right hindlimb Step Cycle Phases E1 first extension, late swing phase prior to footfall - E2 second extension, early stance phase - E3 third extension, late stance phase - F flexion, early swing phase  相似文献   

9.
Load-related afferent information modifies the magnitude and timing of hindlimb muscle activity during stepping in decerebrate animals and spinal cord-injured humans and animals, suggesting that the spinal cord mediates load-related locomotor responses. In this study, we found that stepping on a treadmill by adult rats that received complete, midthoracic spinal cord transections as neonates could be altered by loading the hindlimbs using a pair of small robotic arms. The robotic arms applied a downward force to the lower shanks of the hindlimbs during the stance phase and measured the position of the lower shank during stepping. No external force was applied during the swing phase of the step. When applied bilaterally, this stance force field perturbed the hindlimb trajectories so that the ankle position was shifted downward during stance. In response to this perturbation, both the stance and step cycle durations decreased. During swing, the hindlimb initially accelerated toward the normal, unperturbed swing trajectory and then tracked the normal trajectory. Bilateral loading increased the magnitude of the medial gastrocnemius electromyographic (EMG) burst during stance and increased the amplitude of the semitendinosus and rectus femoris EMG bursts. When the force field was applied unilaterally, stance duration decreased in the loaded hindlimb, while swing duration was decreased in the contralateral hindlimb, thereby preserving interlimb coordination. These results demonstrate the feasibility of using robotic devices to mechanically modulate afferent input to the injured spinal cord during weight-supported locomotion. In addition, these results indicate that the lumbosacral spinal cord responds to load-related input applied to the lower shank during stance by modifying step timing and muscle activation patterns, while preserving normal swing kinematics and interlimb coordination.  相似文献   

10.
1. To compare the basic hindlimb synergies for backward (BWD) and forward (FWD) walking, electromyograms (EMG) were recorded from selected flexor and extensor muscles of the hip, knee, and ankle joints from four cats trained to perform both forms of walking at a moderate walking speed (0.6 m/s). For each muscle, EMG measurements included burst duration, burst latencies referenced to the time of paw contact or paw off, and integrated burst amplitudes. To relate patterns of muscle activity to various phases of the step cycle, EMG records were synchronized with kinematic data obtained by digitizing high-speed ciné film. 2. Hindlimb EMG data indicate that BWD walking in the cat was characterized by reciprocal flexor and extensor synergies similar to those for FWD walking, with flexors active during swing and extensors active during stance. Although the underlying synergies were similar, temporal parameters (burst latencies and durations) and amplitude levels for specific muscles were different for BWD and FWD walking. 3. For both directions, iliopsoas (IP) and semitendinosus (ST) were active as the hip and knee joints flexed at the onset of swing. For BWD walking, IP activity decreased early, and ST activity continued as the hip extended and the knee flexed. For FWD walking, in contrast, ST activity ceased early, and IP activity continued as the hip flexed and the knee extended. For both directions, tibialis anterior (TA) was active throughout swing as the ankle flexed and then extended. A second ST burst occurred at the end of swing for FWD walking as hip flexion and knee extension slowed for paw contact. 4. For both directions, knee extensor (vastus lateralis, VL) activity began at paw contact. Ankle extensor (lateral gastrocnemius, LG) activity began during midswing for BWD walking but just before paw contact for FWD walking. At the ankle joint, flexion during the E2 phase (yield) of stance was minimal or absent for BWD walking, and ankle extension during BWD stance was accompanied by a ramp increase in LG-EMG activity. At the knee joint, the yield was also small (or absent) for BWD walking, and increased VL-EMG amplitudes were associated with the increased range of knee extension for BWD stance. 5. Although the uniarticular hip extensor (anterior biceps femoris, ABF) was active during stance for both directions, the hip flexed during BWD stance and extended during FWD stance.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
During walking, a change in speed is accomplished by varying the duration of the stance phase, while the swing phase remains relatively invariant. To determine if this asymmetry in the control of locomotor cycles is an inherent property of the spinal central pattern generator (CPG), we recorded episodes of fictive locomotion in decerebrate cats with or without a complete spinal transection (acute or chronic). During fictive locomotion, stance and swing phases typically correspond to extension and flexion phases, respectively. The extension and flexion phases were determined by measuring the duration of extensor and flexor bursts, respectively. In the vast majority of locomotor episodes, cycle period varied more with the extension phase. This was found without phasic sensory feedback, supraspinal structures, pharmacology or sustained stimulation. We conclude that the control of walking speed is governed by an asymmetry within the organization of the spinal CPG, which can be modified by extraneous factors.  相似文献   

12.
The main objective of this study was to characterize the stretch reflex response of the human thigh muscles to an unexpected knee flexion at the transition from stance to swing during walking. Eleven healthy subjects walked on a treadmill at their preferred speed. Reliable and constant knee flexions (6–12° amplitude, 230–350°/s velocity, 220 ms duration) were applied during the late swing and early stance phase of human walking by rotating the knee joint with a specifically designed portable stretch apparatus affixed to the left knee. Responses from rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), biceps femoris (BF), medial hamstrings (MH) and medial gastrocnemius (GM) were recorded via bipolar surface electromyograms (EMG). The onset of the response in the RF, VL and VM, remained stable and independent of the time in the step cycle when the stretch was applied. Across all subjects the response onset (mean ± SD) occurred at 23±1, 24±1 and 23±1 ms for RF, VL and VM, respectively. The duration of the initial response was 90–110 ms, at which time the EMG signal returned towards baseline levels. Three reflex response windows, labelled the short latency reflex (SLR), the medium latency reflex (MLR) and the late latency reflex response (LLR), were analysed. The medium and late reflex responses of all knee extensors increased significantly (p=0.008) as the gait cycle progressed from swing to stance. This was not related to the background EMG activity. In contrast, during standing at extensor EMG levels similar to those attained during walking the reflex responses were dependent on background EMG. During walking, LLR amplitudes expressed as a function of the background activity were on average two to three times greater than SLR and MLR reflex amplitudes. Distinct differences in SLR and LLR amplitude were observed for RF, VL and VM but not in the MLR amplitude. This may be related to the different pathways mediating the SLR, MLR and LLR components of the stretch response. As for the knee extensor antagonists, they exhibited a response to the stretch of the quadriceps at latencies short enough to be monosynaptic. This is in agreement with the suggestion by Eccles and Lundberg (1958) that there may be functional excitatory connections between the knee extensors and flexors in mammals.  相似文献   

13.
The turtle generates a variety of coordinated hindlimb movements, including different forms of locomotion and scratching. The intact turtle produces forward step, forward swim, and backpaddle. Following spinal cord transection, rostral, pocket, and caudal scratches can be evoked by mechanical stimulation of the shell. Comparisons of the kinematics and motor patterns of these six behaviors provide insights regarding neuronal mechanisms underlying their production. All six behaviors were characterized by alternating hip flexion and extension and by an event during which force was exerted against a substrate. The portion of the cycle occupied by hip flexion or extension movement varied across behaviors. Hip extension occupied well over half the cycle period in the forward step and the caudal scratch. The cycle was split into approximately half hip flexion and half hip extension for the forward swim, the backpaddle, and the rostral scratch. Hip flexion occupied over half the cycle in the pocket scratch. The swim and scratch forms had curvilinear, crescent-shaped toe trajectories and a single burst of monoarticular knee extensor activity during each cycle. The forward step had a linear toe trajectory and two bursts of knee extensor activity during each cycle, one during swing and one during stance. Timing of monoarticular knee extensor onset was similar for: the forward swim, the rostral scratch, and the swing phase burst of forward step; the pocket scratch and the stance phase burst of forward step; and the backpaddle and the caudal scratch. Amplitudes of muscle activity varied among the six behaviors; high amplitudes of activity were associated with events during which force was exerted against a substrate. These times of force exertion were: stance phase in the forward step, powerstroke in the forward swim and the backpaddle, and rubs of the limb against the shell in the scratch forms. The six behaviors studied represent a range of parameter values, as evidenced by relative durations of hip flexion to hip extension, knee extensor phasing, and electromyogram (EMG) amplitudes. This range of behaviors could be produced by assembling different combinations of neurons from a common pool, with all six behaviors likely sharing some basic circuitry. The extent of shared circuitry may be greater between behaviors with similar timing, e.g., backpaddle and caudal scratch.  相似文献   

14.
Summary To investigate whether phase-dependent reversals in reflex responses on electromyography (EMG) are accompanied by movement reversals, a series of human volunteers were studied for their behavioural responses to sural nerve stimulation during running or walking on a treadmill. Low-intensity stimulation (< 2.5 x perception threshold, T) of the sural nerve yielded facilitatory responses in the tibialis anterior muscle (TA), correlated with an induced ankle dorsiflexion (mean maximum 4°) in early swing. The same stimuli yielded primarily TA suppression and weak ankle plantar flexion (mean maximum 1°) at end swing. The correlated induced knee angle changes did not precede the ankle changes, and they were relatively small. Mean maximum flexion in early swing was 6.2°, while mean maximum extension was 3.7°. High-intensity stimulation of the sural nerve (> 2.5 x T) always gave rise to suppression of the ongoing activity. This resulted in a second type of movement reversal. During late stance and early swing the responses in TA were suppressive (i.e. below background activity) and related to ankle plantar flexion. In contrast, the responses during early and middle stance consisted of suppression in extensor activity (gastrocnemius medialis and soleus) and ankle dorsiflexion.The data are discussed in terms of a new hypothesis, which states that the responses to electrical stimulation of cutaneous nerves during locomotion do not correspond directly to corrections for stumbling following mechanical perturbations during the step cycle. Instead, the data invite a reinterpretation in terms of the opening and closing of reflex pathways, presumably by a central pattern generator for locomotion.  相似文献   

15.
We hypothesized that the activation patterns of flexor and extensor muscles and the resulting kinematics of the forelimbs and hindlimbs during locomotion in the Rhesus would have unique characteristics relative to other quadrupedal mammals. Adaptations of limb movements and in motor pool recruitment patterns in accommodating a range of treadmill speeds similar to other terrestrial animals in both the hindlimb and forelimb were observed. Flexor and extensor motor neurons from motor pools in the lumbar segments, however, were more highly coordinated than in the cervical segments. Unlike the lateral sequence characterizing subprimate quadrupedal locomotion, non-human primates use diagonal coordination between the hindlimbs and forelimbs, similar to that observed in humans between the legs and arms. Although there was a high level of coordination between hind- and forelimb locomotion kinematics, limb-specific neural control strategies were evident in the intersegmental coordination patterns and limb endpoint trajectories. Based on limb kinematics and muscle recruitment patterns, it appears that the hindlimbs, and notably the distal extremities, contribute more to body propulsion than the forelimbs. Furthermore, we found adaptive changes in the recruitment patterns of distal muscles in the hind- and forelimb with increased treadmill speed that likely correlate with the anatomical and functional evolution of hand and foot digits in monkeys. Changes in the properties of both the spinal and supraspinal circuitry related to stepping, probably account for the peculiarities in the kinematic and EMG properties during non-human primate locomotion. We suggest that such adaptive changes may have facilitated evolution toward bipedal locomotion.  相似文献   

16.
Summary The pad and the plantar surface of the foot were stimulated electrically in thalamic cats. Weak stimulation evoked an extensor reflex in the animal at rest. The same stimuli in a spontaneously walking animal applied during the stance phase produced an increase both in amplitude and duration of the ongoing extensor activity. When given during the swing phase, the stimuli either prolonged the ongoing flexor activity and/or shortened the following extensor burst. These changes in flexor and extensor burst duration were reflected in changes in the step cycle duration.Similar results were seen with direct stimulation of the sural nerve. For the latter experiments the ipsilateral hindlimb was fixed and denervated except for the ankle extensors and flexors, which showed rhythmic contractions correlated normally with the walking movements of the three remaining limbs. At rest, threshold stimulation of the sural nerve evoked a reflex contraction in the triceps surae of the fixed leg. The same stimuli applied during the contraction phase of the fixed triceps surae during walking resulted in a larger and longer extensor contraction and a delay of the following flexion. Stimulation during the relaxation phase of the fixed triceps surae reduced the duration of the following contraction phase. The findings are discussed in relation to the possible role of cutaneous input during locomotion.  相似文献   

17.
Summary Efferent discharges in muscle nerves of the four limbs were recorded simultaneously during spontaneous fictive locomotion in thalamic cats with the goal of understanding how the central nervous system controls interlimb coordination during stepping. The onset of the bursts of activity in the nerve of a selected flexor muscle in each limb allowed the temporal and the phase relationships between the fictive step cycle of a pair of limbs to be determined. Our main results are the following: 1) the fictive step cycles of the two forelimbs are always strictly alternated whereas the phasing of the step cycles of either the two hindlimbs or pairs of homolateral or diagonal limbs is more variable; 2) the time interval between the onsets of the flexor bursts of one of the two pairs of diagonal limbs is independent of the step cycle duration; 3) distinct patterns of interlimb coordination exist during fictive locomotion; a small number of patterns of coordination involving all four limbs, which correspond to the walking and the trotting gaits in the intact cat, occur very frequently. The results demonstrate that the central nervous system deprived of phasic afferent inputs from the periphery has the capacity to generate most of the patterns of interlimb coordination which occur during real locomotion. They further support the view that the central pattern of interlimb coordination essentially results from diagonal interactions between a forelimb generator for locomotion and a hindlimb one.Abbreviations CD step cycle duration - LF left forelimb - LH left hindlimb - m slope of correlation curve - N number of step cycles - r correlation coefficient - RF right forelimb - RH right hindlimb - Ti time interval  相似文献   

18.
We have examined the contribution of the red nucleus to the control of locomotion in the cat. Neuronal activity was recorded from 157 rubral neurons, including identified rubrospinal neurons, in three cats trained to walk on a treadmill and to step over obstacles attached to the moving belt. Of 72 neurons with a receptive field confined to the contralateral forelimb, 66 were phasically active during unobstructed locomotion. The maximal activity of the majority of neurons (59/66) was centered around the swing phase of locomotion. Slightly more than half of the neurons (36/66) were phasically activity during both swing and stance. In addition, some rubral neurons (14/66) showed multiple periods of phasic activity within the swing phase of the locomotor cycle. Periods of phasic discharge temporally coincident with the swing phase of the ipsilateral limb were observed in 7/66 neurons. During voluntary gait modifications, most forelimb-related neurons (70/72) showed a significant increase in their discharge activity when the contralateral limb was the first to step over the obstacle (lead condition). Maximal activity in nearly all cells (63/70) was observed during the swing phase, and 23/63 rubral neurons exhibited multiple increases of activity during the modified swing phase. A number of cells (18/70) showed multiple periods of increased activity during swing and stance. Many of the neurons (35/63, 56%) showed an increase in activity at the end of the swing phase; this period of activity was temporally coincident with the period of activity in wrist dorsiflexors, such as the extensor digitorum communis. A smaller proportion of neurons with receptive fields restricted to the hindlimbs showed similar characteristics to those observed in the population of forelimb-related neurons. The overall characteristics of these rubral neurons are similar to those that we obtained previously from pyramidal tract neurons recorded from the motor cortex during an identical task. However, in contrast to the results obtained in the rubral neurons, most motor cortical neurons showed only one period of increased activity during the step cycle. We suggest that both structures contribute to the modifications of the pattern of EMG activity that are required to produce the change in limb trajectory needed to step over an obstacle. However, the results suggest an additional role for the red nucleus in regulating intra- and interlimb coordination.  相似文献   

19.
To analyze changes in the excitability of both the spinal cord and brainstem in thalamic cats stepping on a moving treadmill, we examined the cutaneous propriospinal (PSR) and spino-bulbo-spinal (SBS) reflex responses in 20 adult cats. Tracheal cannulation, spinal transection at the T10 segment, and decerebration at the stereotaxic A12 level were performed under ether anesthesia. Immediately after decerebration, the ether was withdrawn. The head was fixed in a stereotaxic device, the T2 spinal process clamped to a metal frame, and the lumbar region suspended by a hammock, with bilateral forelimb contact on the floor of a treadmill. Electrical stimulation was applied to the superficial radial nerve with a cuff electrode, and two reflex responses (PSR and SBS) were recorded from the biceps brachii muscle in the same forelimb. Shortly before the appearance of forelimb stepping, both PSR and SBS reflex responses were elevated in amplitude. During forelimb stepping, the amplitudes of PSR and SBS reflex responses fluctuated depending on the phase of the step cycle. The PSR response was enhanced in the early phase of the swing, whereas the SBS response was elevated during a wider period from the beginning of the stance to the middle of the swing. The SBS response was completely absent in the late phase of the swing. This period corresponded to the transfer from flexion to extension and the appearance of the EMG of the triceps brachii muscle of the same forelimb. The fluctuation of the SBS response during stepping may be produced at the brainstem level, and not the spinal cord level, because the PSR response was enhanced only during narrow periods. The generation of locomotion thus seems to result in an enhancement of excitability of reflex pathways in the spinal cord and particularly in the brainstem.  相似文献   

20.
Summary This study examined the relationship of antidromically identified neurons in the dentate and interposed nuclei to perturbed and unperturbed locomotion in the pre-collicular, mid-mamillary, decerebrate cat. During treadmill locomotion two methods were used to perturb the step cycle. In the first, the treadmill was braked in different phases of the step cycle, the treadmill perturbation. In the second, the motion of the ipsilateral forelimb was interrupted by a rod placed transiently in the limb's path, the single limb perturbation. Most interposed cells were modulated during locomotion, their discharge being highly correlated with the EMG of the ipsilateral biceps or triceps. When the locomotion was perturbed, the modulation ceased for the duration of the perturbation. A few interposed cells displayed activity patterns unrelated to the EMG but were responsive to perturbations of a single limb. These responses may be explained by the putative activation of peripheral afferents produced by the perturbation. Most dentate cells were not modulated during unperturbed locomotion but did respond to features of the treadmill perturbation. Usually the response was coupled to the resumption of treadmill motion. A minority of dentate neurons was modulated slightly during unperturbed locomotion. Their modulation was less dramatic than that of interposed cells and was only weakly related to limb movement or EMG activity. Like the interposed neurons, these dentate cells responded to the treadmill perturbation with a cessation of modulation. All dentate cells were unresponsive to single limb perturbations. In a preparation lacking cerebral cortical input, the findings show that neurons of the interposed and dentate nuclei are modulated differently during perturbed and unperturbed treadmill walking in the decerebrate cat. The activity of interposed neurons is related to specific features of EMG activity recorded from muscles in the ipsilateral forelimb. Although some dentate cells were weakly modulated during unperturbed locomotion, the majority of these neurons responded most dramatically to the occurrence of a perturbation which completely stopped the walking behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号